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About Supergraphs. Part II
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Summary. In the previous article [5] supergraphs and several specializa-
tions to formalize the process of drawing graphs were introduced. In this paper
another such operation is formalized in Mizar [1], [2]: drawing a vertex and then
immediately drawing edges connecting this vertex with a subset of the other ver-
tices of the graph. In case the new vertex is joined with all vertices of a given
graph G, this is known as the join of G and the trivial loopless graph K1. While
the join of two graphs is known and found in standard literature (like [9], [4], [8]
and [3]), the operation discribed in this article is not.

Alongside the new operation a mode to reverse the directions of a subset
of the edges of a graph is introduced. When all edge directions of a graph are
reversed, this is commonly known as the converse of a (directed) graph.
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1. Reversing Edge Directions

From now onG,G2 denote graphs, V , E denote sets, and v denotes an object.
Let us consider G and E.
A graph given by reversing directions of the edges E of G is a graph defined

by

(Def. 1) (i) the vertices of it = the vertices ofG and the edges of it = the edges
of G and the source of it = (the source of G)+·(the target of G)�E
and the target of it = (the target of G)+·(the source of G)�E, if
E ⊆ the edges of G,
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(ii) it ≈ G, otherwise.

A graph given by reversing directions of the edges of G is a graph given by
reversing directions of the edges of G of G. Now we state the propositions:

(1) Let us consider graphs G1, G2 given by reversing directions of the edges
E of G. Then G1 ≈ G2.

(2) Let us consider a graph G1 given by reversing directions of the edges E
of G. Suppose G1 ≈ G2. Then G2 is a graph given by reversing directions
of the edges E of G.

Let us consider G2, E, and a graph G1 given by reversing directions of the
edges E of G2. Now we state the propositions:

(3) G2 is a graph given by reversing directions of the edges E of G1.

(4) (i) the vertices of G1 = the vertices of G2, and

(ii) the edges of G1 = the edges of G2.

(5) Let us consider a graph G1 given by reversing directions of the edges of
G2. Then G2 is a graph given by reversing directions of the edges of G1.
The theorem is a consequence of (4) and (3).

(6) Let us consider a trivial graph G2, a set E, and a graph G1. Then
G1 ≈ G2 if and only if G1 is a graph given by reversing directions of the
edges E of G2.

Let us consider G2, E, a graph G1 given by reversing directions of the edges
E of G2, and objects v1, e, v2. Now we state the propositions:

(7) If E ⊆ the edges of G2 and e ∈ E, then e joins v1 to v2 in G2 iff e joins
v2 to v1 in G1. The theorem is a consequence of (3) and (4).

(8) If E ⊆ the edges of G2 and e /∈ E, then e joins v1 to v2 in G2 iff e joins
v1 to v2 in G1. The theorem is a consequence of (3) and (4).

(9) e joins v1 and v2 in G2 if and only if e joins v1 and v2 in G1. The theorem
is a consequence of (3).

(10) Let us consider a graph G1 given by reversing directions of the edges E
of G2. Then v is a vertex of G1 if and only if v is a vertex of G2.

Let us consider G2, E, V , and a graph G1 given by reversing directions of
the edges E of G2. Now we state the propositions:

(11) G1.edgesBetween(V ) = G2.edgesBetween(V ).
Proof:
For every object e, e ∈ G1.edgesBetween(V ) iff e ∈ G2.edgesBetween(V ).
�

(12) G1.edgesInOut(V ) = G2.edgesInOut(V ).
Proof: For every object e, e ∈ G1.edgesInOut(V ) iff e ∈ G2.edgesInOut(V ).
�
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(13) Let us consider a graph G1 given by reversing directions of the edges
E of G2, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
v1.edgesInOut() = v2.edgesInOut(). The theorem is a consequence of (12).

Let us consider G2, E, and a graph G1 given by reversing directions of the
edges E of G2. Now we state the propositions:

(14) Every walk of G2 is a walk of G1. The theorem is a consequence of (4)
and (9).

(15) Every walk of G1 is a walk of G2. The theorem is a consequence of (3)
and (14).

