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Summary. In this article, we formalize in the Mizar system [T} 4] some
properties of vector spaces over a ring. We formally prove the first isomorphism
theorem of vector spaces over a ring. We also formalize the product space of vector
spaces. Z-modules are useful for lattice problems such as LLL (Lenstra, Lenstra
and Lovész) [5] base reduction algorithm and cryptographic systems [6] 2.
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1. BUUECTIVE LINEAR TRANSFORMATION

From now on K, F' denote rings, V', W denote vector spaces over K, [ denotes
a linear combination of V', and T denotes a linear transformation from V to W.
Now we state the propositions:

(1) Let us consider a field K, finite dimensional vector spaces V, W over
K, a subset A of V| a basis B of V, a linear transformation 7' from V to
W, and a linear combination [ of B\ A. Suppose A is a basis of ker T" and
A C B. Then T(} 1) = > (T @Qx1).

(2) Let us consider a field F', vector spaces X, Y over F, a linear transfor-

mation 7" from X to Y, and a subset A of X. Suppose T is bijective. Then
A is a basis of X if and only if T°A is a basis of Y.
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(3) Let us consider a field F', vector spaces X, Y over F, and a linear transfor-
mation T from X to Y. Suppose T is bijective. Then X is finite dimensional
if and only if Y is finite dimensional.

(4) Let us consider a field F, a finite dimensional vector space X over F,
a vector space Y over F, and a linear transformation 7" from X to Y.
Suppose T is bijective. Then

(i) Y is finite dimensional, and
(i) dim(X) = dim(Y).
PROOF: For every basis I of X, dim(Y) = I. O

(5) Let us consider a field F', vector spaces X, Y over F, a linear combination
[ of X, and a linear transformation T from X to Y. If T' is one-to-one, then
T®l=Ta@xl.

PRrROOF: For every element y of Y, (T ®1)(y) = >, CFS(l,T,y). O

2. PROPERTIES OF LINEAR COMBINATIONS OF MODULES OVER A RING

Now we state the proposition:

(6) Let us consider a field K, a vector space V over K, subspaces Wy, Wo
of V', a basis I; of W1, and a basis Iy of Ws. If V' is the direct sum of W;
and Ws, then I; N Iy = (.

Let us consider a field K, a vector space V over K, subspaces Wy, Wy of
V', a basis I; of W1, a basis Is of W5, and a subset I of V. Now we state the
propositions:

(7) Suppose V is the direct sum of W; and Wy and I = I; U I. Then
Lin(I) = the vector space structure of V.

PROOF: Reconsider Is = I; as a subset of V. Reconsider I, = I5 as a subset
of V. For every vector x of V., x € Wy + Wy iff © € Lin(I3) + Lin(I4). O

(8) If V is the direct sum of W; and Wy and I = I} U I, then [ is linearly

independent.
ProOOF: Consider [ being a linear combination of I such that > 1 = Oy
and the support of [ # (0. Iy N Iy = (). I misses Is. Reconsider I3 = Iy,
I, = I, as a subset of V. Consider [; being a linear combination of I3, ls
being a linear combination of I such that [ = I; + ls. Reconsider I3 = I3
as a linear combination of I. Set vy = Y I3. v1 # Oy by [3 (25)]. O

(9) Let us consider a field K, a vector space V over K, subspaces Wi, Wo
of V', a basis I of W1, and a basis I of Ws. If W7 NW5 = 0y, then Iy U1
is a basis of W7 + Wh.
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PROOF: Set I = I1 U I5. Reconsider W = W7 + W5 as a strict subspace of
V. Reconsider W3 = Wy, W4 = W5 as a subspace of W. Reconsider Iy = I
as a subset of W. For every object x, x € W3 N Wy iff x € Oy. For every
object x, x € W iff x € W3 + Wy. I is base. [J

3. FIRST IsoMOPHISM THEOREM

Let us consider a field K, a finite dimensional vector space V over K, and
a subspace W of V. Now we state the propositions:

(10) There exists a linear complement S of W and there exists a linear trans-
formation T from S to V' /1 such that T is bijective and for every vector
v of V such that v € S holds T'(v) = v+ W.
PROOF: Set S = the linear complement of W. Set Vi = "/y;. Define
P[vector of V,vector of V1] = $3 = $; + W. Consider f; being a function
from the carrier of V into the carrier of Vi such that for every vector v
of V., Plv, fi(v)]. Set T' = fi[(the carrier of S). For every vector v of V'
such that v € S holds T'(v) = v+ W. The carrier of V; C rngT. For every
objects 1, o such that z1, 9 € the carrier of S and T'(xz1) = T'(x2) holds
1 = 0. U

(11) (i) Y/ is finite dimensional, and

(ii) dim(¥/w) + dim(W) = dim(V).

The theorem is a consequence of (10) and (4).

