

Introduction to Stopping Time in Stochastic Finance Theory. Part II

Peter Jaeger Siegmund-Schacky-Str. 18a 80993 Munich, Germany

Summary. We start proceeding with the stopping time theory in discrete time with the help of the Mizar system [1], [4]. We prove, that the expression for two stopping times k_1 and k_2 not always implies a stopping time $(k_1 + k_2)$ (see Theorem 6 in this paper). If you want to get a stopping time, you have to cut the function e.g. $(k_1 + k_2) \cap T$ (see [2, p. 283 Remark 6.14]).

Next we introduce the stopping time in continuous time. We are focused on the intervals [0,r] where $r \in \mathbb{R}$. We prove, that for I = [0,r] or $I = [0,+\infty[$ the set $\{A \cap I : A \in \text{Borel-Sets}\}$ is a σ -algebra of I (see Definition 6 in this paper, and more general given in $[3, p.12 \ 1.8e]$). The interval I can be considered as a timeline from now to some point in the future.

This set is necessary to define our next lemma. We prove the existence of the σ -algebra of the τ -past, where τ is a stopping time (see Definition 11 in this paper and [6, p.187, Definition 9.19]). If τ_1 and τ_2 are stopping times with τ_1 is smaller or equal than τ_2 we can prove, that the σ -algebra of the τ_1 -past is a subset of the σ -algebra of the τ_2 -past (see Theorem 9 in this paper and [6, p.187 Lemma 9.21]).

Suppose, that you want to use Lemma 9.21 with some events, that never occur, see as a comparison the paper [5] and the example for $ST(1)=\{+\infty\}$ in the Summary. We don't have the element $+\infty$ in our above-mentioned time intervals [0, r[and $[0, +\infty[$. This is only possible if we construct a new σ -algebra on $\mathbb{R} \cup \{-\infty, +\infty\}$. This construction is similar to the Borel-Sets and we call this σ -algebra extended Borel sets (see Definition 13 in this paper and [3, p. 21]). It can be proved, that $\{+\infty\}$ is an Element of extended Borel sets (see Theorem 21 in this paper). Now we use the interval $[0, +\infty]$ as a basis. We construct a σ -algebra on $[0, +\infty]$ similar to the book ($[3, p. 12 \ 18e]$), see Definition 18 in this paper, and call it extended Borel subsets. We prove for stopping times with this given σ -algebra, that for τ_1 and τ_2 are stopping times with τ_1 is smaller or equal than τ_2 we have the σ -algebra of the τ_1 -past is a subset of the σ -algebra of the τ_2 -past, see Theorem 25 in this paper. It is obvious, that $\{+\infty\} \in$ extended Borel subsets.

In general, Lemma 9.21 is important for the proof of the Optional Sampling Theorem, see 10.11 Proof of (i) in [6, p. 203].

MSC: 60G40 03B35

Keywords: stopping time; stochastic process

MML identifier: FINANCE5, version: 8.1.06 5.45.1311

1. Preliminaries

From now on Ω denotes a non empty set, Σ denotes a σ -field of subsets of Ω , S denotes a non empty subset of \mathbb{R} , r denotes a real number, and T denotes a natural number.

Let A be a non empty set, I be an extended real-membered set, and k_1 , k_2 be functions from A into I. We say that $k_1 \leq k_2$ if and only if

(Def. 1) for every element w of A, $k_1(w) \leq k_2(w)$.

Let f_1 , f_2 be extended real-valued functions. The functor $f_1 + f_2$ yielding a function is defined by

(Def. 2) dom $it = \text{dom } f_1 \cap \text{dom } f_2$ and for every object x such that $x \in \text{dom } it$ holds $it(x) = f_1(x) + f_2(x)$.

One can check that the functor is commutative.

Let us note that $f_1 + f_2$ is extended real-valued.

Let C be a set, D_1 , D_2 be extended real-membered, non empty sets, f_1 be a function from C into D_1 , and f_2 be a function from C into D_2 . One can verify that $f_1 + f_2$ is total as a partial function from C to $\overline{\mathbb{R}}$.

