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Summary. In [3] the existence of the Cantor normal form of ordinals was
proven in the Mizar system [6]. In this article its uniqueness is proven and then
used to formalize the natural sum of ordinals.
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0. INTRODUCTION

It is well known that any ordinal number « can be uniquely written as

k
a= Z niwﬂ",
i=1

where k is a natural number, ny,...,n; are positive integers and §1 > ... > G
are ordinal numbers. This representation, usually called the Cantor Normal
Form, has been formalized as the tuple (njw?, ..., npw®) in [3] and the exi-
stence of such a sequence that sums up to a given ordinal a has been proven in
the same, but the uniqueness was omitted.

The basic proof idea for the uniqueness is well known (cf. [1], [2], [4], [5], [8]).
This article provides a variant which utilizes the additional closure of ordinals,
i.e. that any ordinals «, 3,y with «, 8 € w7 also satisfy o+ 3 € w?. Usually the
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additional closure is proven using the uniqueness in the literature, but here the
additional closure is proven first by using theorems from [3]. Other theorems of
this article include:

e For ordinals o, 8 with 1 € « € B holds B+ a € af € Y€ (517 a.
e Decreasing ordinal sequences with the same range are equal.

In the last section of the article the natural sum or Hessenberg sum (cf. [2],
[5]) of two ordinals «, 3, denoted by a@® 3, is formalized using the Cantor Normal
Form. The concept of bags, as used to formalize polynomials in Mizar (cf. [7]),
couldn’t easily be applied in this case since there is no set of all ordinals, so
it wasn’t used here. The chosen definition of the natural sum turned out to be
slightly sophisticated, leading to a rather long proof of its monotonicity property,
while the proofs of the other shown properties are straightforward.

1. PRELIMINARIES

Now we state the proposition:
(1) Let us consider a set X. Then X Nsucc X = X.

Let A be an increasing sequence of ordinal numbers and a be an ordinal
number. Let us observe that Ala is increasing.
Now we state the propositions:

(2) Let us consider an ordinal number a. Then a +a =2 - a.

(3) Let us consider ordinal numbers a, b. If 1 € a and a € b, then b+a € a-b.
The theorem is a consequence of (2).
(4) Let us consider an ordinal number a. Then a - a = a?.
Let us consider ordinal numbers a, b. Now we state the propositions:
(5) Ifl€aandachb,then a-be b The theorem is a consequence of (4).
(6) If1€aandac€b,then b* € b17a.
Let us observe that there exists a sequence of ordinal numbers which is
infinite.
Now we state the propositions:

(7) Let us consider transfinite sequences A, B. Suppose A ™ B is ordinal
yielding. Then

(i) A is ordinal yielding, and
(ii) B is ordinal yielding.
(8) Let us consider ordinal numbers a, b. If a € b, then b-exponent(a) = 0.

Let us consider ordinal numbers a, b, c. Now we state the propositions:



(9)
(10)

NATURAL ADDITION OF ORDINALS

If a C ¢, then b-exponent(a) C b-exponent(c).
If0€aand1e€band a e b then b-exponent(a) € c.
PROOF: b-exponent(a) C c. b-exponent(a) # c. O

Let us note that every sequence of ordinal numbers which is decreasing is

also one-to-one. Let A be a decreasing transfinite sequence and a be an ordinal
number. One can verify that Ala is decreasing.

Let A be a non-decreasing transfinite sequence. One can verify that Afa is

non-decreasing. Let A be a non-increasing transfinite sequence. One can verify
that Afa is non-increasing.

Now we state the propositions:

(11)

(12)

Let us consider finite sequences A, B of ordinal numbers. Then > A™B =
YA+ B.
PROOF: Define Plnatural number| = for every finite sequences A, B of
ordinal numbers such that dom B = $; holds > A~ B = > A+ Y B.
P[0]. For every natural number n such that P[n| holds P[n+ 1]. For every
natural number n, P[n]. O

Let us consider ordinal numbers a, b. Then }_(a,b) = a+b. The theorem
is a consequence of (11).

Let A be a non empty, non-empty, finite sequence of ordinal numbers. Let

us observe that > A is non empty.

Let B be a finite sequence of ordinal numbers. Note that > A ™ B is non

empty and > B ™ A is non empty.

Now we state the propositions:

(13)
(14)

(15)

Let us consider an ordinal number a, and a natural number n. Then
Sn——a=mn-a.

