

About Supergraphs. Part II

Sebastian Koch^D Johannes Gutenberg University Mainz, Germany¹

Summary. In the previous article [5] supergraphs and several specializations to formalize the process of drawing graphs were introduced. In this paper another such operation is formalized in Mizar [1], [2]: drawing a vertex and then immediately drawing edges connecting this vertex with a subset of the other vertices of the graph. In case the new vertex is joined with all vertices of a given graph G, this is known as the join of G and the trivial loopless graph K_1 . While the join of two graphs is known and found in standard literature (like [9], [4], [8] and [3]), the operation discribed in this article is not.

Alongside the new operation a mode to reverse the directions of a subset of the edges of a graph is introduced. When all edge directions of a graph are reversed, this is commonly known as the converse of a (directed) graph.

MSC: 05C76 03B35 68T99

Keywords: supergraph; graph operations

MML identifier: GLIB_007, version: 8.1.08 5.52.1328

1. Reversing Edge Directions

From now on G, G_2 denote graphs, V, E denote sets, and v denotes an object. Let us consider G and E.

A graph given by reversing directions of the edges E of G is a graph defined by

(Def. 1) (i) the vertices of it = the vertices of G and the edges of it = the edges of G and the source of it = (the source of G)+·(the target of G) $\upharpoonright E$ and the target of it = (the target of G)+·(the source of G) $\upharpoonright E$, if $E \subseteq$ the edges of G,

¹mailto: skoch02@students.uni-mainz.de

(ii) $it \approx G$, otherwise.

A graph given by reversing directions of the edges of G is a graph given by reversing directions of the edges of G of G. Now we state the propositions:

- (1) Let us consider graphs G_1 , G_2 given by reversing directions of the edges E of G. Then $G_1 \approx G_2$.
- (2) Let us consider a graph G_1 given by reversing directions of the edges E of G. Suppose $G_1 \approx G_2$. Then G_2 is a graph given by reversing directions of the edges E of G.

Let us consider G_2 , E, and a graph G_1 given by reversing directions of the edges E of G_2 . Now we state the propositions:

- (3) G_2 is a graph given by reversing directions of the edges E of G_1 .
- (4) (i) the vertices of G_1 = the vertices of G_2 , and

(ii) the edges of G_1 = the edges of G_2 .

- (5) Let us consider a graph G_1 given by reversing directions of the edges of G_2 . Then G_2 is a graph given by reversing directions of the edges of G_1 . The theorem is a consequence of (4) and (3).
- (6) Let us consider a trivial graph G_2 , a set E, and a graph G_1 . Then $G_1 \approx G_2$ if and only if G_1 is a graph given by reversing directions of the edges E of G_2 .

Let us consider G_2 , E, a graph G_1 given by reversing directions of the edges E of G_2 , and objects v_1 , e, v_2 . Now we state the propositions:

- (7) If $E \subseteq$ the edges of G_2 and $e \in E$, then e joins v_1 to v_2 in G_2 iff e joins v_2 to v_1 in G_1 . The theorem is a consequence of (3) and (4).
- (8) If $E \subseteq$ the edges of G_2 and $e \notin E$, then e joins v_1 to v_2 in G_2 iff e joins v_1 to v_2 in G_1 . The theorem is a consequence of (3) and (4).
- (9) e joins v_1 and v_2 in G_2 if and only if e joins v_1 and v_2 in G_1 . The theorem is a consequence of (3).
- (10) Let us consider a graph G_1 given by reversing directions of the edges E of G_2 . Then v is a vertex of G_1 if and only if v is a vertex of G_2 .

Let us consider G_2 , E, V, and a graph G_1 given by reversing directions of the edges E of G_2 . Now we state the propositions:

- (11) $G_1.edgesBetween(V) = G_2.edgesBetween(V).$ PROOF: For every object $e, e \in G_1.edgesBetween(V)$ iff $e \in G_2.edgesBetween(V).$
- (12) $G_1.edgesInOut(V) = G_2.edgesInOut(V).$ PROOF: For every object $e, e \in G_1.edgesInOut(V)$ iff $e \in G_2.edgesInOut(V).$

(13) Let us consider a graph G_1 given by reversing directions of the edges E of G_2 , a vertex v_1 of G_1 , and a vertex v_2 of G_2 . If $v_1 = v_2$, then v_1 .edgesInOut() = v_2 .edgesInOut(). The theorem is a consequence of (12).

Let us consider G_2 , E, and a graph G_1 given by reversing directions of the edges E of G_2 . Now we state the propositions:

- (14) Every walk of G_2 is a walk of G_1 . The theorem is a consequence of (4) and (9).
- (15) Every walk of G_1 is a walk of G_2 . The theorem is a consequence of (3) and (14).
- (16) Let us consider a graph G_1 given by reversing directions of the edges E of G_2 , a walk W_2 of G_2 , and a walk W_1 of G_1 . Suppose $E \subseteq$ the edges of G_2 and $W_1 = W_2$ and W_2 .edges() $\subseteq E$. Then W_1 is directed if and only if W_2 .reverse() is directed.