Let D_1 , D_2 be extended real-membered sets, f_1 be a partial function from C to D_1 , and f_2 be a partial function from C to D_2 . Let us note that the functor $f_1 + f_2$ yields a partial function from C to $\overline{\mathbb{R}}$. Now we state the propositions:

- (1) Let us consider non empty sets A, I, y, and a function F from A into I. Then $\{z, \text{ where } z \text{ is an element of } A : F(z) \in y\} = F^{-1}(y)$.
- (2) Let us consider a real number r. If r > 0, then there exists a natural number n such that $\frac{1}{n} < r$ and n > 0.
- (3) Let us consider real numbers a, b. Then $[-\infty, a] \cap [b, +\infty] = [b, a]$.
- (4) Let us consider a real number r. Suppose $r \ge 0$. Then $[0, +\infty] \setminus [0, r[=[r, +\infty]]$.

Let r be an extended real. Observe that $[r, +\infty]$ is non empty.

(5) Let us consider an extended real k. Then $\overline{\mathbb{R}} \setminus [-\infty, k] =]k, +\infty]$. Let a be a real number. One can check that $[a, +\infty]$ is non empty.

2. Stopping Time in Discrete Time

Let us consider Ω , Σ , and T. Let F_1 be a filtration of $\bigcup_{t \in \mathbb{N}: 0 \leq t \leq T} \{t\}$ and Σ and k be a function from Ω into $T_{\{+\infty\}}$. We say that k is like stopping time of F_1 if and only if

(Def. 3) k is StoppingTime (F_1,T) .

Let M_1 be a filtration of $\bigcup_{t \in \mathbb{N}: 0 \leqslant t \leqslant T} \{t\}$ and Σ . Note that there exists a function from Ω into $T_{\{+\infty\}}$ which is like stopping time of M_1 .

A stopping time of M_1 is a like stopping time of M_1 function from Ω into $T_{\{+\infty\}}$. Now we state the proposition:

(6) Let us consider a non zero natural number T, and a filtration M_1 of $\bigcup_{t\in\mathbb{N}:0\leqslant t\leqslant T}\{t\}$ and Σ . Then there exist stopping times k_1 , k_2 of M_1 such that k_1+k_2 is not a stopping time of M_1 .

PROOF: Reconsider $M_2 = T$ as an element of $T_{\{+\infty\}}$. Consider k_1 being a function from Ω into $T_{\{+\infty\}}$ such that $k_1 = \Omega \longmapsto M_2$ and k_1 is StoppingTime (M_1,T) . Consider k_2 being a function from Ω into $T_{\{+\infty\}}$ such that $k_2 = \Omega \longmapsto M_2$ and k_2 is StoppingTime (M_1,T) . There exists an element w of dom $(k_1 + k_2)$ such that $w \in \text{dom}(k_1 + k_2)$ and $(k_1 + k_2)(w) \notin T_{\{+\infty\}}$. \square

3. Stopping Time in Continuous Time

Let r be a real number.

A stopping event of r is a subset of \mathbb{R} defined by

(Def. 4) (i)
$$it = [0, +\infty[, if r \le 0,$$

(ii) it = [0, r], otherwise.

Let us note that every stopping event of r is non empty.

In the sequel I denotes a stopping event of r.

Now we state the proposition:

(7) I is an event of the Borel sets.

4. Borel-Sets

Let us consider r and I. Let A be an element of the Borel sets. The intersection of A and I yielding an element of the Borel sets is defined by

(Def. 5) $A \cap I$.

The first Borel subsets with I yielding a σ -field of subsets of I is defined by

(Def. 6) the set of all the intersection of A and I where A is an element of the Borel sets.