Let us consider a finite sequence A of ordinal numbers, and an ordinal
number a. Then > Ala C 3" A.

Let us consider finite sequences A, B of ordinal numbers. Suppose dom A

C dom B and for every object a such that a € dom A holds A(a) C B(a).
Then > AC > B.
PROOF: Set a = dom A. Consider f1 being a sequence of ordinal numbers
such that > A = last f; and dom f; = succdom A and f1(0) = 0 and for
every natural number n such that n € dom A holds fi(n+ 1) = fi(n) +
A(n). Consider f2 being a sequence of ordinal numbers such that )~ Bla =
last fo and dom fo = succdom(B[a) and f2(0) = 0 and for every natural
number n such that n € dom(BJa) holds fa(n + 1) = fa(n) + (Bla)(n).
Define P[natural number| = if §; € succa, then f1($1) C f2($1). For every
natural number n such that P[n] holds P[n+1]. For every natural number
n, Pln]. > Bla C Y. B. O
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(16) Let us consider a Cantor normal form sequence A of ordinal numbers.
Suppose A # ). Then there exists a Cantor normal form sequence B of
ordinal numbers and there exists a Cantor component ordinal number a
such that A = B ™ (a). The theorem is a consequence of (7).

Let A be a Cantor normal form sequence of ordinal numbers and n be
a natural number. Let us observe that A[n is Cantor normal form and A, is
Cantor normal form and every transfinite sequence which is natural-valued is
also ordinal yielding and every natural number which is limit ordinal is also zero
and there exists an ordinal number which is non limit ordinal.

Let n, m be natural numbers. We identify max(n, m) with nUm. We identify
min(n, m) with nNm.

2. ABoOUT THE CANTOR NORMAL FORM

Now we state the proposition:

(17) Let us consider ordinal numbers a, b. Then a + b = b if and only if
w-a Cb. The theorem is a consequence of (2).

Let us consider a non empty, Cantor normal form sequence A of ordinal
numbers and an object a. Now we state the propositions:

(18) If @ € dom A, then w-exponent(last A) C w-exponent(A(a)). The the-
orem is a consequence of (16).

(19) If a € dom A, then w-exponent(A(a)) C w-exponent(A(0)).

(20) Let us consider non empty, Cantor normal form sequences A, B of ordinal
numbers. Suppose w-exponent(B(0)) € w-exponent(last A). Then A" B is
Cantor normal form.

PROOF: For every ordinal numbers a, b such that a € band b € dom(A™B)
holds w-exponent((A ™ B)(b)) € w-exponent((A ~ B)(a)) by [9, (20)]. O

(21) Let us consider decreasing sequences A, B of ordinal numbers. If rng A =

rng B, then A = B.
PROOF: Define P[natural number] = for every decreasing sequences A, B
of ordinal numbers such that len A = $; and rng A = rng B holds A = B.
P[0]. For every natural number n such that P[n| holds P[n+ 1]. For every
natural number n, P[n]. O
Let a be an ordinal number. Let us observe that w® is Cantor component.
Let n be a non zero natural number. Let us note that n - w® is Cantor com-
ponent and every natural number which is non zero is also Cantor component.
Let ¢ be a Cantor component ordinal number. Let us observe that (c) is
Cantor normal form.
Now we state the proposition:
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(22) Let us consider Cantor component ordinal numbers ¢, d.
Suppose w-exponent(d) € w-exponent(c). Then (c¢,d) is Cantor normal
form. The theorem is a consequence of (20).

Let a be a non empty ordinal number and m be a non zero natural number.
Note that (w®,m) is Cantor normal form.

Let n be a non zero natural number. Observe that (n - w® m) is Cantor
normal form.

Now we state the proposition:

(23) Let us consider Cantor component ordinal numbers ¢, d, e. Suppo-
se w-exponent(d) € w-exponent(c) and w-exponent(e) € w-exponent(d).
Then (c,d,e) is Cantor normal form. The theorem is a consequence of
(22) and (20).

Let us consider a non empty, Cantor normal form sequence A of ordinal
numbers, an ordinal number b, and a non zero natural number n. Now we state
the propositions:

(24) If b € w-exponent(last A), then A" (n -w®) is Cantor normal form. The
theorem is a consequence of (20).

(25) If w-exponent(last A) # 0, then A ~ (n) is Cantor normal form. The
theorem is a consequence of (24).