PROOF: For every odd element n of \mathbb{N} such that $n < \log W_1$ holds $W_1(n+1)$ joins $W_1(n)$ to $W_1(n+2)$ in G_1 by [6, (1)], [7, (12)].

- (17) Let us consider a graph G_1 given by reversing directions of the edges of G_2 , a walk W_2 of G_2 , and a walk W_1 of G_1 . Suppose $W_1 = W_2$. Then W_1 is directed if and only if W_2 .reverse() is directed. The theorem is a consequence of (16).
- (18) Let us consider a graph G_1 given by reversing directions of the edges E of G_2 , a walk W_2 of G_2 , and a walk W_1 of G_1 . If $W_1 = W_2$, then W_1 is chordal iff W_2 is chordal. The theorem is a consequence of (3).
- (19) Let us consider a graph G_1 given by reversing directions of the edges E of G_2 , and objects v_1 , v_2 . Then there exists a walk W_1 of G_1 such that W_1 is walk from v_1 to v_2 if and only if there exists a walk W_2 of G_2 such that W_2 is walk from v_1 to v_2 . The theorem is a consequence of (15) and (14).
- (20) Let us consider a graph G_1 given by reversing directions of the edges E of G_2 , a vertex v_1 of G_1 , and a vertex v_2 of G_2 . If $v_1 = v_2$, then G_1 .reachableFrom $(v_1) = G_2$.reachableFrom (v_2) . The theorem is a consequence of (19).
- (21) Let us consider a graph G_1 given by reversing directions of the edges E of G_2 . Then
 - (i) $G_1.componentSet() = G_2.componentSet()$, and
 - (ii) $G_1.numComponents() = G_2.numComponents()$.

The theorem is a consequence of (10) and (20).

Let G be a trivial graph and E be a set. Observe that every graph given by reversing directions of the edges E of G is trivial.

Let G be a non trivial graph. Let us observe that every graph given by reversing directions of the edges E of G is non trivial.

Now we state the propositions:

- (22) Let us consider a graph G_1 given by reversing directions of the edges E of G_2 , a set v, and a subgraph G_3 of G_1 with vertex v removed. Then every subgraph of G_2 with vertex v removed is a graph given by reversing directions of the edges $E \setminus G_1$.edgesInOut($\{v\}$) of G_3 . The theorem is a consequence of (11), (2), (3), and (6).
- (23) Let us consider a graph G_1 given by reversing directions of the edges E of G_2 , a vertex v_1 of G_1 , and a vertex v_2 of G_2 . Suppose $v_1 = v_2$. Then
 - (i) v_1 is isolated iff v_2 is isolated, and
 - (ii) v_1 is endvertex iff v_2 is endvertex, and
 - (iii) v_1 is cut-vertex iff v_2 is cut-vertex.

The theorem is a consequence of (3).

Let us consider G_2 , E, and a graph G_1 given by reversing directions of the edges E of G_2 . Now we state the propositions:

(24) (i) $G_1.order() = G_2.order()$, and

(ii) $G_{1}.size() = G_{2}.size().$

The theorem is a consequence of (4).

(25) Suppose $E \subseteq$ the edges of G_2 and G_2 is non-directed-multi and for every objects e_1, e_2, v_1, v_2 such that e_1 joins v_1 and v_2 in G_2 and e_2 joins v_1 and v_2 in G_2 holds $e_1, e_2 \in E$ or $e_1 \notin E$ and $e_2 \notin E$. Then G_1 is non-directed-multi.

PROOF: For every objects e_1 , e_2 , v_1 , v_2 such that e_1 joins v_1 to v_2 in G_1 and e_2 joins v_1 to v_2 in G_1 holds $e_1 = e_2$. \Box

Let G be a non-directed-multi graph. Let us note that every graph given by reversing directions of the edges of G is non-directed-multi.

Let G be a non-non-directed-multi graph. Observe that every graph given by reversing directions of the edges of G is non-non-directed-multi.

Let G be a non-multi graph and E be a set. One can verify that every graph given by reversing directions of the edges E of G is non-multi.

Let G be a non non-multi graph. Let us note that every graph given by reversing directions of the edges E of G is non non-multi.

Let G be a loopless graph. One can check that every graph given by reversing directions of the edges E of G is loopless.

Let G be a non loopless graph. One can check that every graph given by reversing directions of the edges E of G is non loopless.

Let G be a connected graph. Let us observe that every graph given by reversing directions of the edges E of G is connected.

Let G be a non connected graph. Observe that every graph given by reversing directions of the edges E of G is non connected.

Let G be an acyclic graph. Note that every graph given by reversing directions of the edges E of G is acyclic.