(16) Let us consider a graph G1 given by reversing directions of the edges E
of G2, a walk W2 of G2, and a walk W1 of G1. Suppose E ⊆ the edges of
G2 and W1 = W2 and W2.edges() ⊆ E. Then W1 is directed if and only if
W2.reverse() is directed.
Proof: For every odd element n of N such that n < lenW1 holds W1(n+1)
joins W1(n) to W1(n+ 2) in G1 by [6, (1)], [7, (12)]. �

(17) Let us consider a graph G1 given by reversing directions of the edges
of G2, a walk W2 of G2, and a walk W1 of G1. Suppose W1 = W2. Then
W1 is directed if and only if W2.reverse() is directed. The theorem is
a consequence of (16).

(18) Let us consider a graph G1 given by reversing directions of the edges E
of G2, a walk W2 of G2, and a walk W1 of G1. If W1 = W2, then W1 is
chordal iff W2 is chordal. The theorem is a consequence of (3).

(19) Let us consider a graph G1 given by reversing directions of the edges E
of G2, and objects v1, v2. Then there exists a walk W1 of G1 such that W1
is walk from v1 to v2 if and only if there exists a walk W2 of G2 such that
W2 is walk from v1 to v2. The theorem is a consequence of (15) and (14).

(20) Let us consider a graph G1 given by reversing directions of the edges
E of G2, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
G1.reachableFrom(v1) = G2.reachableFrom(v2). The theorem is a conse-
quence of (19).

(21) Let us consider a graph G1 given by reversing directions of the edges E
of G2. Then

(i) G1.componentSet() = G2.componentSet(), and

(ii) G1.numComponents() = G2.numComponents().

The theorem is a consequence of (10) and (20).

Let G be a trivial graph and E be a set. Observe that every graph given by
reversing directions of the edges E of G is trivial.
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Let G be a non trivial graph. Let us observe that every graph given by
reversing directions of the edges E of G is non trivial.

Now we state the propositions:

(22) Let us consider a graph G1 given by reversing directions of the edges
E of G2, a set v, and a subgraph G3 of G1 with vertex v removed. Then
every subgraph of G2 with vertex v removed is a graph given by reversing
directions of the edges E \ G1.edgesInOut({v}) of G3. The theorem is
a consequence of (11), (2), (3), and (6).

(23) Let us consider a graph G1 given by reversing directions of the edges E
of G2, a vertex v1 of G1, and a vertex v2 of G2. Suppose v1 = v2. Then

(i) v1 is isolated iff v2 is isolated, and

(ii) v1 is endvertex iff v2 is endvertex, and

(iii) v1 is cut-vertex iff v2 is cut-vertex.

The theorem is a consequence of (3).

Let us consider G2, E, and a graph G1 given by reversing directions of the
edges E of G2. Now we state the propositions:

(24) (i) G1.order() = G2.order(), and

(ii) G1.size() = G2.size().
The theorem is a consequence of (4).

(25) Suppose E ⊆ the edges of G2 and G2 is non-directed-multi and for every
objects e1, e2, v1, v2 such that e1 joins v1 and v2 in G2 and e2 joins v1 and
v2 in G2 holds e1, e2 ∈ E or e1 /∈ E and e2 /∈ E. Then G1 is non-directed-
multi.
Proof: For every objects e1, e2, v1, v2 such that e1 joins v1 to v2 in G1
and e2 joins v1 to v2 in G1 holds e1 = e2. �

Let G be a non-directed-multi graph. Let us note that every graph given by
reversing directions of the edges of G is non-directed-multi.

Let G be a non non-directed-multi graph. Observe that every graph given
by reversing directions of the edges of G is non non-directed-multi.

Let G be a non-multi graph and E be a set. One can verify that every graph
given by reversing directions of the edges E of G is non-multi.

Let G be a non non-multi graph. Let us note that every graph given by
reversing directions of the edges E of G is non non-multi.

Let G be a loopless graph. One can check that every graph given by reversing
directions of the edges E of G is loopless.

Let G be a non loopless graph. One can check that every graph given by
reversing directions of the edges E of G is non loopless.
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Let G be a connected graph. Let us observe that every graph given by
reversing directions of the edges E of G is connected.

Let G be a non connected graph. Observe that every graph given by reversing
directions of the edges E of G is non connected.

Let G be an acyclic graph. Note that every graph given by reversing direc-
tions of the edges E of G is acyclic.

Let G be a non acyclic graph. One can verify that every graph given by
reversing directions of the edges E of G is non acyclic.

Let G be a complete graph. Observe that every graph given by reversing
directions of the edges E of G is complete.

Let G be a non complete graph. Observe that every graph given by reversing
directions of the edges E of G is non complete.

Let G be a chordal graph. Note that every graph given by reversing directions
of the edges E of G is chordal.