Let us consider Ω and Σ . Let M_1 be a function and k be a random variable of Σ and the first Borel subsets with I. We say that k is stopping time of M_1 if and only if

- (Def. 7) for every element t of I, $\{w, \text{ where } w \text{ is an element of } \Omega : k(w) \leq t\} \in M_1(t)$.
 - (8) Let us consider a filtration M_1 of I and Σ , and an element t_1 of I. Then there exists a random variable q of Σ and the first Borel subsets with I such that
 - (i) $q = \Omega \longmapsto t_1$, and
 - (ii) q is stopping time of M_1 .

PROOF: For every element t of I, $\{w, \text{ where } w \text{ is an element of } \Omega : (\Omega \longmapsto t_1)(w) \leq t\} \in M_1(t)$. Set $O = \Omega \longmapsto t_1$. For every set $x, O^{-1}(x) \in \Sigma$. \square

Let us consider Ω , Σ , r, and I. Let F_1 be a filtration of I and Σ and k be a random variable of Σ and the first Borel subsets with I. We say that k is like stopping time of F_1 if and only if

(Def. 8) k is stopping time of F_1 .

Let M_1 be a filtration of I and Σ . One can check that there exists a random variable of Σ and the first Borel subsets with I which is like stopping time of M_1 .

A stopping time of M_1 is a like stopping time of M_1 random variable of Σ and the first Borel subsets with I.

5. σ -Algebra of the τ -Past

Let us consider Ω , Σ , r, and I. Let M_1 be a filtration of I and Σ , τ be a stopping time of M_1 , and A_1 be a sequence of subsets of Ω . Assume rng $A_1 \subseteq \{A, \text{ where } A \text{ is an element of } \Sigma : \text{ for every element } t_1 \text{ of } I, A \cap \{w, \text{ where } w \text{ is an element of } \Omega : \tau(w) \leqslant t_1\} \in M_1(t_1)\}$. Let t be an element of I and n be a natural number. The first set for σ -tau of τ , A_1 , n and t yielding an element of the t- $\mathcal{E}\mathcal{F}$ of M_1 is defined by the term

- (Def. 9) (Complement A_1) $(n) \cap \{w, \text{ where } w \text{ is an element of } \Omega : \tau(w) \leq t\}.$
 - Let A be a sequence of subsets of Ω . The second set for σ -tau of τ , A and t yielding a sequence of subsets of the t- $\mathcal{E}\mathcal{F}$ of M_1 is defined by
- (Def. 10) for every natural number n, it(n) = the first set for σ -tau of τ , A, n and t.

The functor Σ -tau(τ) yielding a σ -field of subsets of Ω is defined by the term

(Def. 11) $\{A, \text{ where } A \text{ is an element of } \Sigma : \text{for every element } t \text{ of } I, A \cap \{w, \text{ where } w \text{ is an element of } \Omega : \tau(w) \leq t\} \in M_1(t)\}.$

Now we state the proposition:

(9) Let us consider a filtration M_1 of I and Σ , and stopping times k_1, k_2 of M_1 . Suppose $k_1 \leq k_2$. Then Σ -tau $(k_1) \subseteq \Sigma$ -tau (k_2) .

PROOF: Consider A being an element of Σ such that x = A and for every element f of I, $A \cap \{w_1, w_1\} \leq x_1 \leq x_2 \leq x_3 \leq x_4 \leq x_$

every element t of I, $A \cap \{w_1, \text{ where } w_1 \text{ is an element of } \Omega : k_1(w_1) \leq t\} \in M_1(t)$. $x \in \{A, \text{ where } A \text{ is an element of } \Sigma : \text{ for every element } t \text{ of } I, A \cap \{w_1, \text{ where } w_1 \text{ is an element of } \Omega : k_2(w_1) \leq t\} \in M_1(t)\}$. \square

The extended family of halflines yielding a family of subsets of $\overline{\mathbb{R}}$ is defined by the term

(Def. 12) the set of all $[-\infty, r]$ where r is a real number.

The extended Borel sets yielding a σ -field of subsets of $\overline{\mathbb{R}}$ is defined by the term

(Def. 13) σ (the extended family of halflines).