Let K be aring, V, U be vector spaces over K, W be a subspace of V, and f
be a linear transformation from V to U. Assume the carrier of W C the carrier
of ker f. The functor //yy yielding a linear transformation from V' /y to U is
defined by

(Def. 1) for every vector A of V' /- and for every vector a of V such that A = a+W
holds it(A) = f(a).

The functor CQFunctional f yielding a linear transformation from v /e, 7 to

U is defined by the term

(Def. 2) f/kerf'
Observe that CQFunctional f is one-to-one.

Now we state the proposition:

(12) Let us consider a ring K, vector spaces V', U over K, and a linear trans-
formation f from V to U. Then there exists a linear transformation T
from V/kerf to im f such that

(i) T = CQFunctional f, and
(ii) T is bijective.
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ProOOF: Set T' = CQFunctional f. For every object x, x € rngT iff x €
rng f. O

Let K be aring, V, U, W be vector spaces over K, f be a linear transfor-
mation from V to U, and g be a linear transformation from U to W. One can
verify that the functor g - f yields a linear transformation from V to W.

4. THE PRODUCT SPACE OF VECTOR SPACES

Let K be a ring.

A sequence of vector spaces over K is a non empty finite sequence and is
defined by

(Def. 3) for every set S such that S € rng it holds S is a vector space over K.

Note that every sequence of vector spaces over K is Abelian group yielding.

Let G be a sequence of vector spaces over K and j be an element of dom G.
One can check that the functor G(j) yields a vector space over K. Let j be
an element of dom G. One can verify that the functor G(j) yields a vector space
over K. The functor multop G yielding a multi-operation of the carrier of K and
G is defined by

(Def. 4) lenit = lenG and for every element j of dom@G, it(j) = the left
multiplication of G(j).

The functor [[ G yielding a strict, non empty vector space structure over K

is defined by the term

(Def. 5) ([1G,I1°(+¢; )i, (0g, )i, [1° multop G).
Let us note that [] G is Abelian, add-associative, right zeroed, right comple-
mentable, vector distributive, scalar distributive, scalar associative, and scalar
unital.

5. CARTESIAN PRODUCT OF VECTOR SPACES

From now on K denotes a ring.

Let K be aring and G, F' be non empty vector space structures over K. The
functor prodmlt(G, F') yielding a function from (the carrier of K) x ((the carrier
of G) x (the carrier of F')) into (the carrier of G) x (the carrier of F') is defined
by

(Def. 6) for every element r of K and for every vector g of G and for every vector
fof F.it(r, (g, f)) =(r-g. 7 f).

The functor G x F' yielding a strict, non empty vector space structure over

K is defined by the term
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(Def. 7)  {((the carrier of G)) x (the carrier of F'), prodadd(G, F), prodzero(G, F),
prodmlt(G, F)).

Let GG, F' be Abelian, non empty vector space structures over K. Note that
G x F is Abelian.

Let G, F be add-associative, non empty vector space structures over K. One
can verify that G x F' is add-associative.

Let G, F be right zeroed, non empty vector space structures over K. One
can verify that G x F' is right zeroed.

Let G, F' be right complementable, non empty vector space structures over
K. One can check that G x F is right complementable.

Now we state the propositions:

(13) Let us consider non empty vector space structures G, F' over K. Then

(i) for every set z, x is a vector of G x F' iff there exists a vector z; of
G and there exists a vector zo of F' such that x = (x1, x2), and

(ii) for every vectors z, y of G x F' and for every vectors z1, y; of G and
for every vectors zo, yo of F such that x = (x1, z2) and y = (y1, y2)
holds x + y = (x1 + y1, T2 + y2), and

(iii) 0G><F = (OG, OF), and

(iv) for every vector z of G x F' and for every vector z; of G and for every
vector zg of F and for every element a of K such that x = (z1, z2)
holds a -z = {(a - x1, a- xz2).

(14) Let us consider add-associative, right zeroed, right complementable, non
empty vector space structures GG, F' over K, a vector x of G x F', a vector
x1 of G, and a vector xg of F. Suppose x = (z1, x2). Then —z = (—x1,
*1‘2).

Let K be a ring and G, F be vector distributive, non empty vector space
structures over K. Let us note that G x F' is vector distributive.

Let G, F be scalar distributive, non empty vector space structures over K.
One can check that G x F is scalar distributive.

Let G, F be scalar associative, non empty vector space structures over K.
Let us note that G x F' is scalar associative.

Let G, F be scalar unital, non empty vector space structures over K. Let us
observe that GG x F' is scalar unital.