Let G be a non acyclic graph. One can verify that every graph given by reversing directions of the edges E of G is non acyclic.

Let G be a complete graph. Observe that every graph given by reversing directions of the edges E of G is complete.

Let G be a non complete graph. Observe that every graph given by reversing directions of the edges E of G is non complete.

Let G be a chordal graph. Note that every graph given by reversing directions of the edges E of G is chordal.

Let G be a finite graph. Let us note that every graph given by reversing directions of the edges E of G is finite.

Let G be a non finite graph. One can verify that every graph given by reversing directions of the edges E of G is non finite.

Now we state the propositions:

- (26) Let us consider a graph G_1 given by reversing directions of the edges of G_2 . Then
 - (i) the source of G_1 = the target of G_2 , and
 - (ii) the target of G_1 = the source of G_2 .
- (27) Let us consider a graph G_1 given by reversing directions of the edges of G_2 , and objects v_1 , e, v_2 . Then e joins v_1 to v_2 in G_2 if and only if e joins v_2 to v_1 in G_1 . The theorem is a consequence of (26).

2. Adding a Vertex and Several Edges to a Graph

Let us consider G, v, and V.

A supergraph of G extended by vertex v and edges from v to V of G is a supergraph of G defined by

- (Def. 2) (i) the vertices of it = (the vertices of $G) \cup \{v\}$ and the edges of it = (the edges of $G) \cup (V \longmapsto)$ (the edges of G)) and the source of it = (the source of $G) + \cdot ((V \longmapsto)$ (the edges of $G)) \longmapsto v)$ and the target of it = (the target of $G) + \cdot \pi_1(V \boxtimes \{$ the edges of $G\})$, if $V \subseteq$ the vertices of G and $v \notin$ the vertices of G,
 - (ii) $it \approx G$, otherwise.

A supergraph of G extended by vertex v and edges from V of G to v is a supergraph of G defined by

(Def. 3) (i) the vertices of it = (the vertices of $G) \cup \{v\}$ and the edges of it = (the edges of $G) \cup (V \longmapsto$ (the edges of G)) and the source of it = (the source of $G) + \cdot \pi_1(V \boxtimes \{\text{the edges of } G\})$ and the target of it = (the target of $G) + \cdot ((V \longmapsto (\text{the edges of } G)) \longmapsto v)$, if $V \subseteq$ the vertices of G and $v \notin$ the vertices of G,

(ii) $it \approx G$, otherwise.

A supergraph of G extended by vertex v and edges from v to the vertices of G is a supergraph of G extended by vertex v and edges from v to the vertices of G of G.

A supergraph of G extended by vertex v and edges from the vertices of G to v is a supergraph of G extended by vertex v and edges from the vertices of G of G to v. Now we state the propositions:

- (28) Let us consider supergraphs G_1 , G_2 of G extended by vertex v and edges from v to V of G. Then $G_1 \approx G_2$.
- (29) Let us consider supergraphs G_1 , G_2 of G extended by vertex v and edges from V of G to v. Then $G_1 \approx G_2$.
- (30) Let us consider a supergraph G_1 of G extended by vertex v and edges from v to V of G. Suppose $G_1 \approx G_2$. Then G_2 is a supergraph of Gextended by vertex v and edges from v to V of G.
- (31) Let us consider a supergraph G_1 of G extended by vertex v and edges from V of G to v. Suppose $G_1 \approx G_2$. Then G_2 is a supergraph of Gextended by vertex v and edges from V of G to v.
- (32) Let us consider a supergraph G_1 of G extended by vertex v and edges from v to V of G, and a supergraph G_2 of G extended by vertex v and edges from V of G to v. Then
 - (i) the vertices of G_1 = the vertices of G_2 , and
 - (ii) the edges of G_1 = the edges of G_2 .
- (33) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges from v to V of G_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Then G_1 .edgesOutOf($\{v\}$) = $V \mapsto$ (the edges of G_2). PROOF: For every object $e, e \in G_1$.edgesOutOf($\{v\}$) iff $e \in V \mapsto$ (the edges of G_2). \Box
- (34) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges from V of G_2 to v. Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Then G_1 .edgesInto($\{v\}$) = $V \mapsto$ (the edges of G_2).

PROOF: For every object $e, e \in G_1$.edgesInto $(\{v\})$ iff $e \in V \longmapsto$ (the edges of G_2). \Box

- (35) Let us consider a supergraph G_1 of G extended by vertex v and edges from v to V of G, and a supergraph G_2 of G extended by vertex v and edges from V of G to v. Suppose $V \subseteq$ the vertices of G and $v \notin$ the vertices of G. Then
 - (i) G_2 is a graph given by reversing directions of the edges G_1 .edgesOutOf($\{v\}$) of G_1 , and
 - (ii) G_1 is a graph given by reversing directions of the edges G_2 .edgesInto($\{v\}$) of G_2 .