Now we state the proposition:

- (10) Let us consider a real number k. Then
 - (i) $[k, +\infty]$ is an element of the extended Borel sets, and
 - (ii) $[-\infty, k]$ is an element of the extended Borel sets.

The theorem is a consequence of (5).

Let b be a real number. The extended half open sets of b yielding a sequence of subsets of $\overline{\mathbb{R}}$ is defined by

(Def. 14) $it(0) =]b-1, +\infty]$ and for every natural number n, $it(n+1) =]b-\frac{1}{n+1}, +\infty]$.

Let us consider a real number b. Now we state the propositions:

(11) Intersection(the extended half open sets of b) is an element of the extended Borel sets.

PROOF: For every natural number n, (Complement(the extended half open sets of b))(n) is an element of the extended Borel sets. \square

- (12) Intersection(the extended half open sets of b) = $[b, +\infty]$. PROOF: For every object $c, c \in$ Intersection(the extended half open sets of b) iff $c \in [b, +\infty]$. \square
- (13) Let us consider real numbers a, b. Then [b,a] is an element of the extended Borel sets.

PROOF: $[-\infty, a]$ is an element of the extended Borel sets. $[-\infty, a] \cap [b, +\infty]$ is an element of the extended Borel sets by (12), (11), [7, (19)]. \square

- (14) Let us consider a real number a. Then $\{a\}$ is an element of the extended Borel sets. The theorem is a consequence of (13).
- (15) Let us consider a real number r. Then $[r, +\infty]$ is an event of the extended Borel sets. The theorem is a consequence of (11) and (12).

Let b be a real number. The extended right closed sets of b yielding a sequence of subsets of $\overline{\mathbb{R}}$ is defined by

(Def. 15) for every natural number n, $it(n) = [-\infty, b - n]$.

Now we state the propositions:

- (16) Let us consider a real number b. Then Intersection(the extended right closed sets of b) is an element of the extended Borel sets. The theorem is a consequence of (10).
- (17) Intersection(the extended right closed sets of 0) = $\{-\infty\}$. PROOF: For every object $c, c \in \text{Intersection}$ (the extended right closed sets of 0) iff $c \in \{-\infty\}$. \square
- (18) $\{-\infty\}$ is an element of the extended Borel sets.

Let b be a real number. The extended left closed sets of b yielding a sequence of subsets of $\overline{\mathbb{R}}$ is defined by

(Def. 16) for every natural number n, $it(n) = [b + n, +\infty]$.

Now we state the propositions:

- (19) Let us consider a real number b. Then Intersection(the extended left closed sets of b) is an element of the extended Borel sets. The theorem is a consequence of (15).
- (20) Intersection(the extended left closed sets of 0) = $\{+\infty\}$. PROOF: For every object $c, c \in \text{Intersection}$ (the extended left closed sets of 0) iff $c \in \{+\infty\}$. \square
- (21) $\{+\infty\}$ is an element of the extended Borel sets.
- (22) \mathbb{R} is an element of the extended Borel sets. The theorem is a consequence of (19), (20), (16), (17), and (2).
- (23) Halflines \subseteq the extended Borel sets. The theorem is a consequence of (10), (14), (16), and (17).

Let A be an element of the extended Borel sets. The positive subset of A yielding an element of the extended Borel sets is defined by the term

(Def. 17) $A \cap [0, +\infty]$.

The extended Borel subsets yielding a σ -field of subsets of $[0, +\infty]$ is defined by the term

(Def. 18) the set of all the positive subset of A where A is an element of the extended Borel sets.

Now we state the proposition:

(24) $\{+\infty\}$ is an element of the extended Borel subsets. The theorem is a consequence of (21).

Let us consider Ω and Σ . Let M_1 be a function, S be a non empty, extended real-membered set, and k be a random variable of Σ and the extended Borel subsets. We say that k is StoppingTime (M_1,S) if and only if

(Def. 19) for every element t of S, $\{w, \text{ where } w \text{ is an element of } \Omega : k(w) \leq t\} \in M_1(t)$.

