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Partial Correctness of a Power Algorithm
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Poland

Summary. This work continues a formal verification of algorithms written
in terms of simple-named complex-valued nominative data [6],[8],[15],[11],[12],[13].
In this paper we present a formalization in the Mizar system [3],[1] of the partial
correctness of the algorithm:

i := val.1
j := val.2
b := val.3
n := val.4
s := val.5
while (i <> n)
i := i + j
s := s * b

return s

computing the natural n power of given complex number b, where variables i,
b, n, s are located as values of a V-valued Function, loc, as: loc/.1 = i,
loc/.3 = b, loc/.4 = n and loc/.5 = s, and the constant 1 is located in the
location loc/.2 = j (set V represents simple names of considered nominative
data [17]).

The validity of the algorithm is presented in terms of semantic Floyd-Hoare
triples over such data [9]. Proofs of the correctness are based on an inference sys-
tem for an extended Floyd-Hoare logic [2],[4] with partial pre- and post-conditions
[14],[16],[7],[5].
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Let D be a set and f1, f2, f3, f4, f5 be binominative functions of D. The
functor PP-composition(f1, f2, f3, f4, f5) yielding a binominative function of D
is defined by the term

(Def. 1) PP-composition(f1, f2, f3, f4) • f5.
From now on D denotes a non empty set, f1, f2, f3, f4, f5 denote binomi-

native functions of D, and p, q, r, t, w, u denote partial predicates of D.
Now we state the proposition:

(1) Unconditional composition rule for 5 programs:
Suppose 〈p, f1, q〉 is an SFHT of D and 〈q, f2, r〉 is an SFHT of D and
〈r, f3, w〉 is an SFHT of D and 〈w, f4, t〉 is an SFHT of D and 〈t, f5, u〉 is
an SFHT ofD and 〈∼ q, f2, r〉 is an SFHT ofD and 〈∼ r, f3, w〉 is an SFHT
of D and 〈∼ w, f4, t〉 is an SFHT of D and 〈∼ t, f5, u〉 is an SFHT of D.
Then 〈p,PP-composition(f1, f2, f3, f4, f5), u〉 is an SFHT of D.

In the sequel d, v, v1 denote objects, V , A denote sets, i, j, b, n, s, z
denote elements of V , i1, j1, b1, n1, s1 denote objects, d1, L2, L3, L1, L4, L5
denote non-atomic nominative data of V and A, and D2, D3, D1, D4, D5 denote
binominative functions over simple-named complex-valued nominative date of
V and A.

Now we state the propositions:

(2) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and D2 = i1 ⇒a and D3 = j1 ⇒a and D1 = b1 ⇒a and D4 =
n1 ⇒a and D5 = s1 ⇒a and L2 = d1∇iaD2(d1) and L3 = L2∇jaD3(L2) and
L1 = L3∇baD1(L3) and L4 = L1∇naD4(L1) and L5 = L4∇saD5(L4) and j1,
b1, n1, s1 ∈ dom d1 and d1 ∈ domD2 and s 6= n. Then L5(n) = L4(n).

(3) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and D2 = i1 ⇒a and D3 = j1 ⇒a and D1 = b1 ⇒a and D4 =
n1 ⇒a and D5 = s1 ⇒a and L2 = d1∇iaD2(d1) and L3 = L2∇jaD3(L2) and
L1 = L3∇baD1(L3) and L4 = L1∇naD4(L1) and L5 = L4∇saD5(L4) and j1,
b1, n1, s1 ∈ dom d1 and d1 ∈ domD2 and s 6= i. Then L5(i) = L4(i).

In the sequel f denotes a binominative function over simple-named complex-
valued nominative data of V and A, T denotes a nominative data with simple
names from V and complex values from A, loc denotes a V-valued function, and
val denotes a function.

Let us consider V , A, and loc. The functor power-loop-body(A, loc) yielding
a binominative function over simple-named complex-valued nominative data of
V and A is defined by the term

(Def. 2) Asg(loc/1)(addition(A, loc/1, loc/2)) • (Asg(loc/5)(multiplication(A, loc/5,
loc/3))).
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The functor power-main-loop(A, loc) yielding a binominative function over
simple-named complex-valued nominative data of V and A is defined by the
term

(Def. 3) WH(¬Equality(A, loc/1, loc/4), power-loop-body(A, loc)).

