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Summary. This article covers some technical aspects about the product
topology which are usually not given much of a thought in mathematics and
standard literature like [7] and [6], not even by Bourbaki in [4].

Let {7;}icr be a family of topological spaces. The prebasis of the product
space 7 = [[,.; 7 is defined in [5] as the set of all 77 (V) with i € T and V
open in 7;. Here it is shown that the basis generated by this prebasis consists
exactly of the sets Hiel Vi with V; open in 7; and for all but finitely many ¢ €
holds V; = 7;. Given I = {a} we have T = 7,, given I = {a,b} with a # b we
have 7 = 7, x Tp. Given another family of topological spaces {S;}icr such that
S, 27, for all i € I, we have S = Hie[ S, &2 7. If instead S; is a subspace of T;
for each i € I, then S is a subspace of 7.

These results are obvious for mathematicians, but formally proven here by
means of the Mizar system [3], [2].
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1. PRELIMINARIES

Now we state the propositions:

(1) Let us consider a one-to-one function f, and an object y. Suppose rng f =

{y}. Then dom f = {(f~")(y)}-

PROOF: Consider z( being an object such that xg € dom f and f(xg) = y.
For every object z, z € dom f iff z = (f~1)(y). O
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(2) Let us consider a one-to-one function f, and objects y1, y2. Suppose
g f = {y1,y2}. Then dom f = {(f~")(y1), (f ") (y2)}-
PROOF: Consider 21 being an object such that z; € dom f and f(x1) = y;.
Consider z5 being an object such that xo € dom f and f(z2) = ys. For
every object x, z € dom f iff z = (f~1)(y1) or . = (f ) (y2). O
Let X, Y be sets. Note that there exists a function which is empty, X-defined,
Y -valued, and one-to-one.
Let T, S be sets, f be a function from T into S, and G be a finite family of
subsets of T'. Let us note that f°G is finite.
Now we state the propositions:

(3) Let us consider a set A, a family F' of subsets of A, and a binary relation
R. Then R°(NF) CN{R°X, where X is a subset of A: X € F'}.

(4) Let us consider a set A, a family F' of subsets of A, and a one-to-one
function f. Then f°(NF) = N{f°X, where X is a subset of A: X € F'}.
PROOF: Set S = {f°X, where X isasubset of A : X € F}. NS C
fFNF). fF(NF)cns. O

(5) Let us consider a set X, a non empty set Y, and a function f from X into

Y. Then {f~1({y}), where y is an element of Y : y € rng f} is a partition
of X.
PrOOF: Set P = {f~'({y}), where y is an element of Y : 3 € rng f}. For
every object x, x € X iff there exists a set A such that z € A and A € P.
For every subset A of X such that A € P holds A # () and for every subset
B of X such that B € P holds A = B or A misses B. P C 2X. 0

(6) Let us consider a non empty set X, and objects z, y. If X —— z =
X — y, then x = y.

(7) Let us consider an object 4, and a many sorted set J indexed by {i}.
Then J = {i} — J(3).
PRrROOF: For every object x such that € domJ holds J(z) = ({i} —
J(i))(x). O

(8) Let us consider a 2-element set I, and elements 4, j of I. If i # j, then
I ={i,j}.
PRrROOF: For every object z, x =iorax=jiffx € I. O

(9) Let us consider a 2-element set I, a many sorted set f indexed by I, and
elements ¢, j of I. If i # j, then f = [i — f(i),j — f(j)]. The theorem
is a consequence of (8).

(10) Let us consider objects a, b, ¢, d. If a # b, then [a — ¢,b — d] =

[br— d,a— c].
PROOF: For every object = such that = € dom[a — ¢,b —— d] holds
[a— ¢,b— d](x) =[b—d,a— c|(z). O
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(11) Let us consider a function f, and objects i, j. If 4, j € dom f, then
f=f+li— f(@).5— FO)]-
(12) Let us consider objects z, y, z. Then z——y+-(z——z2) = z——2.
Let us observe that there exists a function which is non non-empty.
Now we state the propositions:

(13) Let us consider non empty sets X, Y, and an element y of Y. Then
Xr—yell(X—Y).
PROOF: Set f = X +— y. For every object x such that z € dom(X +— Y")
holds f(z) € (X — Y)(x). O

(14) Let us consider a non empty set X, a set Y, and a subset Z of Y. Then
[[(X+— 2)C[[(X+—Y).

