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Summary. In this paper we present a formalization in the Mizar system
[2, 1] of the correctness of the subtraction-based version of Euclid’s algorithm
computing the greatest common divisor of natural numbers. The algorithm is
written in terms of simple-named complex-valued nominative data [11, 4].

The validity of the algorithm is presented in terms of semantic Floyd-Hoare
triples over such data [7]. Proofs of the correctness are based on an inference
system for an extended Floyd-Hoare logic with partial pre- and post-conditions
[8, 10, 5, 3].
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From now on v denotes an object, V , A denote sets, and f denotes a bi-
nominative function over simple-named complex-valued nominative data of V
and A.

Let us consider A. We say that A is complex containing if and only if

(Def. 1) C ⊆ A.

One can verify that there exists a set which is complex containing and every
set which is complex containing is also non empty.

The scheme BinPredToFunEx deals with sets X , Y and a binary predicate
P and states that
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(Sch. 1) There exists a function f from X × Y into Boolean such that for every
objects x, y such that x, y ∈ Y holds if P[x, y], then f(x, y) = true and if
not P[x, y], then f(x, y) = false.

The scheme BinPredToFunUnique deals with sets X , Y and a binary predi-
cate P and states that

(Sch. 2) For every functions f , g from X × Y into Boolean such that for every
objects x, y such that x, y ∈ Y holds if P[x, y], then f(x, y) = true and
if not P[x, y], then f(x, y) = false and for every objects x, y such that
x, y ∈ Y holds if P[x, y], then g(x, y) = true and if not P[x, y], then
g(x, y) = false holds f = g.

The scheme Lambda2Unique deals with sets X , Y, Z and a binary functor
F yielding an object and states that

(Sch. 3) For every functions f , g from X × Y into Z such that for every objects
x, y such that x, y ∈ Y holds f(x, y) = F(x, y) and for every objects x, y
such that x, y ∈ Y holds g(x, y) = F(x, y) holds f = g.

Let us consider V and A. The functor nonatomicsND(V,A) yielding a set is
defined by the term

(Def. 2) the set of all d where d is a non-atomic nominative data of V and A.

Now we state the propositions:

(1) Let us consider an object d. Suppose d ∈ nonatomicsND(V,A). Then d
is a non-atomic nominative data of V and A.

(2) ∅ ∈ nonatomicsND(V,A).

Let us consider V and A. One can verify that nonatomicsND(V,A) is non
empty and functional.

We say that V is without nonatomic nominative data w.r.t. A if and only if

(Def. 3) A misses nonatomicsND(V,A).

Now we state the propositions:

(3) If V is without nonatomic nominative data w.r.t. A, then for every non-
atomic nominative data d of V and A, d /∈ A.

(4) Suppose V is without nonatomic nominative data w.r.t. A and v ∈ V . Let
us consider a non-atomic nominative data d1 of V and A, and a nominative
data d2 with simple names from V and complex values from A. Then
dom(d1∇vad2) = {v} ∪ dom d1. The theorem is a consequence of (3).

(5) Suppose V is without nonatomic nominative data w.r.t. A. Let us con-
sider a non-atomic nominative data d of V and A. Suppose v ∈ V and
d ∈ dom f . Then dom((Asgv(f))(d)) = dom d∪{v}. The theorem is a con-
sequence of (3).
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In the sequel d denotes a nominative data with simple names from V and
complex values from A.

(6) Let us consider a non-atomic nominative data d1 of V and A. Suppo-
se v ∈ V and V is without nonatomic nominative data w.r.t. A. Then
d1∇vad ∈ dom(v ⇒a). The theorem is a consequence of (4).

From now on a, b, c, x, y, z denote elements of V and p, q, r, s denote partial
predicates over simple-named complex-valued nominative date of V and A.

Let us consider V , A, d, and a. We say that d is an extended real on a if
and only if

(Def. 4) (a⇒a)(d) is extended real.

We say that d is a complex on a if and only if

(Def. 5) (a⇒a)(d) is complex.

We say that d is a value on a if and only if

(Def. 6) (a⇒a)(d) ∈ A.

Now we state the propositions:

(7) If A is complex containing and for every d, d is a complex on a, then for
every d, d is a value on a.

(8) If for every d, d is a value on a, then rng a⇒a⊆ A.

(9) If for every d, d is a value on a and for every d, d is a value on b, then
rng〈a⇒a, b⇒a〉 ⊆ A×A. The theorem is a consequence of (8).