The theorem is a consequence of (33) and (34).

- (36) Let us consider a supergraph G_1 of G extended by vertex v and edges from v to V of G, a supergraph G_2 of G extended by vertex v and edges from V of G to v, and objects v_1 , e, v_2 . Then e joins v_1 and v_2 in G_1 if and only if e joins v_1 and v_2 in G_2 . The theorem is a consequence of (35) and (9).
- (37) Let us consider a supergraph G_1 of G extended by vertex v and edges from v to V of G, a supergraph G_2 of G extended by vertex v and edges from V of G to v, and an object w. Then w is a vertex of G_1 if and only if w is a vertex of G_2 .
- (38) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges from v to V of G_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Let us consider objects e_1 , u. Then
 - (i) e_1 does not join u to v in G_1 , and
 - (ii) if $u \notin V$, then e_1 does not join v to u in G_1 , and
 - (iii) for every object e_2 such that e_1 joins v to u in G_1 and e_2 joins v to u in G_1 holds $e_1 = e_2$.

PROOF: e_1 does not join u to v in G_1 . If $u \notin V$, then e_1 does not join v to u in G_1 . $e_1 \notin$ the edges of G_2 and $e_2 \notin$ the edges of G_2 . Consider x_1, y_1 being objects such that $x_1 \in V$ and $y_1 \in \{$ the edges of $G_2\}$ and $e_1 = \langle x_1, y_1 \rangle$. Consider x_2, y_2 being objects such that $x_2 \in V$ and $y_2 \in \{$ the edges of $G_2\}$ and $e_2 = \langle x_2, y_2 \rangle$. \Box

- (39) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges from V of G_2 to v. Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Let us consider objects e_1 , u. Then
 - (i) e_1 does not join v to u in G_1 , and
 - (ii) if $u \notin V$, then e_1 does not join u to v in G_1 , and

(iii) for every object e_2 such that e_1 joins u to v in G_1 and e_2 joins u to v in G_1 holds $e_1 = e_2$.

PROOF: e_1 does not join v to u in G_1 . If $u \notin V$, then e_1 does not join u to v in G_1 . $e_1 \notin$ the edges of G_2 and $e_2 \notin$ the edges of G_2 . Consider x_1, y_1 being objects such that $x_1 \in V$ and $y_1 \in \{$ the edges of $G_2\}$ and $e_1 = \langle x_1, y_1 \rangle$. Consider x_2, y_2 being objects such that $x_2 \in V$ and $y_2 \in \{$ the edges of $G_2\}$ and $e_2 = \langle x_2, y_2 \rangle$. \Box

- (40) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges from v to V of G_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Let us consider objects e, v_1, v_2 . Suppose $v_1 \neq v$. If e joins v_1 to v_2 in G_1 , then e joins v_1 to v_2 in G_2 . PROOF: $e \in$ the edges of G_2 . \Box
- (41) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges from V of G_2 to v. Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Let us consider objects e, v_1, v_2 . Suppose $v_2 \neq v$. If e joins v_1 to v_2 in G_1 , then e joins v_1 to v_2 in G_2 . PROOF: $e \in$ the edges of G_2 . \Box
- (42) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges from v to V of G_2 , and an object v_1 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 and $v_1 \in V$. Then $\langle v_1, \text{ the edges of } G_2 \rangle$ joins v to v_1 in G_1 .
- (43) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges from V of G_2 to v, and an object v_1 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 and $v_1 \in V$. Then $\langle v_1, \text{ the edges of } G_2 \rangle$ joins v_1 to v in G_1 .

Let us consider G, v, V, a supergraph G_1 of G extended by vertex v and edges from v to V of G, and a supergraph G_2 of G extended by vertex v and edges from V of G to v. Now we state the propositions:

- (44) Every walk of G_1 is a walk of G_2 . The theorem is a consequence of (35) and (14).
- (45) Every walk of G_2 is a walk of G_1 . The theorem is a consequence of (35) and (14).

Let us consider G, v, and V.

A supergraph of G extended by vertex v and edges between v and V of G is a supergraph of G defined by

(Def. 4) (i) the vertices of it = (the vertices of $G) \cup \{v\}$ and for every object e, e does not join v and v in it and for every object v_1 , if $v_1 \notin V$, then edoes not join v_1 and v in it and for every object v_2 such that $v_1 \neq v$ and $v_2 \neq v$ and e joins v_1 to v_2 in it holds e joins v_1 to v_2 in G and there exists a set E such that $\overline{V} = \overline{E}$ and E misses the edges of Gand the edges of $it = (\text{the edges of } G) \cup E$ and for every object v_1 such that $v_1 \in V$ there exists an object e_1 such that $e_1 \in E$ and e_1 joins v_1 and v in it and for every object e_2 such that e_2 joins v_1 and v in it holds $e_1 = e_2$, if $V \subseteq$ the vertices of G and $v \notin$ the vertices of G,

(ii) $it \approx G$, otherwise.

