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Summary. In this article, we formalize in the Mizar system [1, 4] some
properties of vector spaces over a ring. We formally prove the first isomorphism
theorem of vector spaces over a ring. We also formalize the product space of vector
spaces. Z-modules are useful for lattice problems such as LLL (Lenstra, Lenstra
and Lovász) [5] base reduction algorithm and cryptographic systems [6, 2].
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1. Bijective Linear Transformation

From now onK, F denote rings, V ,W denote vector spaces overK, l denotes
a linear combination of V , and T denotes a linear transformation from V to W .

Now we state the propositions:

(1) Let us consider a field K, finite dimensional vector spaces V , W over
K, a subset A of V , a basis B of V , a linear transformation T from V to
W , and a linear combination l of B \A. Suppose A is a basis of kerT and
A ⊆ B. Then T (

∑
l) =
∑

(T @∗ l).
(2) Let us consider a field F , vector spaces X, Y over F , a linear transfor-

mation T from X to Y, and a subset A of X. Suppose T is bijective. Then
A is a basis of X if and only if T ◦A is a basis of Y.
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(3) Let us consider a field F , vector spacesX, Y over F , and a linear transfor-
mation T fromX to Y. Suppose T is bijective. ThenX is finite dimensional
if and only if Y is finite dimensional.

(4) Let us consider a field F , a finite dimensional vector space X over F ,
a vector space Y over F , and a linear transformation T from X to Y.
Suppose T is bijective. Then

(i) Y is finite dimensional, and

(ii) dim(X) = dim(Y ).

Proof: For every basis I of X, dim(Y ) = I . �

(5) Let us consider a field F , vector spacesX, Y over F , a linear combination
l of X, and a linear transformation T from X to Y. If T is one-to-one, then
T @ l = T @∗ l.
Proof: For every element y of Y, (T @ l)(y) =

∑
CFS(l, T, y). �

2. Properties of Linear Combinations of Modules over a Ring

Now we state the proposition:

(6) Let us consider a field K, a vector space V over K, subspaces W1, W2

of V , a basis I1 of W1, and a basis I2 of W2. If V is the direct sum of W1

and W2, then I1 ∩ I2 = ∅.
Let us consider a field K, a vector space V over K, subspaces W1, W2 of

V , a basis I1 of W1, a basis I2 of W2, and a subset I of V . Now we state the
propositions:

(7) Suppose V is the direct sum of W1 and W2 and I = I1 ∪ I2. Then
Lin(I) = the vector space structure of V .
Proof: Reconsider I3 = I1 as a subset of V . Reconsider I4 = I2 as a subset
of V . For every vector x of V , x ∈W1 +W2 iff x ∈ Lin(I3) + Lin(I4). �

(8) If V is the direct sum of W1 and W2 and I = I1 ∪ I2, then I is linearly
independent.
Proof: Consider l being a linear combination of I such that

∑
l = 0V

and the support of l 6= ∅. I1 ∩ I2 = ∅. I1 misses I2. Reconsider I3 = I1,
I4 = I2 as a subset of V . Consider l1 being a linear combination of I3, l2
being a linear combination of I4 such that l = l1 + l2. Reconsider l3 = l1
as a linear combination of I. Set v1 =

∑
l3. v1 6= 0V by [3, (25)]. �

(9) Let us consider a field K, a vector space V over K, subspaces W1, W2

of V , a basis I1 of W1, and a basis I2 of W2. If W1∩W2 = 0V , then I1∪ I2
is a basis of W1 +W2.
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Proof: Set I = I1 ∪ I2. Reconsider W =W1 +W2 as a strict subspace of
V . Reconsider W3 =W1, W4 =W2 as a subspace of W . Reconsider I0 = I
as a subset of W . For every object x, x ∈ W3 ∩W4 iff x ∈ 0V . For every
object x, x ∈W iff x ∈W3 +W4. I0 is base. �

