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Poland

Summary. This is the first part of a four-article series containing a Mizar
[3], [1], [2] formalization of Kronecker’s construction about roots of polynomials in
field extensions, i.e. that for every field F and every polynomial p ∈ F [X]\F there
exists a field extension E of F such that p has a root over E. The formalization
follows Kronecker’s classical proof using F [X]/<p> as the desired field extension
E [9], [4], [6].

In this first part we show that an irreducible polynomial p ∈ F [X]\F has
a root over F [X]/<p>. Note, however, that this statement cannot be true in
a rigid formal sense: We do not have F ⊆ F [X]/< p> as sets, so F is not
a subfield of F [X]/<p>, and hence formally p is not even a polynomial over
F [X]/<p>. Consequently, we translate p along the canonical monomorphism
φ : F −→ F [X]/<p> and show that the translated polynomial φ(p) has a root
over F [X]/<p>.

Because F is not a subfield of F [X]/<p> we construct in the second part the
field (E \φF )∪F for a given monomorphism φ : F −→ E and show that this field
both is isomorphic to F and includes F as a subfield. In the literature this part of
the proof usually consists of saying that “one can identify F with its image φF in
F [X]/<p> and therefore consider F as a subfield of F [X]/<p>”. Interestingly, to
do so we need to assume that F ∩E = ∅, in particular Kronecker’s construction
can be formalized for fields F with F ∩ F [X] = ∅.

Surprisingly, as we show in the third part, this condition is not automatically
true for arbitray fields F : With the exception of Z2 we construct for every field F
an isomorphic copy F ′ of F with F ′ ∩ F ′[X] 6= ∅. We also prove that for Mizar’s
representations of Zn, Q and R we have Zn ∩ Zn[X] = ∅, Q ∩ Q[X] = ∅ and
R ∩ R[X] = ∅, respectively.

In the fourth part we finally define field extensions: E is a field extension
of F iff F is a subfield of E. Note, that in this case we have F ⊆ E as sets,
and thus a polynomial p over F is also a polynomial over E. We then apply the
construction of the second part to F [X]/<p> with the canonical monomorphism
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φ : F −→ F [X]/<p>. Together with the first part this gives - for fields F with
F ∩ F [X] = ∅ - a field extension E of F in which p ∈ F [X]\F has a root.
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1. Preliminaries

From now on n denotes a natural number.
Let L be a non empty zero structure and p be a polynomial over L. We

introduce the notation LM(p) as a synonym of Leading-Monomial p.
Now we state the proposition:

(1) Let us consider a non empty zero structure L, and a polynomial p over
L. Then deg p is an element of N if and only if p 6= 0.L.

Let R be a non degenerated ring and p be a non zero polynomial over R.
Note that the functor deg p yields an element of N. Let R be an add-associative,
right zeroed, right complementable, right distributive, non empty double loop
structure and f be an additive function from R into R. One can check that
f(0R) reduces to 0R.

Now we state the proposition:

(2) Let us consider a ring R, an ideal I of R, an element x of R/I , and
an element a of R. Suppose x = [a]EqRel(R,I). Let us consider a natural
number n. Then xn = [an]EqRel(R,I).

Proof: Define P[natural number] ≡ x$1 = [a$1 ]EqRel(R,I). For every natu-
ral number i, P[i]. �

Let R be a ring and a, b be elements of R. We say that b is an irreducible
factor of a if and only if

(Def. 1) b | a and b is irreducible.

Observe that there exists an integral domain which is non almost left inver-
tible and factorial.

Now we state the proposition:

(3) Let us consider a non almost left invertible, factorial integral domain R,
and a non zero non-unit a of R. Then there exists an element b of R such
that b is an irreducible factor of a.
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2. The Polynomials a · xn

Let R be a ring, a be an element of R, and n be a natural number. We
introduce the notation anpoly(a, n) as a synonym of seq(n, a).

Let R be a non degenerated ring and a be a non zero element of R. One can
check that anpoly(a, n) is non zero.

Let R be a ring and a be a zero element of R. Observe that anpoly(a, n) is
zero.

Now we state the propositions:

(4) Let us consider a non degenerated ring R, and a non zero element a of
R. Then deg anpoly(a, n) = n.

(5) Let us consider a non degenerated ring R, and an element a of R. Then
LC anpoly(a, n) = a.

(6) Let us consider a non degenerated ring R, a non zero natural number n,
and elements a, x of R. Then eval(anpoly(a, n), x) = a · (xn).

(7) Let us consider a non degenerated ring R, and an element a of R. Then
anpoly(a, 0) = a�R.

(8) Let us consider a non degenerated ring R, and a non zero element n of
N. Then anpoly(1R, n) = rpoly(n, 0R).

(9) Let us consider a non degenerated commutative ring R, and non zero
elements a, b of R. Then b · (anpoly(a, n)) = anpoly(a · b, n).

(10) Let us consider a non degenerated commutative ring R, non zero ele-
ments a, b ofR, and natural numbers n,m. Then anpoly(a, n)∗anpoly(b,m)
= anpoly(a · b, n+m). The theorem is a consequence of (9).