Let us consider val. The functor power-var-init(A, loc, val) yielding a bino-
minative function over simple-named complex-valued nominative data of V and
A is defined by the term

(Def. 4) PP-composition(Asg(loc/1)(val(1)⇒a),Asg(loc/2)(val(2)⇒a),
Asg(loc/3)(val(3)⇒a),Asg(loc/4)(val(4)⇒a),Asg(loc/5)(val(5)⇒a)).

The functor power-main-part(A, loc, val) yielding a binominative function
over simple-named complex-valued nominative data of V and A is defined by
the term

(Def. 5) power-var-init(A, loc, val) • (power-main-loop(A, loc)).

Let us consider z. The functor power-program(A, loc, val, z) yielding a bino-
minative function over simple-named complex-valued nominative data of V and
A is defined by the term

(Def. 6) power-main-part(A, loc, val) • (Asgz((loc/5)⇒a)).
In the sequel n0 denotes a natural number and b0 denotes a complex number.
Let us consider V , A, val, b0, n0, and d. We say that b0, n0 and d constitute

a valid input for the power w.r.t. V , A and val if and only if

(Def. 7) there exists a non-atomic nominative data d1 of V and A such that d =
d1 and {val(1), val(2), val(3), val(4), val(5)} ⊆ dom d1 and d1(val(1)) =
0 and d1(val(2)) = 1 and d1(val(3)) = b0 and d1(val(4)) = n0 and
d1(val(5)) = 1.

The functor valid-power-input(V,A, val, b0, n0) yielding a partial predicate
over simple-named complex-valued nominative data of V and A is defined by

(Def. 8) dom it = NDSC(V,A) and for every object d such that d ∈ dom it holds
if b0, n0 and d constitute a valid input for the power w.r.t. V , A and val,
then it(d) = true and if b0, n0 and d do not constitute a valid input for
the power w.r.t. V , A and val, then it(d) = false.

Let us observe that valid-power-input(V,A, val, b0, n0) is total.
Let us consider z and d. We say that b0, n0 and d constitute a valid output

for the power w.r.t. A and z if and only if

(Def. 9) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and z ∈ dom d1 and d1(z) = b0n0 .

The functor valid-power-output(A, z, b0, n0) yielding a partial predicate over
simple-named complex-valued nominative data of V and A is defined by
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(Def. 10) dom it = {d, where d is a nominative data with simple names from V
and complex values from A : d ∈ dom(z ⇒a)} and for every object d
such that d ∈ dom it holds if b0, n0 and d constitute a valid output for
the power w.r.t. A and z, then it(d) = true and if b0, n0 and d do not
constitute a valid output for the power w.r.t. A and z, then it(d) = false.

Let us consider loc and d. We say that b0, n0 and d constitute a valid invariant
for the power w.r.t. A and loc if and only if

(Def. 11) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and {loc/1, loc/2, loc/3, loc/4, loc/5} ⊆ dom d1 and d1(loc/2) = 1 and
d1(loc/3) = b0 and d1(loc/4) = n0 and there exists a complex number S and
there exists a natural number I such that I = d1(loc/1) and S = d1(loc/5)
and S = b0I .

The functor PP-composition(A, loc, b0, n0) yielding a partial predicate over
simple-named complex-valued nominative data of V and A is defined by

(Def. 12) dom it = NDSC(V,A) and for every object d such that d ∈ dom it holds
if b0, n0 and d constitute a valid invariant for the power w.r.t. A and loc,
then it(d) = true and if b0, n0 and d do not constitute a valid invariant
for the power w.r.t. A and loc, then it(d) = false.

Observe that PP-composition(A, loc, b0, n0) is total.
Let us consider val. We say that loc and val are compatible w.r.t. 5 locations

if and only if

(Def. 13) val(5) 6= loc/4 and val(5) 6= loc/3 and val(5) 6= loc/2 and val(5) 6= loc/1
and val(4) 6= loc/3 and val(4) 6= loc/2 and val(4) 6= loc/1 and val(3) 6=
loc/2 and val(3) 6= loc/1 and val(2) 6= loc/1.