Now we state the proposition:

- (25) Let us consider a filtration M_1 of S and Σ , and an element t_1 of $[0, +\infty]$. Then there exists a random variable q of Σ and the extended Borel subsets such that
 - (i) $q = \Omega \longmapsto t_1$, and
 - (ii) q is StoppingTime (M_1,S) .

PROOF: For every element t of S, $\{w, \text{ where } w \text{ is an element of } \Omega : (\Omega \longmapsto t_1)(w) \leq t\} \in M_1(t)$. Set $O = \Omega \longmapsto t_1$. For every set $x, O^{-1}(x) \in \Sigma$. \square

Let us consider Ω , Σ , and S. Let F_1 be a filtration of S and Σ and k be a random variable of Σ and the extended Borel subsets. We say that k is like stopping time of F_1 if and only if

(Def. 20) k is StoppingTime (F_1,S) .

Let M_1 be a filtration of S and Σ . Observe that there exists a random variable of Σ and the extended Borel subsets which is like stopping time of M_1 .

A stopping time of Σ and M_1 is a like stopping time of M_1 random variable of Σ and the extended Borel subsets. Let τ be a stopping time of Σ and M_1 and A_1 be a sequence of subsets of Ω . Assume rng $A_1 \subseteq \{A, \text{ where } A \text{ is an element of } \Sigma$: for every element t_1 of $S, A \cap \{w, \text{ where } w \text{ is an element of } \Omega : \tau(w) \leq t_1\} \in M_1(t_1)\}$. Let t be an element of S and S and S and S be a natural number. The first set for S-tau of S-tau

(Def. 21) (Complement A_1) $(n) \cap \{w, \text{ where } w \text{ is an element of } \Omega : \tau(w) \leq t\}.$

The second set for σ -tau of M_1 , τ , A_1 and t yielding a sequence of subsets of the t- $\mathcal{E}\mathcal{F}$ of M_1 is defined by

(Def. 22) for every natural number n, it(n) =the first set for σ -tau of M_1 , τ , A_1 , n and t.

The functor Σ -tau (M_1, τ) yielding a σ -field of subsets of Ω is defined by the term

(Def. 23) $\{A, \text{ where } A \text{ is an element of } \Sigma : \text{for every element } t \text{ of } S, A \cap \{w, \text{ where } w \text{ is an element of } \Omega : \tau(w) \leqslant t\} \in M_1(t)\}.$

Now we state the proposition:

(26) Let us consider a filtration M_1 of S and Σ , and stopping times k_1, k_2 of Σ and M_1 . Suppose $k_1 \leqslant k_2$. Then Σ -tau $(M_1, k_1) \subseteq \Sigma$ -tau (M_1, k_2) . PROOF: Consider A being an element of Σ such that x = A and for every element t of S, $A \cap \{w_1, \text{ where } w_1 \text{ is an element of } \Omega : k_1(w_1) \leqslant t\} \in M_1(t)$. For every element t of S, $x \cap \{w_1, \text{ where } w_1 \text{ is an element of } \Omega : k_2(w_1) \leqslant t\} \in M_1(t)$. \square

References

- [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Čarette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Hans Föllmer and Alexander Schied. Stochastic Finance: An Introduction in Discrete Time, volume 27 of Studies in Mathematics. de Gruyter, Berlin, 2nd edition, 2004.
- [3] Hans-Otto Georgii. Stochastik, Einführung in die Wahrscheinlichkeitstheorie und Statistik. deGruyter, Berlin, 2nd edition, 2004.
- [4] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.
- [5] Peter Jaeger. Introduction to stopping time in stochastic finance theory. Formalized Mathematics, 25(2):101–105, 2017. doi:10.1515/forma-2017-0010.
- [6] Achim Klenke. Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg, 2006.
- [7] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.

Received November 29, 2017