(11) Let us consider a non degenerated ring R, and a non zero polynomial p
over R. Then LM(p) = anpoly(p(deg p),deg p).

(12) Let us consider a non degenerated commutative ringR. Then 〈0R, 1R〉n =
anpoly(1R, n).
Proof: Define P[natural number] ≡ 〈0R, 1R〉$1 = anpoly(1R, $1). P[0] by
[8, (15)]. For every natural number k, P[k]. �

3. More on Homomorphisms

Now we state the propositions:

(13) Let us consider a ring R, an R-homomorphic ring S, a homomorphism
h from R to S, an element a of R, and a natural number n. Then h(an) =
h(a)n.
Proof: Define P[natural number] ≡ h(a$1) = h(a)$1 . P[0] by [10, (8)].
For every natural number n, P[n]. �
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(14) Let us consider a ring R, an R-homomorphic ring S, and a homomor-
phism h from R to S. Then h(

∑
εα) = 0S , where α is the carrier of R.

Let us consider a ring R, an R-homomorphic ring S, a homomorphism h

from R to S, a finite sequence F of elements of R, and an element a of R. Now
we state the propositions:

(15) h(
∑

(〈a〉 a F )) = h(a) + h(
∑
F ).

(16) h(
∑

(F a 〈a〉)) = h(
∑
F ) + h(a).

(17) Let us consider a ring R, an R-homomorphic ring S, a homomorphism
h from R to S, and finite sequences F , G of elements of R. Then h(

∑
(F a

G)) = h(
∑
F ) + h(

∑
G).

(18) Let us consider a ring R, an R-homomorphic ring S, and a homomor-
phism h from R to S. Then h(

∏
εα) = 1S , where α is the carrier of R.

Let us consider a ring R, an R-homomorphic ring S, a homomorphism h

from R to S, a finite sequence F of elements of R, and an element a of R. Now
we state the propositions:

(19) h(
∏

(〈a〉 a F )) = h(a) · h(
∏
F ).

(20) h(
∏

(F a 〈a〉)) = h(
∏
F ) · h(a).

(21) Let us consider a ring R, an R-homomorphic ring S, a homomorphism
h from R to S, and finite sequences F , G of elements of R. Then h(

∏
(F a

G)) = h(
∏
F ) · h(

∏
G).

4. Lifting Homomorphisms from R to R[X]

Let R, S be rings, f be a function from PolyRing(R) into PolyRing(S), and
p be an element of the carrier of PolyRing(R). Observe that the functor f(p)
yields an element of the carrier of PolyRing(S). Let R be a ring, S be an R-
homomorphic ring, and h be an additive function from R into S. The functor
PolyHom(h) yielding a function from PolyRing(R) into PolyRing(S) is defined
by

(Def. 2) for every element f of the carrier of PolyRing(R) and for every natural
number i, (it(f))(i) = h(f(i)).

Let h be a homomorphism from R to S. Observe that PolyHom(h) is addi-
tive, multiplicative, and unity-preserving.

Let us consider a ring R, an R-homomorphic ring S, and a homomorphism
h from R to S. Now we state the propositions:

(22) (PolyHom(h))(0.R) = 0.S.

(23) (PolyHom(h))(1.R) = 1.S.
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Let us consider a ring R, an R-homomorphic ring S, a homomorphism h

from R to S, and elements p, q of the carrier of PolyRing(R). Now we state the
propositions:

(24) (PolyHom(h))(p+ q) = (PolyHom(h))(p) + (PolyHom(h))(q).

(25) (PolyHom(h))(p · q) = (PolyHom(h))(p) · (PolyHom(h))(q).

(26) Let us consider a ring R, an R-homomorphic ring S, a homomorphism h

from R to S, an element p of the carrier of PolyRing(R), and an element
b of R. Then (PolyHom(h))(b · p) = h(b) · (PolyHom(h))(p).

(27) Let us consider a ring R, an R-homomorphic ring S, a homomorphism h

from R to S, an element p of the carrier of PolyRing(R), and an element
a of R. Then h(eval(p, a)) = eval((PolyHom(h))(p), h(a)).
Proof: Define P[natural number] ≡ for every element p of the carrier
of PolyRing(R) for every element a of R such that len p = $1 holds
h(eval(p, a)) = eval((PolyHom(h))(p), h(a)). P[0] by [7, (5), (17)], [5, (6)],
(22). For every natural number k, P[k]. �

(28) Let us consider an integral domain R, an R-homomorphic integral do-
main S, a homomorphism h from R to S, an element p of the carrier
of PolyRing(R), and elements b, x of R. Then h(eval(b · p, x)) = h(b) ·
(eval((PolyHom(h))(p), h(x))). The theorem is a consequence of (27) and
(26).

LetR be a ring. One can check that there exists a ring which isR-homomorphic
and R-monomorphic and there exists a ring which is R-homomorphic and R-
isomorphic and every ring which is R-monomorphic is also R-homomorphic.

Let S be an R-homomorphic, R-monomorphic ring and h be a monomor-
phism of R and S. Note that PolyHom(h) is monomorphic.