A supergraph of G extended by vertex v and edges between v and the vertices of G is a supergraph of G extended by vertex v and edges between v and the vertices of G of G.

One can verify that a supergraph of G extended by vertex v and edges from v to V of G is a supergraph of G extended by vertex v and edges between v and V of G.

Note that a supergraph of G extended by vertex v and edges from V of G to v is a supergraph of G extended by vertex v and edges between v and V of G. Now we state the propositions:

- (46) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges between v and \emptyset of G_2 . Then the edges of G_2 = the edges of G_1 .
- (47) Let us consider a non empty set V, and a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Then the edges of $G_1 \neq \emptyset$.
- (48) Let us consider a supergraph G_1 of G extended by vertex v and edges between v and V of G. Suppose $G_1 \approx G_2$. Then G_2 is a supergraph of Gextended by vertex v and edges between v and V of G.
- (49) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 , and objects v_1 , e, v_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 and $v_1 \neq v$ and $v_2 \neq v$ and e joins v_1 and v_2 in G_1 . Then e joins v_1 and v_2 in G_2 .
- (50) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Then v is a vertex of G_1 .
- (51) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 , a set E, and objects v_1 , e, v_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 and the edges of $G_1 =$ (the edges of G_2) $\cup E$ and E misses the edges of G_2 and e joins v_1 and v_2 in G_1 and $e \notin$ the edges of G_2 . Then

(i) $e \in E$, and

- (ii) $v_1 = v$ and $v_2 \in V$ or $v_2 = v$ and $v_1 \in V$.
- (52) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 , and a set E. Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 and the edges of $G_1 =$ (the edges of $G_2) \cup E$ and E misses the edges of G_2 . Then there exist functions f, g from E into $V \cup \{v\}$ such that
 - (i) the source of $G_1 = ($ the source of $G_2) + f$, and
 - (ii) the target of $G_1 = (\text{the target of } G_2) + \cdot g$, and
 - (iii) for every object e such that $e \in E$ holds e joins f(e) to g(e) in G_1 and $(f(e) = v \text{ iff } g(e) \neq v)$.

PROOF: Consider E_1 being a set such that $\overline{V} = \overline{E_1}$ and E_1 misses the edges of G_2 and the edges of $G_1 =$ (the edges of G_2) $\cup E_1$ and for every object v_1 such that $v_1 \in V$ there exists an object e_1 such that $e_1 \in E_1$ and e_1 joins v_1 and v in G_1 and for every object e_2 such that e_2 joins v_1 and v in G_1 holds $e_1 = e_2$. Define $\mathcal{P}[\text{object}, \text{object}] \equiv$ there exists an object v_2 such that $\$_1$ joins $\$_2$ to v_2 in G_1 . For every object e such that $e \in E$ there exists an object v_1 such that $v_1 \in V \cup \{v\}$ and $\mathcal{P}[e, v_1]$.

Consider f being a function from E into $V \cup \{v\}$ such that for every object e such that $e \in E$ holds $\mathcal{P}[e, f(e)]$. Define $\mathcal{Q}[\text{object}, \text{object}] \equiv \$_1$ joins $f(\$_1)$ to $\$_2$ in G_1 . For every object e such that $e \in E$ there exists an object v_2 such that $v_2 \in V \cup \{v\}$ and $\mathcal{Q}[e, v_2]$.

Consider g being a function from E into $V \cup \{v\}$ such that for every object e such that $e \in E$ holds $\mathcal{Q}[e, g(e)]$. For every object e such that $e \in \text{dom}(\text{the source of } G_1)$ holds (the source of $G_1)(e) = ((\text{the source of } G_2)+\cdot f)(e)$. For every object e such that $e \in \text{dom}(\text{the target of } G_1)$ holds (the target of $G_1)(e) = ((\text{the target of } G_2)+\cdot g)(e)$. \Box

- (53) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Then the edges of $G_2 = G_1$.edgesBetween(the vertices of G_2). PROOF: Set $B = G_1$.edgesBetween(the vertices of G_2). For every object e, $e \in$ the edges of G_2 iff $e \in B$. \Box
- (54) Let us consider a graph G_2 , sets v, V, and a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Then G_2 is a subgraph of G_1 with vertex v removed. The theorem is a consequence of (53).
- (55) Every supergraph of G_2 extended by vertex v and edges between v and \emptyset of G_2 is a supergraph of G_2 extended by v. The theorem is a consequence of (46).

- (56) Let us consider an object v_1 , and a supergraph G_1 of G_2 extended by vertex v and edges between v and $\{v_1\}$ of G_2 . Suppose $v_1 \in$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Then there exists an object e such that
 - (i) $e \notin$ the edges of G_2 , and
 - (ii) G_1 is supergraph of G_2 extended by vertices v, v_1 and e between them or supergraph of G_2 extended by vertices v_1 , v and e between them.