(15) Let us consider a non empty set X, and an object 7. Then [[({i}
X) = {{i} — x, where z is an element of X}.
PRrROOF: Set S = {{i} — =, where x is an element of X}. For every ob-
ject z, z € [[{i} — X) iff z€ 5. O

(16) Let us consider a non empty set X, and objects i, f. Then f € [[({i} —
X) if and only if there exists an element x of X such that f = {i} — =.
The theorem is a consequence of (15).

(17) Let us consider a non empty set X, an object i, and an element z of X.
Then (proj({i} — X,7))({i} — z) = x. The theorem is a consequence
of (13).
(18) Let us consider sets X, Y. Then X # () and Y = ) if and only if [[(X —
Y)=0.
Let f be an empty function and x be an object. Let us note that proj(f, z)
is trivial.
Now we state the proposition:
(19) Let us consider a trivial function f, and an object z. If € dom f, then
proj(f,x) is one-to-one.
ProOOF: Consider t being an object such that dom f = {t}. Set F =
proj(f,z). For every objects y, z such that y, z € dom F and F(y) = F(z)
holds y = z. O

Let x, y be objects. Note that proj(z——y,x) is one-to-one.
Let I be a 1l-element set, J be a many sorted set indexed by I, and ¢ be
an element of I. One can verify that proj(.J,4) is one-to-one.
Now we state the propositions:
(20) Let us consider a non empty set X, a subset Y of X, and an object i.
Then (proj({i} — X,4))°(T1({i} — Y)) = Y. The theorem is a conse-
quence of (16), (13), and (14).
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(21) Let us consider non-empty functions f, g, and objects i, x. Suppose
z € [TfNII(f+-g). Then (proj(f,i))(x) = (proj(f+-g,7))(x).

(22) Let us consider non-empty functions f, g, an object i, and a set A.
Suppose A C [[f NTI(f+-g). Then (proj(f,i))°A = (proj(f+-g,i))°A.
The theorem is a consequence of (21).

(23) Let us consider non-empty functions f, g. Suppose dom g C dom f and
for every object i such that i € dom g holds g(i) C f(i). Then [[(f+-g) C
I/

Let us consider non-empty functions f, g and an object ¢. Now we state the
propositions:

(24) Suppose dom g C dom f and for every object i such that i € dom g holds
9(i) C £(3). Then if i € dom f\ dom g, then (proj(f,1)°(TT(f+9)) = £(i).
The theorem is a consequence of (23) and (22).

(25) Suppose dom g C dom f and for every object i such that i € dom g holds
g(i) C f(i). Then if i € domg, then (proj(f,4))°(I1(f+-9)) = g(i). The
theorem is a consequence of (23) and (22).

(26) Suppose dom g = dom f and for every object i such that i € dom g holds
g(2) C f(i). Then if i € dom g, then (proj(f,7))°(I]g) = g(7). The theorem
is a consequence of (25).

(27) Let us consider a function f, sets X, Y, and an object 7. Suppose X C Y.
Then [[(f+(i-—X)) C T1(f+-(i=—Y)),

(28) Let us consider objects i, j, and sets A, B, C', D. Suppose A C C and
B C D. Then [[[i — A,j —— B] C I[[i = C,j — D]. The theorem is
a consequence of (14).

(29) Let us consider sets X, Y, and objects f, i, j. Suppose i # j. Then

fellli— X,j+—— Y] if and only if there exist objects x, y such that
re€XandyeY and f=[i— z,j— y].
Proor: If f € T][i — X,j —— Y], then there exist objects z, y such
that z € X and y € Y and f = [i — =z,j — y]. Reconsider g = f as
a function. For every object z such that z € dom[i — X, j — Y] holds
9(2) € [i— X,j — Y](2). D

(30) Let us consider a non-empty function f, sets X, Y, objects i, j, z, v,
and a function g. Suppose x € X and y € Y and i # j and g € [[ f. Then
gtlir—z,j—yl € I(f+[i— X,j —Y]).