Let G be a finite graph. Let us note that every graph given by reversing
directions of the edges E of G is finite.

Let G be a non finite graph. One can verify that every graph given by
reversing directions of the edges E of G is non finite.

Now we state the propositions:

(26) Let us consider a graph G1 given by reversing directions of the edges of
G2. Then

(i) the source of G1 = the target of G2, and

(ii) the target of G1 = the source of G2.

(27) Let us consider a graph G1 given by reversing directions of the edges of
G2, and objects v1, e, v2. Then e joins v1 to v2 in G2 if and only if e joins
v2 to v1 in G1. The theorem is a consequence of (26).

2. Adding a Vertex and Several Edges to a Graph

Let us consider G, v, and V .
A supergraph of G extended by vertex v and edges from v to V of G is

a supergraph of G defined by

(Def. 2) (i) the vertices of it = (the vertices of G) ∪ {v} and the edges of
it = (the edges of G) ∪ (V 7−→ (the edges of G)) and the source
of it = (the source of G)+·((V 7−→ (the edges of G)) 7−→ v) and
the target of it = (the target of G)+·π1(V � {the edges of G}), if
V ⊆ the vertices of G and v /∈ the vertices of G,

(ii) it ≈ G, otherwise.
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A supergraph of G extended by vertex v and edges from V of G to v is
a supergraph of G defined by

(Def. 3) (i) the vertices of it = (the vertices of G) ∪ {v} and the edges of
it = (the edges of G) ∪ (V 7−→ (the edges of G)) and the source of
it = (the source of G)+·π1(V � {the edges of G}) and the target
of it = (the target of G)+·((V 7−→ (the edges of G)) 7−→ v), if
V ⊆ the vertices of G and v /∈ the vertices of G,

(ii) it ≈ G, otherwise.

A supergraph of G extended by vertex v and edges from v to the vertices of
G is a supergraph of G extended by vertex v and edges from v to the vertices
of G of G.

A supergraph of G extended by vertex v and edges from the vertices of G
to v is a supergraph of G extended by vertex v and edges from the vertices of
G of G to v. Now we state the propositions:

(28) Let us consider supergraphs G1, G2 of G extended by vertex v and edges
from v to V of G. Then G1 ≈ G2.

(29) Let us consider supergraphs G1, G2 of G extended by vertex v and edges
from V of G to v. Then G1 ≈ G2.

(30) Let us consider a supergraph G1 of G extended by vertex v and edges
from v to V of G. Suppose G1 ≈ G2. Then G2 is a supergraph of G
extended by vertex v and edges from v to V of G.

(31) Let us consider a supergraph G1 of G extended by vertex v and edges
from V of G to v. Suppose G1 ≈ G2. Then G2 is a supergraph of G
extended by vertex v and edges from V of G to v.

(32) Let us consider a supergraph G1 of G extended by vertex v and edges
from v to V of G, and a supergraph G2 of G extended by vertex v and
edges from V of G to v. Then

(i) the vertices of G1 = the vertices of G2, and

(ii) the edges of G1 = the edges of G2.

(33) Let us consider a supergraph G1 of G2 extended by vertex v and edges
from v to V of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Then G1.edgesOutOf({v}) = V 7−→ (the edges of G2).
Proof: For every object e, e ∈ G1.edgesOutOf({v}) iff e ∈ V 7−→
(the edges of G2). �

(34) Let us consider a supergraph G1 of G2 extended by vertex v and edges
from V of G2 to v. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Then G1.edgesInto({v}) = V 7−→ (the edges of G2).
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Proof: For every object e, e ∈ G1.edgesInto({v}) iff e ∈ V 7−→ (the edges
of G2). �

(35) Let us consider a supergraph G1 of G extended by vertex v and edges
from v to V of G, and a supergraph G2 of G extended by vertex v and edges
from V of G to v. Suppose V ⊆ the vertices of G and v /∈ the vertices of
G. Then

(i) G2 is a graph given by reversing directions
of the edges G1.edgesOutOf({v}) of G1, and

(ii) G1 is a graph given by reversing directions
of the edges G2.edgesInto({v}) of G2.

The theorem is a consequence of (33) and (34).

(36) Let us consider a supergraph G1 of G extended by vertex v and edges
from v to V of G, a supergraph G2 of G extended by vertex v and edges
from V of G to v, and objects v1, e, v2. Then e joins v1 and v2 in G1 if
and only if e joins v1 and v2 in G2. The theorem is a consequence of (35)
and (9).