The theorem is a consequence of (52).

- (57) Let us consider a subset W of V, and a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Then there exists a function f from Winto G_1 .edgesBetween $(W, \{v\})$ such that
 - (i) f is one-to-one and onto, and
 - (ii) for every object w such that $w \in W$ holds f(w) joins w and v in G_1 .

PROOF: Consider E being a set such that $\overline{V} = \overline{E}$ and E misses the edges of G_2 and the edges of $G_1 = (\text{the edges of } G_2) \cup E$ and for every object v_1 such that $v_1 \in V$ there exists an object e_1 such that $e_1 \in E$ and e_1 joins v_1 and v in G_1 and for every object e_2 such that e_2 joins v_1 and vin G_1 holds $e_1 = e_2$. Define $\mathcal{P}[\text{object}, \text{object}] \equiv \$_2$ joins $\$_1$ and v in G_1 . For every object w such that $w \in W$ there exists an object e such that $e \in G_1.\text{edgesBetween}(W, \{v\})$ and $\mathcal{P}[w, e]$.

Consider f being a function from W into G_1 .edgesBetween $(W, \{v\})$ such that for every object w such that $w \in W$ holds $\mathcal{P}[w, f(w)]$. For every objects w_1, w_2 such that $w_1, w_2 \in W$ and $f(w_1) = f(w_2)$ holds $w_1 = w_2$. For every object e such that $e \in G_1$.edgesBetween $(W, \{v\})$ holds $e \in \operatorname{rng} f$. \Box

(58) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 and E misses the edges of G_2 and the edges of $G_1 =$ (the edges of G_2) $\cup E$. Then $E = G_1$.edgesBetween $(V, \{v\})$.

PROOF: Consider E_1 being a set such that $\overline{V} = \overline{E_1}$ and E_1 misses the edges of G_2 and the edges of $G_1 = (\text{the edges of } G_2) \cup E_1$ and for every object v_1 such that $v_1 \in V$ there exists an object e_1 such that $e_1 \in E_1$ and e_1 joins v_1 and v in G_1 and for every object e_2 such that e_2 joins v_1 and v in G_1 holds $e_1 = e_2$. For every object $e, e \in E$ iff $e \in G_1$.edgesBetween $(V, \{v\})$. \Box

(59) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Then

(i) G_1 .edgesBetween $(V, \{v\})$ misses the edges of G_2 , and

(ii) the edges of $G_1 = (\text{the edges of } G_2) \cup G_1.\text{edgesBetween}(V, \{v\}).$

PROOF: G_1 .edgesBetween $(V, \{v\}) \cap$ (the edges of $G_2) = \emptyset$. For every object e such that $e \in$ the edges of G_1 holds $e \in$ (the edges of $G_2) \cup G_1$.edgesBetween $(V, \{v\})$. \Box

(60) Let us consider a graph G_3 , an object v, sets V_1, V_2 , a supergraph G_1 of G_3 extended by vertex v and edges between v and $V_1 \cup V_2$ of G_3 , and a subgraph G_2 of G_1 with edges G_1 .edgesBetween $(V_2, \{v\})$ removed. Suppose $V_1 \cup V_2 \subseteq$ the vertices of G_3 and $v \notin$ the vertices of G_3 and V_1 misses V_2 . Then G_2 is a supergraph of G_3 extended by vertex v and edges between v and V_1 of G_3 .

PROOF: Consider E being a set such that $\overline{V_1 \cup V_2} = \overline{E}$ and E misses the edges of G_3 and the edges of $G_1 =$ (the edges of $G_3) \cup E$ and for every object v_1 such that $v_1 \in V_1 \cup V_2$ there exists an object e_1 such that $e_1 \in E$ and e_1 joins v_1 and v in G_1 and for every object e_2 such that e_2 joins v_1 and v in G_1 holds $e_1 = e_2$. $E = G_1$.edgesBetween $(V_1 \cup V_2, \{v\})$. For every object e such that $e \in$ the edges of G_3 holds $e \in$ (the edges of $G_3) \setminus G_1$.edgesBetween $(V_2, \{v\})$. G_2 is a supergraph of G_3 . \Box

(61) Let us consider a graph G_3 , an object v, a set V, a vertex v_1 of G_3 , and a supergraph G_1 of G_3 extended by vertex v and edges between v and $V \cup \{v_1\}$ of G_3 . Suppose $V \subseteq$ the vertices of G_3 and $v \notin$ the vertices of G_3 and $v_1 \notin V$.

Then there exists a supergraph G_2 of G_3 extended by vertex v and edges between v and V of G_3 and there exists an object e such that $e \notin$ the edges of G_3 and G_1 is supergraph of G_2 extended by e between vertices v and v_1 or supergraph of G_2 extended by e between vertices v_1 and v.