PROOF: For every object z such that z € dom(f+[i — X,j —— Y])
holds (g+-[i — z,j — y])(2) € (f+]i— X,j— Y])(2). O

(31) Let us consider a function f, sets A, B, C, D, and objects i, j. Suppose

A C C and B C D. Then [[(f+[i — A,j — B]) C TI(f+[i —
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C,j — DJ]). The theorem is a consequence of (27).

(32) Let us consider a function f, sets A, B, and objects i, j. Suppose i, j €
dom f and A C f(i) and B C f(j). Then [[(f+:[i — A,j— B]) C I f.
The theorem is a consequence of (11) and (31).

(33) Let us consider a set I, and many sorted sets f, g indexed by I. Then
[1/NIlg=TI(fNg).

PRrROOF: For every object z, x € [[f N[]g iff there exists a function h
such that h = z and dom h = dom(f Ng) and for every object y such that
y € dom(f Ng) holds h(y) € (fNg)(y). O

(34) Let us consider a 2-element set I, a many sorted set f indexed by I,
elements 4, j of I, and an object x. Suppose i # j. Then

(i) f+ (i,2) =[i— z,j — f(j)], and
(i) f+ G z) =[i— f(i),j — a].
The theorem is a consequence of (10).
Let us consider a non-empty function f, a set X, and an object i. Now we
state the propositions:

(35) Ifi e dom f, then f +- (i, X) is non-empty iff X is not empty.

PROOF: For every object = such that z € dom(f +- (i, X)) holds (f +-
(i, X))(zx) is not empty. O

(36) If i € dom f, then [[(f +- (i, X)) = 0 iff X is empty. The theorem is
a consequence of (35).

(37) Let us consider a non-empty function f, a set X, objects i, z, and a func-
tion g. Suppose ¢ € dom f and z € X and g € [[f. Then g + (i,2) €
[1(f +- (2, X)).

PRrOOF: For every object y such that y € dom(f +- (¢, X)) holds (g +-
(1,2))(y) € (f + (4, X))(y). O
(38) Let us consider a function f, sets X, Y, and an object i. Suppose i €

dom f and X CY. Then [[(f +- (i, X)) C [I(f + (¢,Y)). The theorem is
a consequence of (27).

(39) Let us consider a function f, a set X, and an object i. Suppose i € dom f
and X C f(¢). Then [](f +- (¢, X)) C I] f. The theorem is a consequence
of (38).

(40) Let us consider a non-empty function f, non empty sets X, Y, and objects
i, j. Suppose i, j € dom fand (X Z f(i)or f(5) € Y)and [T(f+ (i, X)) C
[1(f + (4,Y)). Then

(i) i =7, and
(i) X CY.
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PROOF: f +- (i, X) is non-empty and f +- (7,Y) is non-empty. i = j. Set
g = the element of [ f. g+ (i,2) € [I(f +- (4, X)). O

(41) Let us consider a non-empty function f, a set X, and an object i. Suppose
i € dom f and [[(f +- (4, X)) C [[f. Then X C f(i). The theorem is
a consequence of (37).

(42) Let us consider a non-empty function f, non empty sets X, Y, and objects
i, . Suppose i, j € dom f and (X # (i) or ¥ £ () and [[(/+(i, X)) =
[1(f +- (4,Y)). Then

(i) i =j, and
(i) X =Y.
PROOF: f +- (i, X) is non-empty and f +- (,Y) is non-empty. i = j. O

(43) Let us consider a non-empty function f, a set X, and an object i. Suppose
i € dom f and X C f(i). Then (proj(f,i))°(I[1(f + (i, X))) = X. The
theorem is a consequence of (25).

(44) Let us consider objects z, y, z. Then z——y +- (z,2) = z——z. The
theorem is a consequence of (12).

Let I be a non empty set and J be a 1-sorted yielding, nonempty many
sorted set indexed by I. Let us observe that the support of J is non-empty.

2. REMARKS ABOUT PRODUCT SPACES

Now we state the propositions:

(45) Let us consider topological spaces T', S, and a function f from 7T into
S. Then f is open if and only if there exists a basis B of T such that for
every subset V of T such that V € B holds f°V is open.

(46) Let us consider non empty topological spaces T1, Ts, S1, S2, a function
f from T} into Sp, and a function g from 75 into Ss. If f is open and g is
open, then f X g is open.