(37) Let us consider a supergraph G1 of G extended by vertex v and edges
from v to V of G, a supergraph G2 of G extended by vertex v and edges
from V of G to v, and an object w. Then w is a vertex of G1 if and only
if w is a vertex of G2.

(38) Let us consider a supergraph G1 of G2 extended by vertex v and edges
from v to V of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Let us consider objects e1, u. Then

(i) e1 does not join u to v in G1, and

(ii) if u /∈ V , then e1 does not join v to u in G1, and

(iii) for every object e2 such that e1 joins v to u in G1 and e2 joins v to
u in G1 holds e1 = e2.

Proof: e1 does not join u to v in G1. If u /∈ V , then e1 does not join v to
u in G1. e1 /∈ the edges of G2 and e2 /∈ the edges of G2. Consider x1, y1
being objects such that x1 ∈ V and y1 ∈ {the edges of G2} and e1 = 〈〈x1,
y1〉〉. Consider x2, y2 being objects such that x2 ∈ V and y2 ∈ {the edges
of G2} and e2 = 〈〈x2, y2〉〉. �

(39) Let us consider a supergraph G1 of G2 extended by vertex v and edges
from V of G2 to v. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Let us consider objects e1, u. Then

(i) e1 does not join v to u in G1, and

(ii) if u /∈ V , then e1 does not join u to v in G1, and
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(iii) for every object e2 such that e1 joins u to v in G1 and e2 joins u to
v in G1 holds e1 = e2.

Proof: e1 does not join v to u in G1. If u /∈ V , then e1 does not join u to
v in G1. e1 /∈ the edges of G2 and e2 /∈ the edges of G2. Consider x1, y1
being objects such that x1 ∈ V and y1 ∈ {the edges of G2} and e1 = 〈〈x1,
y1〉〉. Consider x2, y2 being objects such that x2 ∈ V and y2 ∈ {the edges
of G2} and e2 = 〈〈x2, y2〉〉. �

(40) Let us consider a supergraph G1 of G2 extended by vertex v and edges
from v to V of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Let us consider objects e, v1, v2. Suppose v1 6= v. If e joins v1 to v2
in G1, then e joins v1 to v2 in G2.
Proof: e ∈ the edges of G2. �

(41) Let us consider a supergraph G1 of G2 extended by vertex v and edges
from V of G2 to v. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Let us consider objects e, v1, v2. Suppose v2 6= v. If e joins v1 to v2
in G1, then e joins v1 to v2 in G2.
Proof: e ∈ the edges of G2. �

(42) Let us consider a supergraph G1 of G2 extended by vertex v and edges
from v to V of G2, and an object v1. Suppose V ⊆ the vertices of G2 and
v /∈ the vertices of G2 and v1 ∈ V . Then 〈〈v1, the edges of G2〉〉 joins v to
v1 in G1.

(43) Let us consider a supergraph G1 of G2 extended by vertex v and edges
from V of G2 to v, and an object v1. Suppose V ⊆ the vertices of G2 and
v /∈ the vertices of G2 and v1 ∈ V . Then 〈〈v1, the edges of G2〉〉 joins v1 to
v in G1.

Let us consider G, v, V , a supergraph G1 of G extended by vertex v and
edges from v to V of G, and a supergraph G2 of G extended by vertex v and
edges from V of G to v. Now we state the propositions:

(44) Every walk of G1 is a walk of G2. The theorem is a consequence of (35)
and (14).

(45) Every walk of G2 is a walk of G1. The theorem is a consequence of (35)
and (14).

Let us consider G, v, and V .
A supergraph of G extended by vertex v and edges between v and V of G

is a supergraph of G defined by

(Def. 4) (i) the vertices of it = (the vertices of G)∪{v} and for every object e,
e does not join v and v in it and for every object v1, if v1 /∈ V , then e
does not join v1 and v in it and for every object v2 such that v1 6= v
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and v2 6= v and e joins v1 to v2 in it holds e joins v1 to v2 in G and
there exists a set E such that V = E and E misses the edges of G
and the edges of it = (the edges of G) ∪ E and for every object v1
such that v1 ∈ V there exists an object e1 such that e1 ∈ E and e1
joins v1 and v in it and for every object e2 such that e2 joins v1 and
v in it holds e1 = e2, if V ⊆ the vertices of G and v /∈ the vertices
of G,

(ii) it ≈ G, otherwise.