Now we state the propositions:

(4) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and loc/1,loc/2,loc/3,loc/4,loc/5 are mutually different and loc and
val are compatible w.r.t. 5 locations. Then 〈valid-power-input(V,A, val, b0,
n0), power-var-init(A, loc, val),PP-composition(A, loc, b0, n0)〉 is an SFHT
of NDSC(V,A).
Proof: Set i = loc/1. Set j = loc/2. Set b = loc/3. Set n = loc/4. Set
s = loc/5. Set i1 = val(1). Set j1 = val(2). Set b1 = val(3). Set n1 =
val(4). Set s1 = val(5). Set I = valid-power-input(V,A, val, b0, n0). Set
i2 = PP-composition(A, loc, b0, n0). Set D2 = i1 ⇒a. Set D3 = j1 ⇒a. Set
D1 = b1 ⇒a. Set D4 = n1 ⇒a. Set D5 = s1 ⇒a. Set T1 = SP(i2, D5, s).
Set S1 = SP(T1, D4, n). Set R1 = SP(S1, D1, b). Set Q1 = SP(R1, D3, j).
Set P1 = SP(Q1, D2, i). I |= P1 by [6, (39)], [8, (9)], [10, (4)]. �

(5) Suppose V is not empty and A is complex containing and V is without
nonatomic nominative data w.r.t. A and loc/1,loc/2,loc/3,loc/4,loc/5 are
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mutually different. Then 〈PP-composition(A, loc, b0, n0),power-loop-body
(A, loc),PP-composition(A, loc, b0, n0)〉 is an SFHT of NDSC(V,A).

(6) 〈∼ PP-composition(A, loc, b0, n0),power-loop-body(A, loc),
PP-composition(A, loc, b0, n0)〉 is an SFHT of NDSC(V,A).

(7) Suppose V is not empty and A is complex containing and V is without
nonatomic nominative data w.r.t. A and loc/1,loc/2,loc/3,loc/4,loc/5 are
mutually different. Then 〈PP-composition(A, loc, b0, n0), power-main-loop
(A, loc),Equality(A, loc/1, loc/4)∧PP-composition(A, loc, b0, n0)〉 is an SF-
HT of NDSC(V,A). The theorem is a consequence of (5) and (6).

(8) Suppose V is not empty and A is complex containing and V is witho-
ut nonatomic nominative data w.r.t. A and loc/1,loc/2,loc/3,loc/4,loc/5 are
mutually different and loc and val are compatible w.r.t. 5 locations. Then
〈valid-power-input(V,A, val, b0, n0), power-main-part(A, loc, val),Equality
(A, loc/1, loc/4)∧PP-composition(A, loc, b0, n0)〉 is an SFHT of NDSC(V,A).
The theorem is a consequence of (4) and (7).

(9) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and for every T , T is a value on loc/1 and for every T , T is a value
on loc/4. Then Equality(A, loc/1, loc/4)∧PP-composition(A, loc, b0, n0) |=
SP(valid-power-output(A, z, b0, n0), (loc/5)⇒a, z).
Proof: Set i = loc/1. Set j = loc/2. Set b = loc/3. Set n = loc/4. Set
s = loc/5. SetD5 = s⇒a. Consider d1 being a non-atomic nominative data
of V and A such that d = d1 and {i, j, b, n, s} ⊆ dom d1 and d1(n) = n0
and d1(b) = b0 and there exists a complex number S and there exists
a natural number I such that I = d1(i) and S = d1(s) and S = b0I .
Reconsider d2 = d as a nominative data with simple names from V and
complex values from A. Set L = d2∇zaD5(d2). b0, n0 and L constitute a
valid output for the power w.r.t. A and z. �

(10) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and for every T , T is a value on loc/1 and for every T , T is a value
on loc/4. Then 〈Equality(A, loc/1, loc/4) ∧ PP-composition(A, loc, b0, n0),
Asgz((loc/5)⇒a), valid-power-output(A, z, b0, n0)〉 is an SFHT of NDSC(V,
A). The theorem is a consequence of (9).

(11) Suppose for every T , T is a value on loc/1 and for every T , T is a value on
loc/4. Then 〈∼ (Equality(A, loc/1, loc/4)∧PP-composition(A, loc, b0, n0)),
Asgz((loc/5)⇒a), valid-power-output(A, z, b0, n0)〉
is an SFHT of NDSC(V,A).

(12) Partial correctness of a POWER algorithm:
Suppose V is not empty and A is complex containing and V is without
nonatomic nominative data w.r.t. A and loc/1,loc/2,loc/3,loc/4,loc/5 are
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mutually different and loc and val are compatible w.r.t. 5 locations and
for every T , T is a value on loc/1 and for every T , T is a value on loc/4.
Then 〈valid-power-input(V,A, val, b0, n0),power-program(A, loc, val, z),
valid-power-output(A, z, b0, n0)〉 is an SFHT of NDSC(V,A). The theorem
is a consequence of (8), (10), and (11).
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