PROOF: There exists a basis B of T7 x T such that for every subset P of
T} x Ty such that P € B holds (f x g)°P is open.

Let us consider non empty topological spaces S, T" and a function f from S
into T'. Now we state the propositions:

(47) If f is bijective and there exists a basis K of S and there exists a basis
L of T such that f°K = L, then f is a homeomorphism.
PROOF: For every subset W of T such that W € L holds f~(W) is open.
For every subset V' of S such that V' € K holds f°V is open. f is open. [J
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(48) If f is bijective and there exists a prebasis K of S and there exists
a prebasis L of T such that f°K = L, then f is a homeomorphism.
PRrROOF: Reconsider Ky = FinMeetCl(K) as a basis of S. Reconsider Ly =
FinMeetCIl(L) as a basis of T'. For every subset W of T', W € Ly iff there
exists a subset V of S such that V € Ky and f°V =W. O

Let us consider topological spaces S, T. Now we state the propositions:

(49) If there exists a basis K of S and there exists a basis L of T such that
K = Lm{Qg}, then S is a subspace of T.
PROOF: For every subset A of S, A € the topology of S iff there exists
a subset B of T' such that B € the topology of T'and A = BN{2g. Consider
B being a subset of T" such that B € the topology of T" and the carrier of
S=BnNRg. O

(50) Suppose Qg C Qr and there exists a prebasis K of S and there exists
a prebasis L of T such that K = L@ {Qg}. Then S is a subspace of T'.
PRrROOF: Reconsider Ky = FinMeetCl(K) as a basis of S. Reconsider Ly =
FinMeetCl(L) as a basis of T'. For every object x, x € Ky iff x € Lom{Qs}.
O

(51) If there exists a prebasis K of S and there exists a prebasis L of T such
that Qg € K and K = LM {Qs}, then S is a subspace of T". The theorem
is a consequence of (50).

(52) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, and an element ¢ of 1. Then
rng proj(.J, i) = the carrier of J(7).
Let X be a set and T" be a topological structure. Observe that X —— T is
topological structure yielding.
Let F' be a binary relation. We say that F' is topological space yielding if
and only if

(Def. 1) for every object  such that = € rng F' holds z is a topological space.

Note that every binary relation which is topological space yielding is al-
so topological structure yielding and every function which is topological space
yielding is also 1-sorted yielding.

Let X be a set and T be a topological space. One can verify that X —— T
is topological space yielding.

Let I be a set. One can verify that there exists a many sorted set indexed
by I which is topological space yielding and nonempty.

Let I be a non empty set, J be a topological space yielding, nonempty many
sorted set indexed by I, and ¢ be an element of I. Let us note that the functor
J (i) yields a non empty topological space. Let f be a function. The functor
ProjMap f yielding a many sorted function indexed by dom f is defined by
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(Def. 2) for every object 2 such that x € dom f holds it(x) = proj(f,z).

Let f be an empty function. One can verify that ProjMap f is empty.

Let f be a non-empty function. Note that ProjMap f is non-empty.

Let f be a non non-empty function. Let us note that ProjMap f is empty
yielding.

Let I be a non empty set and J be a topological structure yielding, nonempty
many sorted set indexed by I. The functor ProjMap J yielding a many sorted
set indexed by [ is defined by the term

(Def. 3) ProjMap(the support of .J).

Observe that ProjMap J is function yielding, non empty, and non-empty.
Now we state the proposition:

(53) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, and an element i of I. Then
(ProjMap J) (i) = proj(J, ).

Let I be a non empty set, J be a topological structure yielding, nonempty
many sorted set indexed by I, and f be a one-to-one, I-valued function. The
functor ProdBasSel(J, f) yielding a many sorted set indexed by rng f is defined
by the term

(Def. 4) (ProjMap J) ° (I -indexing f~!)[ rng f.
Let f be an empty, one-to-one, I-valued function. Note that ProdBasSel(.J, f)
is empty.
Now we state the propositions:

(54) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, a one-to-one, I-valued function
f, and an element i of I. Suppose i € rng f. Then (ProdBasSel(J, f))(i) =
(proj(J,4))°(f~1)(7). The theorem is a consequence of (53).