A supergraph of G extended by vertex v and edges between v and the vertices
of G is a supergraph of G extended by vertex v and edges between v and
the vertices of G of G.

One can verify that a supergraph of G extended by vertex v and edges from
v to V of G is a supergraph of G extended by vertex v and edges between v and
V of G.

Note that a supergraph of G extended by vertex v and edges from V of G
to v is a supergraph of G extended by vertex v and edges between v and V of
G. Now we state the propositions:

(46) Let us consider a supergraph G1 of G2 extended by vertex v and edges
between v and ∅ of G2. Then the edges of G2 = the edges of G1.

(47) Let us consider a non empty set V , and a supergraph G1 of G2 extended
by vertex v and edges between v and V of G2. Suppose V ⊆ the vertices
of G2 and v /∈ the vertices of G2. Then the edges of G1 6= ∅.

(48) Let us consider a supergraph G1 of G extended by vertex v and edges
between v and V of G. Suppose G1 ≈ G2. Then G2 is a supergraph of G
extended by vertex v and edges between v and V of G.

(49) Let us consider a supergraph G1 of G2 extended by vertex v and edges
between v and V of G2, and objects v1, e, v2. Suppose V ⊆ the vertices
of G2 and v /∈ the vertices of G2 and v1 6= v and v2 6= v and e joins v1 and
v2 in G1. Then e joins v1 and v2 in G2.

(50) Let us consider a supergraphG1 ofG2 extended by vertex v and edges be-
tween v and V of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Then v is a vertex of G1.

(51) Let us consider a supergraph G1 of G2 extended by vertex v and ed-
ges between v and V of G2, a set E, and objects v1, e, v2. Suppose
V ⊆ the vertices of G2 and v /∈ the vertices of G2 and the edges of
G1 = (the edges of G2) ∪ E and E misses the edges of G2 and e joins v1
and v2 in G1 and e /∈ the edges of G2. Then

(i) e ∈ E, and
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(ii) v1 = v and v2 ∈ V or v2 = v and v1 ∈ V .

(52) Let us consider a supergraph G1 of G2 extended by vertex v and edges
between v and V of G2, and a set E. Suppose V ⊆ the vertices of G2 and
v /∈ the vertices of G2 and the edges of G1 = (the edges of G2) ∪ E and
E misses the edges of G2. Then there exist functions f , g from E into
V ∪ {v} such that

(i) the source of G1 = (the source of G2)+·f , and

(ii) the target of G1 = (the target of G2)+·g, and

(iii) for every object e such that e ∈ E holds e joins f(e) to g(e) in G1
and (f(e) = v iff g(e) 6= v).

Proof: Consider E1 being a set such that V = E1 and E1 misses the ed-
ges of G2 and the edges of G1 = (the edges of G2) ∪ E1 and for every
object v1 such that v1 ∈ V there exists an object e1 such that e1 ∈ E1 and
e1 joins v1 and v in G1 and for every object e2 such that e2 joins v1 and
v in G1 holds e1 = e2. Define P[object, object] ≡ there exists an object v2
such that $1 joins $2 to v2 in G1. For every object e such that e ∈ E there
exists an object v1 such that v1 ∈ V ∪ {v} and P[e, v1].

Consider f being a function from E into V ∪ {v} such that for every
object e such that e ∈ E holds P[e, f(e)]. Define Q[object, object] ≡ $1
joins f($1) to $2 in G1. For every object e such that e ∈ E there exists
an object v2 such that v2 ∈ V ∪ {v} and Q[e, v2].

Consider g being a function from E into V ∪ {v} such that for every
object e such that e ∈ E holds Q[e, g(e)]. For every object e such that
e ∈ dom(the source of G1) holds (the source of G1)(e) = ((the source of
G2)+·f)(e). For every object e such that e ∈ dom(the target of G1) holds
(the target of G1)(e) = ((the target of G2)+·g)(e). �

(53) Let us consider a supergraphG1 ofG2 extended by vertex v and edges be-
tween v and V of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Then the edges of G2 = G1.edgesBetween(the vertices of G2).
Proof: Set B = G1.edgesBetween(the vertices of G2). For every object e,
e ∈ the edges of G2 iff e ∈ B. �

(54) Let us consider a graph G2, sets v, V , and a supergraph G1 of G2
extended by vertex v and edges between v and V of G2. Suppose V ⊆
the vertices of G2 and v /∈ the vertices of G2. Then G2 is a subgraph of
G1 with vertex v removed. The theorem is a consequence of (53).