(26) If w-exponent(A(0)) € b, then (n-w’) ~ A is Cantor normal form. The
theorem is a consequence of (20).

(27) Let us consider ordinal numbers a1, ag, b. If a1, as € wb, then a1 +ay € wb.

(28) Let us consider a finite sequence A of ordinal numbers, and an ordi-
nal number b. Suppose for every ordinal number a such that a € dom A
holds A(a) € wb. Then 3" A € w’. The theorem can be shown by natural
induction and (27).

(29) Let us consider ordinal numbers a, b, and a natural number n. If a € w®,
then n - a € w’. The theorem is a consequence of (28) and (13).

(30) Let us consider a finite sequence A of ordinal numbers, and an ordi-
nal number a. Suppose (a) ~ A is Cantor normal form. Then Y A €
werexponent(a) The theorem is a consequence of (29) and (28).

(31) Let us consider a Cantor normal form sequence A of ordinal numbers.
Then w-exponent(}_ A) = w-exponent(A(0)).
PROOF: Define P[natural number| = for every Cantor normal form sequ-
ence A of ordinal numbers such that len A = $; holds w-exponent(}° A) =
w-exponent(A(0)). P[0]. For every natural number n such that P[n] holds
P[n + 1]. For every natural number n, P[n]. O

(32) Let us consider Cantor normal form sequences A, B of ordinal numbers.

143



144 SEBASTIAN KOCH

If> A=> B, then A=B.

PROOF: Define P[natural number| = for every Cantor normal form se-
quences A, B of ordinal numbers such that dom A U dom B = $; and
> A =3 B holds A = B. P[0]. For every natural number n such that
P[n] holds P[n + 1]. For every natural number n, Pln|. O

Let A be a sequence of ordinal numbers and b be an ordinal number. The
functor b-exponent(A) yielding a sequence of ordinal numbers is defined by

(Def. 1) domit = dom A and for every object a such that a € dom A holds
it(a) = b-exponent(A(a)).

Let A be an empty sequence of ordinal numbers.

One can check that b-exponent(A) is empty.

Let A be a non empty sequence of ordinal numbers. One can verify that
b-exponent(A) is non empty. Let A be a finite sequence of ordinal numbers. Let
us observe that b-exponent(A) is finite.

Let A be an infinite sequence of ordinal numbers. Let us observe that
b-exponent(A) is infinite.

Now we state the propositions:

(33) Let us consider ordinal numbers a, b.
Then b-exponent({a)) = (b-exponent(a)).

(34) Let us consider sequences A, B of ordinal numbers, and an ordinal num-
ber b. Then b-exponent(A ~ B) = (b-exponent(A)) ™ (b-exponent(B)).
(35) Let us consider a sequence A of ordinal numbers, and ordinal numbers

b, c. Then b-exponent(A|c) = (b-exponent(A))[ec.
(36) Let us consider a finite sequence A of ordinal numbers, an ordinal number
b, and a natural number n. Then b-exponent(A,) = (b-exponent(A)) .

Let A be a Cantor normal form sequence of ordinal numbers. Let us note
that w-exponent(A) is decreasing.

Now we state the propositions:

(37) Let us consider sequences A, B of ordinal numbers. Suppose A™ B is Can-
tor normal form. Then rng(w-exponent(A4)) misses rng(w-exponent(B)).
PROOF: rng(w-exponent(A)) N rng(w-exponent(B)) = (. O

(38) Let us consider a Cantor normal form sequence A of ordinal numbers.
Then 0 € rng(w-exponent(A)) if and only if A # () and w-exponent(last A)
= 0. The theorem is a consequence of (18) and (16).

Let a, b be ordinal numbers. The functor b-LC(a) yielding an ordinal number
is defined by the term
(Def. 2)  adiv brexponent(a)

Let us consider an ordinal number a. Now we state the propositions:
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(39) 0-LC(a) = a.

(40) 1-LC(a) = a.

(41) Let us consider an ordinal number b. Then b-LC(0) = 0.

(42) Let us consider ordinal numbers a, b. If a € b, then b-LC(a) = a. The

theorem is a consequence of (8).

(43) Let us consider an ordinal number b. Then b-LC(1) = 1. The theorem
is a consequence of (42), (40), and (39).

(44) Let us consider ordinal numbers a, b, c. If ¢ € b, then b-LC(c - b*) = c.

(45) Let us consider ordinal numbers a, b. If 1 € b, then b-LC(b%) = 1. The
theorem is a consequence of (44).