Let S be an R-isomorphic, R-homomorphic ring and h be an isomorphism
between R and S. Let us note that PolyHom(h) is isomorphism.

Now we state the propositions:

(29) Let us consider a ring R, an R-homomorphic ring S, a homomorphism
h from R to S, and an element p of the carrier of PolyRing(R). Then
deg(PolyHom(h))(p) ¬ deg p.

(30) Let us consider a non degenerated ring R, an R-homomorphic ring S,
a homomorphism h from R to S, and a non zero element p of the carrier of
PolyRing(R). Then deg(PolyHom(h))(p) = deg p if and only if h(LC p) 6=
0S .

Let us consider a ring R, an R-monomorphic, R-homomorphic ring S, a mo-
nomorphism h of R and S, and an element p of the carrier of PolyRing(R). Now
we state the propositions:

(31) deg(PolyHom(h))(p) = deg p.
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(32) LM((PolyHom(h))(p)) = (PolyHom(h))(LM(p)). The theorem is a con-
sequence of (31).

(33) Let us consider a ring R, an R-homomorphic ring S, a homomorphism h

from R to S, an element p of the carrier of PolyRing(R), and an element
a of R. If a is a root of p, then h(a) is a root of (PolyHom(h))(p). The
theorem is a consequence of (27).

(34) Let us consider a ring R, an R-monomorphic, R-homomorphic ring S,
a monomorphism h of R and S, an element p of the carrier of PolyRing(R),
and an element a of R. Then a is a root of p if and only if h(a) is a root
of (PolyHom(h))(p). The theorem is a consequence of (27) and (33).

(35) Let us consider a ring R, an R-isomorphic, R-homomorphic ring S,
an isomorphism h between R and S, an element p of the carrier of PolyRing
(R), and an element b of S. Then b is a root of (PolyHom(h))(p) if and only
if there exists an element a of R such that a is a root of p and h(a) = b.
The theorem is a consequence of (27).

(36) Let us consider a ring R, an R-homomorphic ring S, a homomorphism
h from R to S, and an element p of the carrier of PolyRing(R). Then
Roots(p) ⊆ {a, where a is an element of R : h(a) ∈ Roots((PolyHom(h))
(p))}. The theorem is a consequence of (33).

(37) Let us consider a ring R, an R-monomorphic, R-homomorphic ring
S, a monomorphism h of R and S, and an element p of the carrier of
PolyRing(R). Then Roots(p) = {a, where a is an element of R : h(a) ∈
Roots((PolyHom(h))(p))}. The theorem is a consequence of (36) and (34).

(38) Let us consider a ring R, an R-isomorphic, R-homomorphic ring S,
an isomorphism h between R and S, and an element p of the carrier of
PolyRing(R). Then Roots((PolyHom(h))(p)) = {h(a), where a is
an element of R : a ∈ Roots(p)}. The theorem is a consequence of (35).

5. Kronecker’s Construction

In the sequel F denotes a field, p denotes an irreducible element of the carrier
of PolyRing(F ), f denotes an element of the carrier of PolyRing(F ), and a

denotes an element of F .
Let us consider F and p. The functor KroneckerField(F, p) yielding a field

is defined by the term

(Def. 3) PolyRing(F )/{p}–ideal.

The functor embedding(p) yielding a function from F into KroneckerField
(F, p) is defined by the term
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(Def. 4) (the canonical homomorphism of {p}–ideal into quotient field) · (the
canonical homomorphism of F into quotient field).

Let us observe that embedding(p) is additive, multiplicative, and unity-
preserving and embedding(p) is monomorphic and KroneckerField(F, p) is F -
homomorphic and F -monomorphic.

Let us consider f . The functor fp yielding an element of the carrier of
PolyRing(KroneckerField(F, p)) is defined by the term

(Def. 5) (PolyHom(embedding(p)))(f).

The functor KrRoot(p) yielding an element of KroneckerField(F, p) is defined
by the term

(Def. 6) [〈0F , 1F 〉]EqRel(PolyRing(F ),{p}–ideal).
Now we state the propositions:

(39) (embedding(p))(a) = [a�F ]EqRel(PolyRing(F ),{p}–ideal).

(40) (fp)(n) = [f(n)�F ]EqRel(PolyRing(F ),{p}–ideal). The theorem is a consequ-
ence of (39).

(41) eval(fp,KrRoot(p)) = [f ]EqRel(PolyRing(F ),{p}–ideal).
Proof: Set z = KrRoot(p). Define P[natural number] ≡ for every f such
that len f = $1 holds eval(fp, z) = [f ]EqRel(PolyRing(F ),{p}–ideal). For every
natural number k, P[k]. �

(42) KrRoot(p) is a root of pp. The theorem is a consequence of (41).

(43) If f is not constant, then there exists an irreducible element p of the car-
rier of PolyRing(F ) such that fp has roots. The theorem is a consequence
of (3) and (42).

(44) If embedding(p) is isomorphism, then p has roots. The theorem is a con-
sequence of (38) and (42).

(45) If p has no roots, then embedding(p) is not isomorphism.
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