(55) Every supergraph of G2 extended by vertex v and edges between v and ∅
of G2 is a supergraph of G2 extended by v. The theorem is a consequence
of (46).
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(56) Let us consider an object v1, and a supergraph G1 of G2 extended by
vertex v and edges between v and {v1} of G2. Suppose v1 ∈ the vertices
of G2 and v /∈ the vertices of G2. Then there exists an object e such that

(i) e /∈ the edges of G2, and

(ii) G1 is supergraph of G2 extended by vertices v, v1 and e between
them or supergraph of G2 extended by vertices v1, v and e between
them.

The theorem is a consequence of (52).

(57) Let us consider a subset W of V , and a supergraph G1 of G2 extended
by vertex v and edges between v and V of G2. Suppose V ⊆ the vertices
of G2 and v /∈ the vertices of G2. Then there exists a function f from W

into G1.edgesBetween(W, {v}) such that

(i) f is one-to-one and onto, and

(ii) for every object w such that w ∈W holds f(w) joins w and v in G1.

Proof: Consider E being a set such that V = E and E misses the edges
of G2 and the edges of G1 = (the edges of G2) ∪ E and for every object
v1 such that v1 ∈ V there exists an object e1 such that e1 ∈ E and e1
joins v1 and v in G1 and for every object e2 such that e2 joins v1 and v

in G1 holds e1 = e2. Define P[object, object] ≡ $2 joins $1 and v in G1.
For every object w such that w ∈ W there exists an object e such that
e ∈ G1.edgesBetween(W, {v}) and P[w, e].

Consider f being a function from W into G1.edgesBetween(W, {v})
such that for every object w such that w ∈W holds P[w, f(w)]. For every
objects w1, w2 such that w1, w2 ∈ W and f(w1) = f(w2) holds w1 = w2.
For every object e such that e ∈ G1.edgesBetween(W, {v}) holds e ∈ rng f .
�

(58) Let us consider a supergraphG1 ofG2 extended by vertex v and edges be-
tween v and V of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2 and E misses the edges of G2 and the edges of G1 = (the edges of
G2) ∪ E. Then E = G1.edgesBetween(V, {v}).
Proof: Consider E1 being a set such that V = E1 and E1 misses the ed-
ges of G2 and the edges of G1 = (the edges of G2)∪E1 and for every object
v1 such that v1 ∈ V there exists an object e1 such that e1 ∈ E1 and e1 joins
v1 and v in G1 and for every object e2 such that e2 joins v1 and v in G1
holds e1 = e2. For every object e, e ∈ E iff e ∈ G1.edgesBetween(V, {v}).
�

(59) Let us consider a supergraphG1 ofG2 extended by vertex v and edges be-
tween v and V of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
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of G2. Then

(i) G1.edgesBetween(V, {v}) misses the edges of G2, and

(ii) the edges of G1 = (the edges of G2) ∪G1.edgesBetween(V, {v}).

Proof: G1.edgesBetween(V, {v}) ∩ (the edges of G2) = ∅. For every ob-
ject e such that e ∈ the edges of G1 holds e ∈ (the edges of G2) ∪
G1.edgesBetween(V, {v}). �

(60) Let us consider a graph G3, an object v, sets V1, V2, a supergraph G1 of
G3 extended by vertex v and edges between v and V1∪V2 of G3, and a sub-
graph G2 of G1 with edges G1.edgesBetween(V2, {v}) removed. Suppose
V1 ∪ V2 ⊆ the vertices of G3 and v /∈ the vertices of G3 and V1 misses V2.
Then G2 is a supergraph of G3 extended by vertex v and edges between
v and V1 of G3.
Proof: Consider E being a set such that V1 ∪ V2 = E and E misses
the edges of G3 and the edges of G1 = (the edges of G3) ∪ E and for
every object v1 such that v1 ∈ V1 ∪ V2 there exists an object e1 such that
e1 ∈ E and e1 joins v1 and v in G1 and for every object e2 such that e2
joins v1 and v in G1 holds e1 = e2. E = G1.edgesBetween(V1 ∪ V2, {v}).
For every object e such that e ∈ the edges of G3 holds e ∈ (the edges of
G3) \G1.edgesBetween(V2, {v}). G2 is a supergraph of G3. �

(61) Let us consider a graph G3, an object v, a set V , a vertex v1 of G3, and
a supergraph G1 of G3 extended by vertex v and edges between v and
V ∪ {v1} of G3. Suppose V ⊆ the vertices of G3 and v /∈ the vertices of
G3 and v1 /∈ V .