Let ¢ be a Cantor component ordinal number. Observe that w-LC(c) is
natural and non empty.
Now we state the proposition:

(46) Let us consider a Cantor component ordinal number c.
Then ¢ = (w-LC(c)) - w ePonent(c) The theorem is a consequence of (44).

Let A be a sequence of ordinal numbers and b be an ordinal number. The
functor b-LC(A) yielding a sequence of ordinal numbers is defined by

(Def. 3) domit = dom A and for every object a such that ¢ € dom A holds
it(a) = b-LC(A(a)).

Let A be an empty sequence of ordinal numbers. Let us observe that b-LC(A)
is empty. Let A be a non empty sequence of ordinal numbers. Observe that
b-LC(A) is non empty.

Let A be a finite sequence of ordinal numbers. Let us note that b-LC(A)
is finite. Let A be an infinite sequence of ordinal numbers. Let us note that
b-LC(A) is infinite. Now we state the propositions:

(47) Let us consider ordinal numbers a, b. Then b-LC((a)) = (b-LC(a)).

(48) Let us consider sequences A, B of ordinal numbers, and an ordinal num-
ber b. Then b-LC(A ™ B) = (b-LC(A)) ~ (b-LC(B)).

(49) Let us consider a sequence A of ordinal numbers, and ordinal numbers
b, c. Then b-LC(Alc) = (b-LC(A))]c.

(50) Let us consider a finite sequence A of ordinal numbers, an ordinal number
b, and a natural number n. Then b-LC(A4),) = (b-LC(A)) .

Let A be a Cantor normal form sequence of ordinal numbers and a be an ob-
ject. Note that (w-LC(A))(a) is natural and w-LC(A) is natural-valued and
non-empty.

Let us consider a Cantor normal form sequence A of ordinal numbers and
an object a. Now we state the propositions:
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(51) Ifa € dom A, then A(a) = (w-LC(A(a))) - ww exporent(A(@)  The theorem
is a consequence of (46).

(52) If a € dom A, then A(a) = (w-LC(A))(a) - wexporent(4)(@)  The the-
orem is a consequence of (51).

(53) Let us consider a decreasing sequence A of ordinal numbers, and a natural-
valued, non-empty sequence B of ordinal numbers. Suppose dom A =
dom B. Then there exists a Cantor normal form sequence C of ordinal
numbers such that

(i) w-exponent(C) = A, and
(ii) w-LC(C) = B.
PROOF: Define F(ordinal number) = B($;) - wA®). Consider C' being

a sequence of ordinal numbers such that dom C' = dom A and for every
ordinal number a such that a € dom A holds C(a) = F(a). O

(54) Let us consider Cantor normal form sequences A, B of ordinal numbers.
Suppose w-exponent(A) = w-exponent(B) and w-LC(A) = w-LC(B).
Then A = B. The theorem is a consequence of (52).

Let a be an ordinal number. The functor CNF(a) yielding a Cantor normal
form sequence of ordinal numbers is defined by

(Def. 4) > it = a.
Note that Y CNF(a) reduces to a. Let A be a Cantor normal form sequence

of ordinal numbers. One can check that CNF (3" A) reduces to A.
Now we state the proposition:

(55) CNF(0) = 0.
Let a be an empty ordinal number. Note that CNF(a) is empty.
Let a be a non empty ordinal number. Note that CNF(a) is non empty.
Now we state the propositions:

(56) Let us consider an ordinal number a, and a non zero natural number n.
Then CNF(n - w*) = (n - w%).

(57) Let us consider a Cantor component ordinal number a. Then CNF(a) =
().

(58) Let us consider a non zero natural number n. Then CNF(n) = (n).

(59) Let us consider a non empty ordinal number a, and non zero natural
numbers n, m. Then CNF(n - w* + m) = (n - w?* m). The theorem is
a consequence of (12).

(60) Let us consider a non empty ordinal number @, an ordinal number b,
and a non zero natural number n. Suppose b € w-exponent(last CNF(a)).
Then CNF(a +n - w®) = CNF(a) "~ (n - w®). The theorem is a consequence
of (24).
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(61) Let us consider a non empty ordinal number a, and a non zero natural
number n. Suppose w-exponent(last CNF(a)) # 0. Then CNF(a + n) =
CNF(a) ™ (n). The theorem is a consequence of (60).