PROOF: Reconsider $W = \{v_1\}$ as a subset of $V \cup \{v_1\}$. Consider f being a function from W into G_1 .edgesBetween $(W, \{v\})$ such that f is one-toone and onto and for every object w such that $w \in W$ holds f(w) joins wand v in G_1 . $f(v_1) \notin$ the edges of G_3 . v is a vertex of G_1 . \Box

(62) Let us consider a graph G_3 , an object v, a set V, a vertex v_1 of G_3 , an object e, and a supergraph G_2 of G_3 extended by vertex v and edges between v and V of G_3 . Suppose $V \subseteq$ the vertices of G_3 and $v \notin$ the vertices of G_3 and $v_1 \notin V$ and $e \notin$ the edges of G_2 .

Let us consider a graph G_1 . Suppose G_1 is supergraph of G_2 extended by e between vertices v_1 and v or supergraph of G_2 extended by e between vertices v and v_1 . Then G_1 is a supergraph of G_3 extended by vertex v and edges between v and $V \cup \{v_1\}$ of G_3 .

PROOF: Consider E being a set such that $\overline{V} = \overline{E}$ and E misses the edges of G_3 and the edges of $G_2 =$ (the edges of $G_3) \cup E$ and for every object v_1 such that $v_1 \in V$ there exists an object e_1 such that $e_1 \in E$ and e_1 joins v_1 and v in G_2 and for every object e_2 such that e_2 joins v_1 and v in G_2 holds $e_1 = e_2$. Consider f being a function such that f is one-to-one and dom f = E and rng f = V. Set $f_1 = f + (e \mapsto v_1)$. rng $f \cap \operatorname{rng}(e \mapsto v_1) = \emptyset$. For every object w such that $w \in \operatorname{rng} f \cup \operatorname{rng}(e \mapsto v_1)$ holds $w \in \operatorname{rng} f_1$. vis a vertex of G_2 and v_1 is a vertex of G_3 . \Box

Let us consider G_2 , v, V, a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 , and a walk W of G_1 . Now we state the propositions:

- (63) Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Then
 - (i) if $W.edges() \subseteq$ the edges of G_2 and W is not trivial, then $v \notin W.vertices()$, and
 - (ii) if $v \notin W$.vertices(), then W.edges() \subseteq the edges of G_2 .

PROOF: Consider E being a set such that $\overline{V} = \overline{E}$ and E misses the edges of G_2 and the edges of $G_1 =$ (the edges of $G_2) \cup E$ and for every object v_1 such that $v_1 \in V$ there exists an object e_1 such that $e_1 \in E$ and e_1 joins v_1 and v in G_1 and for every object e_2 such that e_2 joins v_1 and vin G_1 holds $e_1 = e_2$. For every object e such that $e \in W$.edges() holds $e \in$ the edges of G_2 . \Box

- (64) Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 and (W.edges() \subseteq the edges of G_2 and W is not trivial or $v \notin W.$ vertices()). Then W is a walk of G_2 . The theorem is a consequence of (63).
- (65) If W.vertices() \subseteq the vertices of G_2 , then W.edges() \subseteq the edges of G_2 . The theorem is a consequence of (63).
- (66) Let us consider supergraphs G_1 , G_2 of G extended by vertex v and edges between v and V of G. Then
 - (i) the vertices of G_1 = the vertices of G_2 , and
 - (ii) every vertex of G_1 is a vertex of G_2 .

PROOF: The vertices of G_1 = the vertices of G_2 . \Box

(67) Let us consider supergraphs G_1 , G_2 of G extended by vertex v and edges between v and V of G, and objects v_1 , e_1 , v_2 . Suppose e_1 joins v_1 and v_2 in G_1 . Then there exists an object e_2 such that e_2 joins v_1 and v_2 in G_2 .

- (68) Let us consider supergraphs G_1 , G_2 of G extended by vertex v and edges between v and V of G. Then there exists a function f from the edges of G_1 into the edges of G_2 such that
 - (i) $f \upharpoonright (\text{the edges of } G) = \mathrm{id}_{\alpha}, \text{ and }$
 - (ii) f is one-to-one and onto, and
 - (iii) for every objects v_1 , e, v_2 such that e joins v_1 and v_2 in G_1 holds f(e) joins v_1 and v_2 in G_2 ,

where α is the edges of G. The theorem is a consequence of (67), (47), and (51).

Let G be a loopless graph. Let us consider v and V. Observe that every supergraph of G extended by vertex v and edges between v and V of G is loopless.

Let G be a non-directed-multi graph. Let us note that every supergraph of G extended by vertex v and edges between v and V of G is non-directed-multi.

- Let G be a non-multi graph. Note that every supergraph of G extended by vertex v and edges between v and V of G is non-multi.
- Let G be a directed-simple graph. One can verify that every supergraph of G extended by vertex v and edges between v and V of G is directed-simple.
- Let G be a simple graph. Let us observe that every supergraph of G extended by vertex v and edges between v and V of G is simple.