Let us consider V and A. Let a, b be elements of V and p be a function
from A×A into Boolean. The functor lift-binary-pred(p, a, b) yielding a partial
predicate over simple-named complex-valued nominative data of V and A is
defined by the term

(Def. 7) p · 〈a⇒a, b⇒a〉.
Let o1 be a function from A× A into A. The functor lift-binary-op(o1, a, b)

yielding a binominative function over simple-named complex-valued nominative
data of V and A is defined by the term

(Def. 8) o1 · 〈a⇒a, b⇒a〉.
The functor Equality(A) yielding a function from A × A into Boolean is

defined by

(Def. 9) for every objects a, b such that a, b ∈ A holds if a = b, then it(a, b) = true
and if a 6= b, then it(a, b) = false.

Let us consider V . Let x, y be elements of V . The functor Equality(A, x, y)
yielding a partial predicate over simple-named complex-valued nominative data
of V and A is defined by the term

(Def. 10) lift-binary-pred(Equality(A), x, y).
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Let x, y be objects. We say that x is less than y if and only if

(Def. 11) there exist extended reals x1, y1 such that x1 = x and y1 = y and
x1 < y1.

Observe that the predicate is irreflexive and asymmetric.
Now we state the proposition:

(10) Let us consider extended reals x, y. If x is not less than y, then y is less
than x or x = y.

Let us consider A. The functor less(A) yielding a function from A× A into
Boolean is defined by

(Def. 12) for every objects x, y such that x, y ∈ A holds if x is less than y, then
it(x, y) = true and if x is not less than y, then it(x, y) = false.

Let us consider V . Let x, y be elements of V . The functor less(A, x, y) yiel-
ding a partial predicate over simple-named complex-valued nominative data of
V and A is defined by the term

(Def. 13) lift-binary-pred(less(A), x, y).

Now we state the propositions:

(11) Suppose for every d, d is a value on a and for every d, d is a value on b.
Then dom(Equality(A, a, b)) = dom(a ⇒a) ∩ dom(b ⇒a). The theorem is
a consequence of (9).

(12) Suppose for every d, d is a value on a and for every d, d is a value on
b. Then dom(less(A, a, b)) = dom(a ⇒a) ∩ dom(b ⇒a). The theorem is
a consequence of (9).

(13) Suppose for every d, d is a value on a and for every d, d is a value on b
and for every d, d is an extended real on a and for every d, d is an extended
real on b. Then ¬Equality(A, a, b) = less(A, a, b) ∨ less(A, b, a).

(14) Suppose for every d, d is a value on a and for every d, d is a value
on b and d is an extended real on a and d is an extended real on b and
d ∈ dom(¬Equality(A, a, b)) and (¬Equality(A, a, b))(d) = true. Then

(i) d ∈ dom(less(A, a, b)) and (less(A, a, b))(d) = true, or

(ii) d ∈ dom(less(A, b, a)) and (less(A, b, a))(d) = true.

The theorem is a consequence of (10) and (12).

Let x, y be objects. Assume x is a complex number and y is a complex
number. The functor x− y yielding a complex number is defined by

(Def. 14) there exist complex numbers x1, y1 such that x1 = x and y1 = y and
it = x1 − y1.

Let us considerA. AssumeA is complex containing. The functor subtractionA
yielding a function from A×A into A is defined by



Partial correctness of GCD algorithm 169

(Def. 15) for every objects x, y such that x, y ∈ A holds it(x, y) = x− y.
Let us consider V . Let x, y be elements of V . The functor subtraction(A, x, y)

yielding a binominative function over simple-named complex-valued nominative
data of V and A is defined by the term

(Def. 16) lift-binary-op(subtractionA, x, y).

Let us consider a and b. The functor gcd-conditional-step(V,A, a, b) yielding
a binominative function over simple-named complex-valued nominative data of
V and A is defined by the term

(Def. 17) IF(less(A, b, a),Asga(subtraction(A, a, b)), idPP(NDSC(V,A))).

The functor gcd-loop-body(V,A, a, b) yielding a binominative function over
simple-named complex-valued nominative data of V and A is defined by the
term

(Def. 18) gcd-conditional-step(V,A, a, b) • gcd-conditional-step(V,A, b, a).

The functor gcd-main-loop(V,A, a, b) yielding a binominative function over
simple-named complex-valued nominative data of V and A is defined by the
term

(Def. 19) WH(¬Equality(A, a, b), gcd-loop-body(V,A, a, b)).