3. First Isomophism Theorem

Let us consider a field K, a finite dimensional vector space V over K, and
a subspace W of V . Now we state the propositions:

(10) There exists a linear complement S of W and there exists a linear trans-
formation T from S to V /W such that T is bijective and for every vector
v of V such that v ∈ S holds T (v) = v +W .
Proof: Set S = the linear complement of W . Set V1 = V /W . Define
P[vector of V, vector of V1] ≡ $2 = $1 +W . Consider f1 being a function
from the carrier of V into the carrier of V1 such that for every vector v
of V , P[v, f1(v)]. Set T = f1�(the carrier of S). For every vector v of V
such that v ∈ S holds T (v) = v+W . The carrier of V1 ⊆ rng T . For every
objects x1, x2 such that x1, x2 ∈ the carrier of S and T (x1) = T (x2) holds
x1 = x2. �

(11) (i) V /W is finite dimensional, and

(ii) dim(V /W ) + dim(W ) = dim(V ).
The theorem is a consequence of (10) and (4).

Let K be a ring, V , U be vector spaces over K,W be a subspace of V , and f
be a linear transformation from V to U . Assume the carrier of W ⊆ the carrier
of ker f . The functor f/W yielding a linear transformation from V /W to U is
defined by

(Def. 1) for every vectorA of V /W and for every vector a of V such thatA = a+W
holds it(A) = f(a).

The functor CQFunctional f yielding a linear transformation from V /ker f to
U is defined by the term

(Def. 2) f/ker f .

Observe that CQFunctional f is one-to-one.
Now we state the proposition:

(12) Let us consider a ring K, vector spaces V , U over K, and a linear trans-
formation f from V to U . Then there exists a linear transformation T
from V /ker f to im f such that

(i) T = CQFunctional f , and

(ii) T is bijective.
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Proof: Set T = CQFunctional f . For every object x, x ∈ rng T iff x ∈
rng f . �

Let K be a ring, V , U , W be vector spaces over K, f be a linear transfor-
mation from V to U , and g be a linear transformation from U to W . One can
verify that the functor g · f yields a linear transformation from V to W .

4. The Product Space of Vector Spaces

Let K be a ring.
A sequence of vector spaces over K is a non empty finite sequence and is

defined by

(Def. 3) for every set S such that S ∈ rng it holds S is a vector space over K.

Note that every sequence of vector spaces over K is Abelian group yielding.
Let G be a sequence of vector spaces over K and j be an element of domG.

One can check that the functor G(j) yields a vector space over K. Let j be
an element of domG. One can verify that the functor G(j) yields a vector space
over K. The functor multopG yielding a multi-operation of the carrier of K and
G is defined by

(Def. 4) len it = lenG and for every element j of domG, it(j) = the left
multiplication of G(j).

The functor
∏
G yielding a strict, non empty vector space structure over K

is defined by the term

(Def. 5) 〈
∏
G,
∏◦〈+Gi〉i, 〈0Gi〉i,∏◦multopG〉.

Let us note that
∏
G is Abelian, add-associative, right zeroed, right comple-

mentable, vector distributive, scalar distributive, scalar associative, and scalar
unital.

5. Cartesian Product of Vector Spaces

From now on K denotes a ring.
Let K be a ring and G, F be non empty vector space structures over K. The

functor prodmlt(G,F ) yielding a function from (the carrier ofK)×((the carrier
of G)× (the carrier of F )) into (the carrier of G)× (the carrier of F ) is defined
by

(Def. 6) for every element r of K and for every vector g of G and for every vector
f of F , it(r, 〈〈g, f〉〉) = 〈〈r · g, r · f〉〉.

The functor G× F yielding a strict, non empty vector space structure over
K is defined by the term
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(Def. 7) 〈(the carrier of G)× (the carrier of F ), prodadd(G,F ),prodzero(G,F ),
prodmlt(G,F )〉.

Let G, F be Abelian, non empty vector space structures over K. Note that
G× F is Abelian.