(55) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, and a one-to-one, I-valued func-
tion f. Suppose f~!is non-empty and dom f C olle. Then ProdBasSel(J, f)
is non-empty, where « is the support of J. The theorem is a consequence
of (54).

(56) Let us consider a non empty set I, and a topological space yielding,
nonempty many sorted set J indexed by I. Then () € the product prebasis
for J. The theorem is a consequence of (36).

(57) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, and a non empty subset P of
[1(the support of J). Suppose P € the product prebasis for J. Then there
exists an element 4 of I such that
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(i) (proj(J,i))°P is open, and

(ii) for every element j of I such that j # 4 holds (proj(J,j))°P = Q ;.
PRrROOF: Consider ¢ being a set, T' being a topological structure, V' being
a subset of T' such that ¢ € I and V is open and T' = J(i) and P =
[1((the support of J) +- (i,V')). rngproj(J,i) = the carrier of J(i). For
every object z, x € (proj(J,7))°P iff x € Q;¢; by [, (30), (32)], [9 (8)],
8, (7)]. O

(58) Let us consider a non empty set I, a topological space yielding, no-

nempty many sorted set J indexed by I, and a non empty subset P of
[1(the support of J). Suppose P € the product prebasis for J. Then

(i) for every element j of I, (proj(J,j))°P is open, and

(ii) there exists an element ¢ of I such that for every element j of I such

that j # i holds (proj(J, j))°P = Q).

The theorem is a consequence of (57).

(59) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, a one-to-one, [-valued func-
tion f, and a family X of subsets of [](the support of J). Suppose X C
the product prebasis for J and dom f = X and f~! is non-empty and for
every subset A of [[(the support of J) such that A € X holds
(proj(J, f/4))° A is open. Let us consider an element i of I. Then

(i) if ¢ ¢ rng f, then (proj(J,7))°(I1((the support of J)+-
ProdBasSel(J, f))) = ¢, and
(ii) if ¢« € rng f, then (proj(J,))°([1((the support of J)+-
ProdBasSel(.J, f))) is open.
PROOF: Set g = ProdBasSel(J, f). Set P = []((the support of J)+-g). g
is non-empty. If i ¢ rng f, then (proj(J,7))°P = Q). O
(60) Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, a one-to-one, I-valued function f, and
a family X of subsets of [[(the support of J). Suppose X C the product
prebasis for J and dom f = X and f~! is non-empty and for every subset
A of [](the support of J) such that A € X holds (proj(J, f/4))°A is open.
Let us consider an element i of I. Then
(i) (proj(J,))°(I1((the support of J)+- ProdBasSel(J, f))) is open, and
(i) if i ¢ rng f, then (proj(J,))°([1((the support of J)+-
ProdBasSel(J, f))) = Q-

The theorem is a consequence of (59).
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(61) Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, and a subset P of [[(the support of .J).
Then P € FinMeetCl(the product prebasis for J) if and only if there exists
a family X of subsets of [](the support of J) and there exists a one-to-one,
I-valued function f such that X C the product prebasis for J and X is
finite and P = Intersect(X) and dom f = X and P = [[((the support of
J)+- ProdBasSel(J, f)).

Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, and a non empty subset P of [](the support
of J). Now we state the propositions:

(62) Suppose P € FinMeetCl(the product prebasis for J). Then there exists
a family X of subsets of [](the support of J) and there exists a one-to-one,
I-valued function f such that X C the product prebasis for J and X is
finite and P = Intersect(X) and dom f = X and for every element i of I,
(proj(J,4))°P is open and if i ¢ rng f, then (proj(J,7))°P = Q).
PROOF: Consider X being a family of subsets of [](the support of J), f
being a one-to-one, I-valued function such that X C the product prebasis
for J and X is finite and P = Intersect(X) and dom f = X and P =
[1((the support of J)+- ProdBasSel(J, f)). f~! is non-empty. OJ

(63) Suppose P € FinMeetCl(the product prebasis for J). Then there exists
a finite subset Iy of I such that for every element ¢ of I, (proj(J,:))°P is
open and if i ¢ Iy, then (proj(J,7))°P = Q;(;). The theorem is a consequ-
ence of (62).

(64) Let us consider a 1-element set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, an element ¢ of I, and a subset P
of [1(the support of J). Then P € the product prebasis for J if and only if
there exists a subset V' of J (i) such that V' is open and P = [[({i} — V).
The theorem is a consequence of (7) and (44).