Then there exists a supergraph G2 of G3 extended by vertex v and
edges between v and V of G3 and there exists an object e such that
e /∈ the edges of G3 and G1 is supergraph of G2 extended by e between
vertices v and v1 or supergraph of G2 extended by e between vertices v1
and v.
Proof: Reconsider W = {v1} as a subset of V ∪ {v1}. Consider f being
a function from W into G1.edgesBetween(W, {v}) such that f is one-to-
one and onto and for every object w such that w ∈W holds f(w) joins w
and v in G1. f(v1) /∈ the edges of G3. v is a vertex of G1. �

(62) Let us consider a graph G3, an object v, a set V , a vertex v1 of G3, an ob-
ject e, and a supergraph G2 of G3 extended by vertex v and edges between
v and V of G3. Suppose V ⊆ the vertices of G3 and v /∈ the vertices of G3
and v1 /∈ V and e /∈ the edges of G2.

Let us consider a graph G1. Suppose G1 is supergraph of G2 extended
by e between vertices v1 and v or supergraph of G2 extended by e between
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vertices v and v1. Then G1 is a supergraph of G3 extended by vertex v

and edges between v and V ∪ {v1} of G3.

Proof: Consider E being a set such that V = E and E misses the edges
of G3 and the edges of G2 = (the edges of G3)∪E and for every object v1
such that v1 ∈ V there exists an object e1 such that e1 ∈ E and e1 joins
v1 and v in G2 and for every object e2 such that e2 joins v1 and v in G2
holds e1 = e2. Consider f being a function such that f is one-to-one and
dom f = E and rng f = V . Set f1 = f+·(e 7−→. v1). rng f∩rng(e 7−→. v1) = ∅.
For every object w such that w ∈ rng f ∪ rng(e7−→. v1) holds w ∈ rng f1. v
is a vertex of G2 and v1 is a vertex of G3. �

Let us consider G2, v, V , a supergraph G1 of G2 extended by vertex v

and edges between v and V of G2, and a walk W of G1. Now we state the
propositions:

(63) Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2. Then

(i) if W.edges() ⊆ the edges of G2 and W is not trivial, then v /∈
W.vertices(), and

(ii) if v /∈W.vertices(), then W.edges() ⊆ the edges of G2.

Proof: Consider E being a set such that V = E and E misses the edges
of G2 and the edges of G1 = (the edges of G2) ∪ E and for every object
v1 such that v1 ∈ V there exists an object e1 such that e1 ∈ E and e1
joins v1 and v in G1 and for every object e2 such that e2 joins v1 and v

in G1 holds e1 = e2. For every object e such that e ∈ W.edges() holds
e ∈ the edges of G2. �

(64) Suppose V ⊆ the vertices ofG2 and v /∈ the vertices ofG2 and (W.edges()
⊆ the edges of G2 and W is not trivial or v /∈ W.vertices()). Then W is
a walk of G2. The theorem is a consequence of (63).

(65) If W.vertices() ⊆ the vertices of G2, then W.edges() ⊆ the edges of G2.
The theorem is a consequence of (63).

(66) Let us consider supergraphs G1, G2 of G extended by vertex v and edges
between v and V of G. Then

(i) the vertices of G1 = the vertices of G2, and

(ii) every vertex of G1 is a vertex of G2.

Proof: The vertices of G1 = the vertices of G2. �

(67) Let us consider supergraphs G1, G2 of G extended by vertex v and edges
between v and V of G, and objects v1, e1, v2. Suppose e1 joins v1 and v2
in G1. Then there exists an object e2 such that e2 joins v1 and v2 in G2.
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(68) Let us consider supergraphs G1, G2 of G extended by vertex v and edges
between v and V of G. Then there exists a function f from the edges of
G1 into the edges of G2 such that

(i) f�(the edges of G) = idα, and

(ii) f is one-to-one and onto, and

(iii) for every objects v1, e, v2 such that e joins v1 and v2 in G1 holds f(e)
joins v1 and v2 in G2,

where α is the edges of G. The theorem is a consequence of (67), (47), and
(51).

Let G be a loopless graph. Let us consider v and V . Observe that every
supergraph of G extended by vertex v and edges between v and V of G is
loopless.