Let us consider x and y. The functor gcd-var-init(V,A, a, b, x, y) yielding
a binominative function over simple-named complex-valued nominative data of
V and A is defined by the term

(Def. 20) Asga(x⇒a) •Asgb(y ⇒a).
The functor gcd-main-part(V,A, a, b, x, y) yielding a binominative function

over simple-named complex-valued nominative data of V and A is defined by
the term

(Def. 21) gcd-var-init(V,A, a, b, x, y) • gcd-main-loop(V,A, a, b).

Let us consider z. The functor gcd-program(V,A, a, b, x, y, z) yielding a bi-
nominative function over simple-named complex-valued nominative data of V
and A is defined by the term

(Def. 22) gcd-main-part(V,A, a, b, x, y) •Asgz(a⇒a).
From now on x0, y0 denote natural numbers.
Let us consider V , A, x, y, x0, and y0. Let d be an object. We say that x0,

y0 and d constitute a valid input for the gcd w.r.t. V , A, x and y if and only if

(Def. 23) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and x, y ∈ dom d1 and d1(x) = x0 and d1(y) = y0.

The functor valid-gcd-input(V,A, x, y, x0, y0) yielding a partial predicate over
simple-named complex-valued nominative data of V and A is defined by



170 ievgen ivanov et al.

(Def. 24) dom it = NDSC(V,A) and for every object d such that d ∈ dom it holds
if x0, y0 and d constitute a valid input for the gcd w.r.t. V , A, x and y,
then it(d) = true and if x0, y0 and d do not constitute a valid input for
the gcd w.r.t. V , A, x and y, then it(d) = false.

One can check that valid-gcd-input(V,A, x, y, x0, y0) is total.
Let us consider z. Let d be an object. We say that x0, y0 and d constitute

a valid output for the gcd w.r.t. V , A and z if and only if

(Def. 25) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and z ∈ dom d1 and d1(z) = gcd(x0, y0).

The functor valid-gcd-output(V,A, z, x0, y0) yielding a partial predicate over
simple-named complex-valued nominative data of V and A is defined by

(Def. 26) dom it = {d, where d is a nominative data with simple names from V
and complex values from A : d ∈ dom(z ⇒a)} and for every object d such
that d ∈ dom it holds if x0, y0 and d constitute a valid output for the gcd
w.r.t. V , A and z, then it(d) = true and if x0, y0 and d do not constitute
a valid output for the gcd w.r.t. V , A and z, then it(d) = false.

Let us consider a and b. Let d be an object. We say that x0, y0 and d
constitute a valid invariant for the gcd w.r.t. V , A, a and b if and only if

(Def. 27) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and a, b ∈ dom d1 and there exist natural numbers x, y such that
x = d1(a) and y = d1(b) and gcd(x, y) = gcd(x0, y0).

The functor gcd-inv(V,A, a, b, x0, y0) yielding a partial predicate over simple-
named complex-valued nominative data of V and A is defined by

(Def. 28) dom it = NDSC(V,A) and for every object d such that d ∈ dom it holds
if x0, y0 and d constitute a valid invariant for the gcd w.r.t. V , A, a and
b, then it(d) = true and if x0, y0 and d do not constitute a valid invariant
for the gcd w.r.t. V , A, a and b, then it(d) = false.

Observe that gcd-inv(V,A, a, b, x0, y0) is total.
Now we state the propositions:

(15) 〈∼ SP(p, x⇒a, a),Asga(x⇒a), p〉 is an SFHT of NDSC(V,A).

(16) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and a 6= y.
Then 〈valid-gcd-input(V,A, x, y, x0, y0), gcd-var-init(V,A, a, b, x, y), gcd-inv
(V,A, a, b, x0, y0)〉 is an SFHT of NDSC(V,A).
Proof: Set D3 = x⇒a. Set D4 = y ⇒a. Set p = gcd-inv(V,A, a, b, x0, y0).
Set Q = SP(p,D4, b). Set P = SP(Q,D3, a). Set G = Asgb(D4). Set I =
valid-gcd-input(V,A, x, y, x0, y0). 〈∼ Q,G, p〉 is an SFHT of NDSC(V,A).
I |= P . �
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(17) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and A is complex containing and for every d, d is
a complex on a and for every d, d is a complex on b.
Then 〈less(A, b, a) ∧ gcd-inv(V,A, a, b, x0, y0),Asga(subtraction(A, a, b)),
gcd-inv(V,A, a, b, x0, y0)〉 is an SFHT of NDSC(V,A).
Proof: Set i = gcd-inv(V,A, a, b, x0, y0). Set l = less(A, b, a). Set D =
subtraction(A, a, b). Set f = Asga(D). Set p = l ∧ i. For every d such
that d ∈ dom p and p(d) = true and d ∈ dom f and f(d) ∈ dom i holds
i(f(d)) = true. �

(18) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and A is complex containing and for every d, d is
a complex on a and for every d, d is a complex on b.
Then 〈less(A, a, b) ∧ gcd-inv(V,A, a, b, x0, y0),Asgb(subtraction(A, b, a)),
gcd-inv(V,A, a, b, x0, y0)〉 is an SFHT of NDSC(V,A).
Proof: Set i = gcd-inv(V,A, a, b, x0, y0). Set l = less(A, a, b). Set D =
subtraction(A, b, a). Set f = Asgb(D). Set p = l ∧ i. For every d such
that d ∈ dom p and p(d) = true and d ∈ dom f and f(d) ∈ dom i holds
i(f(d)) = true by [6, (23)], [9, (9),(10)]. �

(19) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and A is complex containing and for every d, d is
a complex on a and for every d, d is a complex on b.
Then 〈gcd-inv(V,A, a, b, x0, y0), gcd-conditional-step(V,A, a, b), gcd-inv
(V,A, a, b, x0, y0)〉 is an SFHT of NDSC(V,A). The theorem is a consequ-
ence of (17).

(20) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and A is complex containing and for every d, d is
a complex on a and for every d, d is a complex on b.
Then 〈gcd-inv(V,A, a, b, x0, y0), gcd-conditional-step(V,A, b, a), gcd-inv
(V,A, a, b, x0, y0)〉 is an SFHT of NDSC(V,A). The theorem is a consequ-
ence of (18).

(21) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and A is complex containing and for every d, d is a com-
plex on a and for every d, d is a complex on b. Then 〈gcd-inv(V,A, a, b, x0, y0),
gcd-loop-body(V,A, a, b), gcd-inv(V,A, a, b, x0, y0)〉 is an SFHT of NDSC(V,
A). The theorem is a consequence of (19) and (20).

(22) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and A is complex containing and for every d, d is
a complex on a and for every d, d is a complex on b.
Then 〈∼ gcd-inv(V,A, a, b, x0, y0), gcd-loop-body(V,A, a, b), gcd-inv
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(V,A, a, b, x0, y0)〉 is an SFHT of NDSC(V,A). The theorem is a consequ-
ence of (20).

(23) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and A is complex containing and for every d, d is a com-
plex on a and for every d, d is a complex on b. Then 〈gcd-inv(V,A, a, b, x0, y0),
gcd-main-loop(V,A, a, b),Equality(A, a, b) ∧ gcd-inv(V,A, a, b, x0, y0)〉 is
an SFHT of NDSC(V,A). The theorem is a consequence of (21) and (22).

(24) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and a 6= y and A is complex containing and for
every d, d is a complex on a and for every d, d is a complex on b. Then
〈valid-gcd-input(V,A, x, y, x0, y0), gcd-main-part(V,A, a, b, x, y),Equality
(A, a, b) ∧ gcd-inv(V,A, a, b, x0, y0)〉 is an SFHT of NDSC(V,A). The the-
orem is a consequence of (16) and (23).

(25) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and for every d, d is a value on a and for every d, d is a va-
lue on b. Then 〈Equality(A, a, b) ∧ gcd-inv(V,A, a, b, x0, y0),Asgz(a ⇒a),
valid-gcd-output(V,A, z, x0, y0)〉 is an SFHT of NDSC(V,A).
Proof: SetD1 = a⇒a. Set q = Equality(A, a, b)∧gcd-inv(V,A, a, b, x0, y0).
Set r = valid-gcd-output(V,A, z, x0, y0). Set s3 = SP(r,D1, z). q |= s3. �

(26) Partial correctness of GCD algorithm:
Suppose V is not empty and V is without nonatomic nominative da-
ta w.r.t. A and a 6= b and a 6= y and A is complex containing and
for every d, d is a complex on a and for every d, d is a complex on
b. Then 〈valid-gcd-input(V,A, x, y, x0, y0), gcd-program(V,A, a, b, x, y, z),
valid-gcd-output(V,A, z, x0, y0)〉 is an SFHT of NDSC(V,A). The theorem
is a consequence of (7), (24), (25), and (11).
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