Now we state the proposition:

(69) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 , a walk W of G_1 , and vertices v_1, v_2 of G_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 and W.first() = v_1 and W.last() = v_2 and $v_2 \notin G_2.$ reachableFrom(v_1). Then $v \in W.$ vertices(). The theorem is a consequence of (64).

Let us consider G_2 , v, V, and a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 . Now we state the propositions:

(70) Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 and G_2 is acyclic and for every component G_3 of G_2 and for every vertices w_1, w_2 of G_3 such that $w_1, w_2 \in V$ holds $w_1 = w_2$. Then $\underline{G_1}$ is acyclic.

PROOF: Consider E being a set such that $\overline{V} = \overline{E}$ and E misses the edges of G_2 and the edges of $G_1 =$ (the edges of $G_2) \cup E$ and for every object v_1 such that $v_1 \in V$ there exists an object e_1 such that $e_1 \in E$ and e_1 joins v_1 and v in G_1 and for every object e_2 such that e_2 joins v_1 and v in G_1 holds $e_1 = e_2$. There exists no walk W of G_1 such that W is cycle-like. \Box

(71) Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 and $(G_2$ is not acyclic or there exists a component G_3 of G_2 and there exist vertices w_1, w_2 of G_3 such that $w_1, w_2 \in V$ and $w_1 \neq w_2$). Then G_1 is not acyclic.

(72) Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 and for every component G_3 of G_2 , there exists a vertex w of G_3 such that $w \in V$. Then G_1 is connected.

PROOF: For every vertex u of G_1 such that $u \neq v$ there exists a walk W_1 of G_1 such that W_1 is walk from u to v. For every vertices u, w of G_1 , there exists a walk W_1 of G_1 such that W_1 is walk from u to w. \Box

Let G be a connected graph, v be an object, and V be a non empty set. Note that every supergraph of G extended by vertex v and edges between v and V of G is connected.

Let us consider G_2 , v, V, and a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 . Now we state the propositions:

(73) Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 and there exists a component G_3 of G_2 such that for every vertex w of G_3 , $w \notin V$. Then G_1 is not connected.

PROOF: Consider G_3 being a component of G_2 such that for every vertex w of G_3 , $w \notin V$. Set v_1 = the vertex of G_3 . There exists no walk W of G_1 such that W is walk from v_1 to v. \Box

(74) Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 and there exists a component G_3 of G_2 such that the vertices of G_3 misses V. Then G_1 is not connected. The theorem is a consequence of (73).

Let G be a non connected graph and v be an object. One can check that every supergraph of G extended by vertex v and edges between v and \emptyset of G is non connected.

(75) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Then G_1 is complete if and only if G_2 is complete and V = the vertices of G_2 .

PROOF: For every vertices u, v of G_1 such that $u \neq v$ holds u and v are adjacent. \Box

Let G be a complete graph. Observe that every supergraph of G extended by vertex the vertices of G and edges between the vertices of G and the vertices of G is complete.

Now we state the propositions:

- (76) Let us consider a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Then
 - (i) $G_1.order() = G_2.order() + 1$, and
 - (ii) $G_1.\text{size}() = G_2.\text{size}() + \overline{\overline{V}}.$

- (77) Let us consider a finite graph G_2 , an object v, a set V, and a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Then G_1 .order() = G_2 .order() + 1.
- (78) Let us consider a finite graph G_2 , an object v, a finite set V, and a supergraph G_1 of G_2 extended by vertex v and edges between v and V of G_2 . Suppose $V \subseteq$ the vertices of G_2 and $v \notin$ the vertices of G_2 . Then G_1 .size() = G_2 .size() + \overline{V} .

Let G be a finite graph, v be an object, and V be a set. One can verify that every supergraph of G extended by vertex v and edges between v and V of G is finite.

References

- [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Čarette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Lowell W. Beineke and Robin J. Wilson, editors. Selected Topics in Graph Theory. Academic Press, London, 1978. ISBN 0-12-086250-6.
- [4] John Adrian Bondy and U. S. R. Murty. Graph Theory. Graduate Texts in Mathematics, 244. Springer, New York, 2008. ISBN 978-1-84628-969-9.
- [5] Sebastian Koch. About supergraphs. Part I. Formalized Mathematics, 26(2):101-124, 2018. doi:10.2478/forma-2018-0009.
- [6] Gilbert Lee. Walks in graphs. Formalized Mathematics, 13(2):253–269, 2005.
- [7] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.
- [8] Klaus Wagner. Graphentheorie. B.I-Hochschultaschenbücher; 248. Bibliograph. Inst., Mannheim, 1970. ISBN 3-411-00248-4.
- Robin James Wilson. Introduction to Graph Theory. Oliver & Boyd, Edinburgh, 1972. ISBN 0-05-002534-1.

Accepted June 29, 2018