(62) Let us consider a non empty ordinal number a, an ordinal number b,
and a non zero natural number n. Suppose w-exponent((CNF(a))(0)) € b.
Then CNF(n-w® +a) = (n-wb) ~ CNF(a). The theorem is a consequence
of (26).

3. NATURAL ADDITION OF ORDINALS

Let a, b be ordinal numbers. The functor a ® b yielding an ordinal number
is defined by

(Def. 5) there exists a Cantor normal form sequence C' of ordinal numbers such
that ¢ = Y C and rng(w-exponent(C)) = rng(w-exponent(CNF(a))) U
rng(w-exponent(CNF(b))) and for every object d such that d € domC
holds:

if w-exponent(C(d)) € rng(w-exponent(CNF(a)))\rng(w-exponent(CNF
(b)), then w-LC(C(d)) = (w-LC(CNF(a)))(((w-exponent(CNF(a)))™1)
(w-exponent(C(d)))) and

if w-exponent(C(d)) € rng(w-exponent(CNF(b)))\rng(w-exponent(CNF
(a))), then w-LC(C(d)) = ( -LC(CNF(b)))(((w-exponent(CNF(b)))~1)
(w-exponent(C(d)))) and

if w-exponent(C(d)) € rng(w-exponent(CNF (a)))Nrng(w-exponent(CNF
(b))), then w-LC(C(d)) = ( -LC(CNF(a)))(((w-exponent(CNF(a))) 1)
(w-exponent(C(d)))) + (w-LC(CNF(b)))(((w-exponent(CNF(b)))~1)

(w-exponent(C'(d );))
One can verify that the functor is commutative.
Let us consider ordinal numbers a, b. Now we state the propositions:

(63) rng(w-exponent(CNF(a @ b))) =
rng(w-exponent(CNF(a))) U rng(w-exponent(CNF(b))).

(64) dom(CNF(a)) € dom(CNF(a @ b)). The theorem is a consequence of
(63).

Let us consider ordinal numbers a, b and an object d. Now we state the
propositions:

(65) Suppose d € dom(CNF(a @ b)) and w-exponent((CNF(a @ b))(d)) €
rng(w-exponent(CNF(a))) \ rng(w-exponent(CNF(b))). Then w-LC((CNF
(a®b))(d)) = (w-LC(CNF(a)))(((w-exponent(CNF(a))) 1) (w-exponent
((CNF(a ®b))(d))))-
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(66) Suppose d € dom(CNF(a @ b)) and w-exponent((CNF(a @ b))(d)) €
rng(w-exponent(CNF(b))) \ rng(w-exponent(CNF(a))). Then w-LC((CNF
(a ®b))(d)) = (w-LC(CNF(b)))(((w-exponent(CNF(b))) 1) (w-exponent
((CNF(a @ b))(d)))).

(67) Suppose d € dom(CNF(a @ b)) and w-exponent((CNF(a @ b))(d)) €
rng(w-exponent(CNF(a))) Nrng(w-exponent(CNF(b))). Then w-LC((CNF
(a®b))(d)) = (w-LC(CNF(a)))(((w-exponent(CNF(a)))~!)(w-exponent
((CNF(a @ b))(d)))) + (w-LC(CNF(b)))(((w-exponent(CNF (b))~ 1)
(w-exponent((CNF(a @ b))(d)))).

(68) Let us consider ordinal numbers a, b, ¢. Then (a @ b) ®c=a @ (b® ¢).

(69) Let us consider an ordinal number a. Then a &0 = a.

(70) Let us consider ordinal numbers a, b, and a natural number n. Suppose
w-exponent(a) C b. Then n-w?®a = n-wb+a. The theorem is a consequence
of (31), (69), (56), (33), (21), (47), (44), (51), and (52).

(71) Let us consider finite sequences A, B of ordinal numbers. Suppose A~ B
is Cantor normal form. Then > A® Y B=>Y A+ > B.
PROOF: Define Plnatural number| = for every finite sequences A, B of
ordinal numbers such that len A = $; and A ™ B is Cantor normal form
holds > A® Y B =3 A+ > B. P[0]. For every natural number n such
that P[n] holds P[n + 1]. For every natural number n, P[n]. O

(72) Let us consider ordinal numbers a, b. Suppose if a # 0, then w-exponent(b)
€ w-exponent(last CNF(a)). Then a @ b = a + b. The theorem is a conse-
quence of (69), (31), (20), and (71).