Let G be a vector space over K. One can check that the functor (G) yields
a sequence of vector spaces over K. Let G, F' be vector spaces over K. Let us
note that the functor (G, F') yields a sequence of vector spaces over K. Now we
state the proposition:
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(15) Let us consider a vector space X over K. Then there exists a function I
from X into [[(X) such that
(i) I is one-to-one and onto, and
(ii) for every vector x of X, I(x) = (z), and
(iii) for every vectors v, w of X, I(v 4+ w) = I(v) + I(w), and
(iv) for every vector v of X and for every element r of the carrier of K,
I(r-v)=r-1I(v), and
(v) 1(0x) = Oppxy-
PrROOF: Set C3 = the carrier of X. Consider I being a function from Cs
into [J(C3) such that I is one-to-one and onto and for every object = such
that € C3 holds I(z) = (z). For every vectors v, w of X, I(v + w) =
I(v) +I(w). For every vector v of X and for every element r of the carrier
of K, I(r-v)=r-I(v).O
Let K be a ring and G, F' be sequences of vector spaces over K. One can
verify that the functor G ~ F yields a sequence of vector spaces over K. Now
we state the propositions:
(16) Let us consider vector spaces X, Y over K. Then there exists a function
I from X x Y into [[(X,Y) such that

(i) I is one-to-one and onto, and

(ii) for every vector z of X and for every vector y of Y, I(x,y) = (x,y),
and

(iii) for every vectors v, w of X x Y, I(v+ w) = I(v) + I(w), and
(iv) for every vector v of X x Y and for every element r of K, I(r-v) =
r-I(v), and

(v) 1(0xxy) = 0H(X,Y>'
ProoOF: Set C3 = the carrier of X. Set C4 = the carrier of Y. Consider 1
being a function from C3 x C4 into [[(Cs,Cy) such that I is one-to-one
and onto and for every objects x, y such that z € C3 and y € Cy holds
I(z,y) = (x,y). For every vectors v, w of X x Y, I(v+ w) = I(v) + I(w).
For every vector v of X xY and for every element r of K, I(r-v) =r-1(v).
]

(17) Let us consider sequences of vector spaces X, Y over K. Then there
exists a function I from [T X x [TY into [[(X 7 Y) such that

(i) I is one-to-one and onto, and

(ii) for every vector z of [] X and for every vector y of []Y, there exist
finite sequences z1, y; such that = 27 and y = y; and I(x,y) =
1" Y1, and
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(iii) for every vectors v, w of [[X X [1Y, I(v+ w) = I(v) + I(w), and

(iv) for every vector v of [J X x []Y and for every element r of the carrier
of K, I(r-v) =r-1(v), and
v) I(OHXXHY) = OH(X”Y)'
PRrROOF: Reconsider C; = X, Co = Y as a non-empty, non empty finite
sequence. Consider I being a function from []Cy x [T Cy into [[(C1 ~ Cs)
such that I is one-to-one and onto and for every finite sequences x, y such
that = € []Cy and y € [[Cs holds I(z,y) = x ~y. Set P, = [[ X. Set
P, = []Y. For every natural number k such that £k € dom X Y holds
X " Y (k) = (C1™Cq)(k). For every vector x of [] X and for every vector y
of []Y, there exist finite sequences x1, y1 such that x = 1 and y = y; and
I(z,y) = x1 " y1. For every vectors v, w of Py X Py, I(v+w) = I(v)+I(w).
For every vector v of P; x P, and for every element r of the carrier of K,
I(r-v)=r-I(v) by [7, (9)]. O
(18) Let us consider vector spaces G, F over K. Then

(i) for every set x, x is a vector of [[(G, F') iff there exists a vector x; of
G and there exists a vector zo of F' such that x = (z1, z2), and

(ii) for every vectors z, y of [[(G, F) and for every vectors zj, y; of G
and for every vectors 2, y2 of F' such that = = (z1, z2) and y = (y1,
y2) holds x +y = (x1 + y1, x2 + y2), and

(iii) OH<G7F> = (0g,0p), and
(iv) for every vector z of [[(G, F) and for every vector x; of G and for

every vector zg of F' such that x = (x1,x92) holds —x = (—xz1, —x9),
and

(v) for every vector = of [[(G, F') and for every vector z; of G and for
every vector g of F' and for every element a of K such that x = (x1,
x9) holds a -z = (a-x1,a - 3).

PROOF: Consider I being a function from G x F' into [[(G, F') such that I is
one-to-one and onto and for every vector x of G and for every vector y of F,
I(z,y) = (x,y) and for every vectors v, w of G x F', [(v+w) = I(v)+I(w)
and for every vector v of Gx F' and for every element r of K, I(r-v) = r-I(v)
and Oe.r = I(0gxF). For every set x, z is a vector of [[(G, F) iff there
exists a vector x1 of G and there exists a vector xg of F' such that z = (z1,
x9). For every vectors z, y of [[(G, F) and for every vectors z1, y; of G
and for every vectors xa, yo of F' such that z = (z1,22) and y = (y1,¥2)
holds = +y = (x1 + y1, z2 + y2). OH(G7F> = (0g,0p). For every vector = of
[I{G, F) and for every vector x1 of G and for every vector xy of F' such
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(1]

that © = (z1,22) holds —z = (—x1, —z2). For every vector z of [[(G, F)
and for every vector x1 of G and for every vector z2 of F' and for every
element a of K such that z = (x1,22) holds a -z = (a - x1,a - x9). O
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