(65) Let us consider a 1-element set I, and a topological space yielding, no-
nempty many sorted set J indexed by I. Then the topology of [[J =
the product prebasis for J.

(66) Let us consider a 1-element set I, a topological space yielding, nonempty
many sorted set J indexed by I, an element ¢ of I, and a subset P of []J.
Then P is open if and only if there exists a subset V' of J(i) such that V'
is open and P = [[({i} —— V). The theorem is a consequence of (65) and
(64).

Let I be a non empty set, J be a topological structure yielding, nonempty
many sorted set indexed by I, and 7 be an element of I. Note that proj(J,1) is
continuous and onto.
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Let J be a topological space yielding, nonempty many sorted set indexed by
I. Note that proj(J, i) is open.

Let us consider a l-element set I, a topological space yielding, nonempty
many sorted set J indexed by I, and an element ¢ of I. Now we state the
propositions:

(67) proj(J,i) is a homeomorphism. The theorem is a consequence of (7).
(68) TIJ and J(i) are homeomorphic. The theorem is a consequence of (67).

Let us consider a 2-element set I, a topological space yielding, nonempty ma-
ny sorted set J indexed by I, elements i, j of I, and a subset P of [[(the support
of J). Now we state the propositions:

(69) Suppose i # j. Then P € the product prebasis for J if and only if
there exists a subset V of J(i) such that V is open and P = [[[i —
V,j = ;)] or there exists a subset W of J(j) such that W is open and
P =1T[[i = Qy(),j = W]. The theorem is a consequence of (34).

(70) Suppose i # j. Then P € FinMeetCl(the product prebasis for J) if and
only if there exists a subset V' of J(i) and there exists a subset W of J(j)
such that V is open and W is open and P = [[[i — V,j — W].
PROOF: There exists a family Y of subsets of [[(the support of J) such
that Y C the product prebasis for J and Y is finite and P = Intersect(Y").
O

(71) Let us consider a non empty set I, a topological space yielding, no-
nempty many sorted set J indexed by I, and elements ¢, j of I. Then
(proj(J, i), proj(J, 7)) is a function from []J into J(i) x J(j).

(72) Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, a subset P of [[(the support of J), and
elements i, j of I. Suppose i # j and there exists a many sorted set F
indexed by I such that P = [[ F' and for every element k of I, F(k) C
(the support of J)(k). Then (proj(J,i),proj(J,j))°P = (proj(J,i))°P x
(proj(J,7))°P. The theorem is a consequence of (26), (30), and (11).

(73) Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, elements ¢, j of I, and a function f from
[1J into J(i) x J(j). Suppose ¢ # j and f = (proj(.J,¢), proj(.J,j)). Then
f is onto and open.

PROOF: For every element k of I, (proj(J, k))O(QHa) = the carrier of
J(k), where « is the support of J. There exists a basis B of [] J such that
for every subset P of [][J such that P € B holds f°P is open. [J

(74) Let us consider a 2-element set I, a topological space yielding, nonempty
many sorted set J indexed by I, elements i, j of I, and a function f from
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[1J into J(i) x J(j). Suppose ¢ # j and f = (proj(J,), proj(.J,j)). Then
f is a homeomorphism.
PROOF: f is onto and open. For every objects x1, xo such that z1, zo €
dom f and f(x1) = f(x2) holds x1 = x9. O

(75) Let us consider a 2-element set I, a topological space yielding, nonempty
many sorted set J indexed by I, and elements i, j of I. If i # j, then [[J
and J (i) x J(j) are homeomorphic. The theorem is a consequence of (74).

Let I1, Is be non empty sets, J be a topological space yielding, nonempty
many sorted set indexed by I, and f be a function from I; into Is. One can
check that J - f is topological space yielding and nonempty.

Let J1 be a topological space yielding, nonempty many sorted set indexed
by I, J2 be a topological space yielding, nonempty many sorted set indexed
by I, and p be a function from Iy into Is. Assume p is bijective and for every
element ¢ of Iy, J1(7) and (J2 - p)(¢) are homeomorphic.