Let G be a non-directed-multi graph. Let us note that every supergraph of
G extended by vertex v and edges between v and V of G is non-directed-multi.

Let G be a non-multi graph. Note that every supergraph of G extended by
vertex v and edges between v and V of G is non-multi.

Let G be a directed-simple graph. One can verify that every supergraph of
G extended by vertex v and edges between v and V of G is directed-simple.

Let G be a simple graph. Let us observe that every supergraph of G extended
by vertex v and edges between v and V of G is simple.

Now we state the proposition:

(69) Let us consider a supergraph G1 of G2 extended by vertex v and edges
between v and V of G2, a walk W of G1, and vertices v1, v2 of G2. Suppose
V ⊆ the vertices of G2 and v /∈ the vertices of G2 and W.first() = v1 and
W.last() = v2 and v2 /∈ G2.reachableFrom(v1). Then v ∈ W.vertices().
The theorem is a consequence of (64).

Let us consider G2, v, V , and a supergraph G1 of G2 extended by vertex v
and edges between v and V of G2. Now we state the propositions:

(70) Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2 and G2 is
acyclic and for every component G3 of G2 and for every vertices w1, w2 of
G3 such that w1, w2 ∈ V holds w1 = w2. Then G1 is acyclic.
Proof: Consider E being a set such that V = E and E misses the edges
of G2 and the edges of G1 = (the edges of G2)∪E and for every object v1
such that v1 ∈ V there exists an object e1 such that e1 ∈ E and e1 joins
v1 and v in G1 and for every object e2 such that e2 joins v1 and v in G1
holds e1 = e2. There exists no walk W of G1 such that W is cycle-like. �

(71) Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2 and (G2 is
not acyclic or there exists a component G3 of G2 and there exist vertices
w1, w2 of G3 such that w1, w2 ∈ V and w1 6= w2). Then G1 is not acyclic.



About supergraphs. Part II 139

(72) Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2 and for every
component G3 of G2, there exists a vertex w of G3 such that w ∈ V . Then
G1 is connected.
Proof: For every vertex u of G1 such that u 6= v there exists a walk W1
of G1 such that W1 is walk from u to v. For every vertices u, w of G1,
there exists a walk W1 of G1 such that W1 is walk from u to w. �

Let G be a connected graph, v be an object, and V be a non empty set. Note
that every supergraph of G extended by vertex v and edges between v and V

of G is connected.
Let us consider G2, v, V , and a supergraph G1 of G2 extended by vertex v

and edges between v and V of G2. Now we state the propositions:

(73) Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2 and there
exists a component G3 of G2 such that for every vertex w of G3, w /∈ V .
Then G1 is not connected.
Proof: Consider G3 being a component of G2 such that for every vertex
w of G3, w /∈ V . Set v1 = the vertex of G3. There exists no walk W of G1
such that W is walk from v1 to v. �

(74) Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2 and there
exists a component G3 of G2 such that the vertices of G3 misses V . Then
G1 is not connected. The theorem is a consequence of (73).

Let G be a non connected graph and v be an object. One can check that
every supergraph of G extended by vertex v and edges between v and ∅ of G is
non connected.

(75) Let us consider a supergraph G1 of G2 extended by vertex v and ed-
ges between v and V of G2. Suppose V ⊆ the vertices of G2 and v /∈
the vertices of G2. Then G1 is complete if and only if G2 is complete and
V = the vertices of G2.
Proof: For every vertices u, v of G1 such that u 6= v holds u and v are
adjacent. �

Let G be a complete graph. Observe that every supergraph of G extended
by vertex the vertices of G and edges between the vertices of G and the vertices
of G is complete.

Now we state the propositions:

(76) Let us consider a supergraphG1 ofG2 extended by vertex v and edges be-
tween v and V of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Then

(i) G1.order() = G2.order() + 1, and

(ii) G1.size() = G2.size() + V .
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(77) Let us consider a finite graph G2, an object v, a set V , and a supergraph
G1 of G2 extended by vertex v and edges between v and V of G2. Suppose
V ⊆ the vertices of G2 and v /∈ the vertices of G2. Then G1.order() =
G2.order() + 1.

(78) Let us consider a finite graph G2, an object v, a finite set V , and a su-
pergraph G1 of G2 extended by vertex v and edges between v and V of
G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2. Then
G1.size() = G2.size() + V .

Let G be a finite graph, v be an object, and V be a set. One can verify that
every supergraph of G extended by vertex v and edges between v and V of G
is finite.
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