(73) Let us consider ordinal numbers a, b, and a natural number n. Suppose
if a # 0, then b C w-exponent(last CNF(a)). Then a @ n - w® = a +n - .
The theorem is a consequence of (69), (16), (70), (11), (71), (68), and (12).

(74) Let us consider an ordinal number a, and natural numbers n, m. Then
n-w*®m-w® = (n+m)-w® The theorem is a consequence of (69), (56),
and (73).

(75) Let us consider an ordinal number a, and a natural number n. Then
a ®n = a+ n. The theorem is a consequence of (73).

(76) Let us consider natural numbers n, m. Then n@&m = n+m. The theorem
is a consequence of (75).

Let n, m be natural numbers. We identify n + m with n & m. Now we state
the propositions:

(77) Let us consider an ordinal number a. Then a @ 1 = succ a. The theorem
is a consequence of (75).
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(78) Let us consider ordinal numbers a, b. Then a @ succb = succ(a ®b). The
theorem is a consequence of (77) and (68).

Let a be an empty ordinal number. Let us note that a ® a is empty.

Let a be a non empty ordinal number and b be an ordinal number. Let us
note that a @ b is non empty. Now we state the proposition:

(79) Let us consider an ordinal number a. Then a is limit ordinal if and only
if 0 ¢ rng(w-exponent(CNF(a))). The theorem is a consequence of (16),
(46), (38), (77), (58), (33), and (8).

Let a, b be limit ordinal ordinal numbers. Let us note that a @ b is limit
ordinal. Let a be an ordinal number and b be a non limit ordinal ordinal number.
One can check that a @ b is non limit ordinal.

Now we state the propositions:

(80) Let us consider ordinal numbers a, b, and a non zero natural number n.
Suppose n-w® C a and a € (n + 1) -w’. Then (CNF(a))(0) = n - w®.
Proovr: Consider ag being a Cantor component ordinal number, Ay being
a Cantor normal form sequence of ordinal numbers such that CNF(a) =
(ap) ™ Ap. b C w-exponent(a) C b. Reconsider m = w-LC((CNF(a))(0)) as
a natural number. (CNF(a))(0) =m -w’. m =n. O

(81) Let us consider ordinal numbers a, b. Suppose rng(w-exponent(CNF(a)))
= rng(w-exponent(CNF(b))). Let us consider an ordinal number ¢. Suppo-
se ¢ € dom(CNF(a)). Then (w-LC(CNF(a®b)))(c) = (w-LC(CNF(a)))(c)+
(w-LC(CNF(b)))(c). The theorem is a consequence of (21).

Let us consider ordinal numbers a, b. Now we state the propositions:

(82) (i) if w-exponent((CNF(a & b))(0)) € rng(w-exponent(CNF(a))), then
w-exponent((CNF(a @ b))(0)) = (w-exponent(CNF(a)))(0), and
(ii) if w-exponent((CNF(a @ b))(0)) € rng(w-exponent(CNF(b))), then
w-exponent((CNF(a @ b))(0)) = (w-exponent(CNF(b)))(0).
PROOF: Set B} = w-exponent(CNF(a)). Set Ey = w-exponent(CNF(b)).
Set Cyp = CNF(a & b). rng(w-exponent(Cp)) = rng Eq U rng Ey. Consider
x being an object such that z € dom Fy and Es(x) = w-exponent(Cp(0)).
z=0.0
(83) (i) if w-exponent((CNF(a @ 1))(0)) € rng(w-exponent(CNF(a))) \ rng
(w-exponent(CNF(b))), then (CNF(a @ 0))(0) = (CNF(a))(0), and
)

(ii) if w-exponent((CNF(a @ b))(0)) € rng(w-exponent(CNF(b))) \ rng
(w-exponent(CNF(a))), then (CNF(a @ b))(0) = (CNF(b))(0), and

(iii) if w-exponent((CNF(a @ b))(0)) € rng(w-exponent(CNF(a))) Nrng
(w-exponent(CNF(b))), then (CNF(a®b))(0) = (CNF(a))(0)+ (CNF
(0))(0)-
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The theorem is a consequence of (82), (51), and (52).