A product homeomorphism of Ji, Js and p is a function from [] J; into [] J2
defined by

(Def. 5) there exists a many sorted function F' indexed by I; such that for every
element ¢ of I, there exists a function f from Ji(¢) into (Ja - p)(i) such
that F'(i) = f and f is a homeomorphism and for every element g of [] J;
and for every element i of Iy, (it(g))(p(i)) = F(i)(g(7)).

Now we state the proposition:

(76) Let us consider non empty sets I1, I, a topological space yielding, no-
nempty many sorted set J; indexed by I;, a topological space yielding,
nonempty many sorted set Jo indexed by I3, a function p from I into
I, a product homeomorphism H of Jj, Jo and p, and a many sorted
function F' indexed by I;. Suppose p is bijective and for every element
i of Iy, there exists a function f from Ji(7) into (J2 - p)(i) such that
F(i) = f and f is a homeomorphism and for every element g of []Jy
and for every element i of I1, (H(g))(p(i)) = F(i)(g(7)). Let us consider
an element i of I, and a subset U of Jy(i). Then H°([]((the support of
J1) + (5,0))) = T1((the support of .15) +- (p(i), F(i)°U)).

PROOF: Reconsider j = p(i) as an element of I5. Consider f being a func-
tion from Ji(7) into (Jo - p)(i) such that F(i) = f and f is a homeomor-
phism. For every object y, y € H°(I]((the support of Jy) +- (3,U))) iff
y € [1((the support of J2) +- (4, F(i)°U)). O
Let us consider non empty sets I, I2, a topological space yielding, nonemp-
ty many sorted set J; indexed by I, a topological space yielding, nonempty
many sorted set Jy indexed by Io, a function p from I; into I», and a product
homeomorphism H of Ji, Jo and p. Now we state the propositions:
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(77) If p is bijective and for every element i of I, Ji(i) and (J2 - p)(i) are
homeomorphic, then H is bijective.
PRrROOF: Consider F' being a many sorted function indexed by I such that
for every element i of I, there exists a function f from J;(7) into (Ja-p)(i)
such that F(i) = f and f is a homeomorphism and for every element
g of [T J1 and for every element i of I, (H(g))(p(i)) = F(i)(g(i)). For
every objects x1, xo such that x1, zo € dom H and H(z1) = H(x3) holds
x1 = xa. Set ig = the element of I;. Consider fy being a function from
J1(ip) into (Ja - p)(ip) such that F(ig) = fo and fy is a homeomorphism.
]

(78) If p is bijective and for every element ¢ of I, Ji(i) and (J2 - p)(i) are
homeomorphic, then H is a homeomorphism.
PRrOOF: Consider F' being a many sorted function indexed by I such that
for every element 7 of I1, there exists a function f from Ji(7) into (J2-p)(i)
such that F(i) = f and f is a homeomorphism and for every element g
of [TJi and for every element ¢ of Iy, (H(g))(p(i)) = F(i)(g(i)). H is
bijective. There exists a prebasis K of [ J1 and there exists a prebasis L
of [ J2 such that H°K = L. J

(79) Let us consider non empty sets I, Is, a topological space yielding, no-
nempty many sorted set J; indexed by Iy, a topological space yielding,
nonempty many sorted set Js indexed by Is, and a function p from I into
I,. Suppose p is bijective and for every element ¢ of Iy, Ji(¢) and (J2-p)(i)
are homeomorphic. Then []J; and [] J2 are homeomorphic. The theorem
is a consequence of (78).

(80) Let us consider a non empty set I, topological space yielding, nonempty
many sorted sets Ji, Jo indexed by I, and a permutation p of 1. Suppose
for every element ¢ of I, Jy(7) and (J2-p)(i) are homeomorphic. Then [] J;
and [] Jo are homeomorphic.

(81) Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, and a permutation p of I. Then [[J and
[1J - p are homeomorphic. The theorem is a consequence of (79).

(82) Let us consider a non empty set I, and topological space yielding, no-
nempty many sorted sets Ji, Jo indexed by I. Suppose for every element
i of I, J1(7) is a subspace of Ja(i). Then ] J; is a subspace of [] Js.
PROOF: There exists a prebasis K7 of [[ J1 and there exists a prebasis Ko
of [] J2 such that anl € Ky and K1 = Kom {anl}. O
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