Let G, F be add-associative, non empty vector space structures over K. One
can verify that G× F is add-associative.

Let G, F be right zeroed, non empty vector space structures over K. One
can verify that G× F is right zeroed.

Let G, F be right complementable, non empty vector space structures over
K. One can check that G× F is right complementable.

Now we state the propositions:

(13) Let us consider non empty vector space structures G, F over K. Then

(i) for every set x, x is a vector of G × F iff there exists a vector x1 of
G and there exists a vector x2 of F such that x = 〈〈x1, x2〉〉, and

(ii) for every vectors x, y of G×F and for every vectors x1, y1 of G and
for every vectors x2, y2 of F such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉
holds x+ y = 〈〈x1 + y1, x2 + y2〉〉, and

(iii) 0G×F = 〈〈0G, 0F 〉〉, and

(iv) for every vector x of G×F and for every vector x1 of G and for every
vector x2 of F and for every element a of K such that x = 〈〈x1, x2〉〉
holds a · x = 〈〈a · x1, a · x2〉〉.

(14) Let us consider add-associative, right zeroed, right complementable, non
empty vector space structures G, F over K, a vector x of G×F , a vector
x1 of G, and a vector x2 of F . Suppose x = 〈〈x1, x2〉〉. Then −x = 〈〈−x1,

−x2〉〉.
Let K be a ring and G, F be vector distributive, non empty vector space

structures over K. Let us note that G× F is vector distributive.
Let G, F be scalar distributive, non empty vector space structures over K.

One can check that G× F is scalar distributive.
Let G, F be scalar associative, non empty vector space structures over K.

Let us note that G× F is scalar associative.
Let G, F be scalar unital, non empty vector space structures over K. Let us

observe that G× F is scalar unital.
Let G be a vector space over K. One can check that the functor 〈G〉 yields

a sequence of vector spaces over K. Let G, F be vector spaces over K. Let us
note that the functor 〈G,F 〉 yields a sequence of vector spaces over K. Now we
state the proposition:
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(15) Let us consider a vector space X over K. Then there exists a function I
from X into

∏
〈X〉 such that

(i) I is one-to-one and onto, and

(ii) for every vector x of X, I(x) = 〈x〉, and

(iii) for every vectors v, w of X, I(v + w) = I(v) + I(w), and

(iv) for every vector v of X and for every element r of the carrier of K,
I(r · v) = r · I(v), and

(v) I(0X) = 0∏〈X〉.
Proof: Set C3 = the carrier of X. Consider I being a function from C3

into
∏
〈C3〉 such that I is one-to-one and onto and for every object x such

that x ∈ C3 holds I(x) = 〈x〉. For every vectors v, w of X, I(v + w) =
I(v) + I(w). For every vector v of X and for every element r of the carrier
of K, I(r · v) = r · I(v). �

Let K be a ring and G, F be sequences of vector spaces over K. One can
verify that the functor G a F yields a sequence of vector spaces over K. Now
we state the propositions:

(16) Let us consider vector spaces X, Y over K. Then there exists a function
I from X × Y into

∏
〈X,Y 〉 such that

(i) I is one-to-one and onto, and

(ii) for every vector x of X and for every vector y of Y, I(x, y) = 〈x, y〉,
and

(iii) for every vectors v, w of X × Y, I(v + w) = I(v) + I(w), and

(iv) for every vector v of X × Y and for every element r of K, I(r · v) =
r · I(v), and

(v) I(0X×Y ) = 0∏〈X,Y 〉.
Proof: Set C3 = the carrier of X. Set C4 = the carrier of Y. Consider I
being a function from C3 × C4 into

∏
〈C3, C4〉 such that I is one-to-one

and onto and for every objects x, y such that x ∈ C3 and y ∈ C4 holds
I(x, y) = 〈x, y〉. For every vectors v, w of X × Y, I(v +w) = I(v) + I(w).
For every vector v of X×Y and for every element r of K, I(r ·v) = r ·I(v).
�

(17) Let us consider sequences of vector spaces X, Y over K. Then there
exists a function I from

∏
X ×

∏
Y into

∏
(X a Y ) such that

(i) I is one-to-one and onto, and

(ii) for every vector x of
∏
X and for every vector y of

∏
Y, there exist

finite sequences x1, y1 such that x = x1 and y = y1 and I(x, y) =
x1

a y1, and
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(iii) for every vectors v, w of
∏
X ×

∏
Y, I(v + w) = I(v) + I(w), and

(iv) for every vector v of
∏
X×
∏
Y and for every element r of the carrier

of K, I(r · v) = r · I(v), and

(v) I(0∏X×∏Y ) = 0∏(XaY ).

Proof: Reconsider C1 = X, C2 = Y as a non-empty, non empty finite
sequence. Consider I being a function from

∏
C1 ×

∏
C2 into

∏
(C1

a C2)
such that I is one-to-one and onto and for every finite sequences x, y such
that x ∈

∏
C1 and y ∈

∏
C2 holds I(x, y) = x a y. Set P1 =

∏
X. Set

P2 =
∏
Y. For every natural number k such that k ∈ domX a Y holds

X a Y (k) = (C1
aC2)(k). For every vector x of

∏
X and for every vector y

of
∏
Y, there exist finite sequences x1, y1 such that x = x1 and y = y1 and

I(x, y) = x1
a y1. For every vectors v, w of P1×P2, I(v+w) = I(v)+I(w).

For every vector v of P1 × P2 and for every element r of the carrier of K,
I(r · v) = r · I(v) by [7, (9)]. �

(18) Let us consider vector spaces G, F over K. Then

(i) for every set x, x is a vector of
∏
〈G,F 〉 iff there exists a vector x1 of

G and there exists a vector x2 of F such that x = 〈x1, x2〉, and

(ii) for every vectors x, y of
∏
〈G,F 〉 and for every vectors x1, y1 of G

and for every vectors x2, y2 of F such that x = 〈x1, x2〉 and y = 〈y1,
y2〉 holds x+ y = 〈x1 + y1, x2 + y2〉, and

(iii) 0∏〈G,F 〉 = 〈0G, 0F 〉, and

(iv) for every vector x of
∏
〈G,F 〉 and for every vector x1 of G and for

every vector x2 of F such that x = 〈x1, x2〉 holds −x = 〈−x1,−x2〉,
and

(v) for every vector x of
∏
〈G,F 〉 and for every vector x1 of G and for

every vector x2 of F and for every element a of K such that x = 〈x1,

x2〉 holds a · x = 〈a · x1, a · x2〉.
Proof: Consider I being a function from G×F into

∏
〈G,F 〉 such that I is

one-to-one and onto and for every vector x of G and for every vector y of F ,
I(x, y) = 〈x, y〉 and for every vectors v, w of G×F , I(v+w) = I(v)+I(w)
and for every vector v ofG×F and for every element r ofK, I(r·v) = r·I(v)
and 0∏〈G,F 〉 = I(0G×F ). For every set x, x is a vector of

∏
〈G,F 〉 iff there

exists a vector x1 of G and there exists a vector x2 of F such that x = 〈x1,

x2〉. For every vectors x, y of
∏
〈G,F 〉 and for every vectors x1, y1 of G

and for every vectors x2, y2 of F such that x = 〈x1, x2〉 and y = 〈y1, y2〉
holds x+ y = 〈x1 + y1, x2 + y2〉. 0∏〈G,F 〉 = 〈0G, 0F 〉. For every vector x of∏
〈G,F 〉 and for every vector x1 of G and for every vector x2 of F such
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that x = 〈x1, x2〉 holds −x = 〈−x1,−x2〉. For every vector x of
∏
〈G,F 〉

and for every vector x1 of G and for every vector x2 of F and for every
element a of K such that x = 〈x1, x2〉 holds a · x = 〈a · x1, a · x2〉. �
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