Let us consider ordinal numbers a, b and an object . Now we state the
propositions:
(84) (w-exponent(CNF(a)))(z) C (w-exponent(CNF(a @ b)))(x).
PROOF: Set E] = w-exponent(CNF(a)). Set Ey = w-exponent(CNF(b)).
Set Cp = CNF (a®b). Define P[ordinal number] = (w-exponent(Cy))($1) €
E1($1). There exists an ordinal number z such that P[z]. Consider y being
an ordinal number such that P[y] and for every ordinal number z such that
P[z] holds y C z. rng(w-exponent(Cy)) = rng E1Urng Fs. Consider z being
an object such that z € dom(w-exponent(Cp)) and (w-exponent(Cy))(z) =
Ei(y). z€y. O
(85) (ONF(a))(x) C (CNF(a & b))(x).
PROOF: Set E) = w-exponent(CNF(a)). Set Ey = w-exponent(CNF(b)).
Set L1 = w-LC(CNF(a)). Set Ly = w-LC(CNF(b)). Set Cy = CNF(a®b).
Consider C being a Cantor normal form sequence of ordinal numbers
such that a ® b = Y C and rng(w-exponent(C)) = rng E; U rng Fy and
for every object d such that d € domC holds if w-exponent(C(d)) €
rng By \ rng By, then w-LC(C(d)) = Li((E; ) (w-exponent(C(d)))) and
if w-exponent(C(d)) € rng F» \ rng B, then w-LC(C(d)) = La((Ex™ 1)
(w-exponent(C(d)))) and if w-exponent(C(d)) € rng E1 N rng Eo, then
w-LC(C(d)) = L1((BE1 1) (w-exponent(C(d)))) + La((Ey 1) (w-exponent
(C(d)).
dom(CNF(a)) € dom(CNF(a @ b)). Cy(x) = (w-LC(Cp))(z)-
wlwmexponent(Co))(®) (ONF(a))(z) = Li(z) - P ®). By (x) = (w-exponent
(Co))(@). O
Let us consider ordinal numbers a, b. Now we state the propositions:
(86) a C a@®b. The theorem is a consequence of (64), (85), and (15).
(87) w-exponent(a @ b) = (w-exponent(a)) U (w-exponent(b)). The theorem is
a consequence of (9), (86), (63), (82), and (31).

(88) Let us consider ordinal numbers a, b, ¢. If a, b € w® then a & b € w°.
The theorem is a consequence of (69), (10), and (87).

The scheme OrdinalCNFIndA deals with a unary predicate P and states
that

(Sch. 1) For every non empty ordinal number a, Pla]

provided

e for every ordinal number a and for every non zero natural number n,

Pln - w®] and
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e for every ordinal number a and for every non empty ordinal number
b and for every non zero natural number n such that P[b] and a ¢
rng(w-exponent(CNF(d))) holds P[b @ n - w?).

The scheme OrdinalCNFIndB deals with a unary predicate P and states
that
(Sch. 2) For every non empty ordinal number a, Pla]

provided
e for every ordinal number a, P[w*] and

e for every ordinal number a and for every non zero natural number n such

that P[n - w®| holds P[(n + 1) - w?] and

e for every ordinal number ¢ and for every non empty ordinal number
b and for every non zero natural number n such that P[b] and a ¢
rng(w-exponent(CNF(d))) holds P[b @ n - w’].

The scheme Ordinal CNFIndC deals with a unary predicate P and states
that

(Sch. 3) For every non empty ordinal number a, P[a]

provided
e for every ordinal number a, Plw*] and

e for every ordinal number a and for every non empty ordinal number b such
that P[b] holds P[b & w?].

Now we state the propositions:

(89) Let us consider ordinal numbers a, b.
Suppose w-exponent(a) € w-exponent(b). Then a € W exponent(b),
PROOF: Define P[non empty ordinal number] = for every ordinal number
b such that w-exponent($;) € w-exponent(b) holds $; € ww exponent(b),
For every ordinal number ¢ and for every non zero natural number n,
P[n - we]. For every ordinal number ¢ and for every non empty ordinal
number d and for every non zero natural number n such that P[d] and
¢ ¢ rng(w-exponent(CNF(d))) holds P[d @ n - we]. For every non empty
ordinal number a, Pla]. O

(90) Let us consider non empty ordinal numbers a, b. Then w - a C b if and
only if w-exponent(a) € w-exponent(b). The theorem is a consequence of
(89) and (29).

Let us consider ordinal numbers a, b. Now we state the propositions:
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(91) If w-exponent(a) € w-exponent(b), then b —a = b. The theorem is a con-
sequence of (90), (17), and (89).

(92) a+bCadb.
PROOF: Define P[natural number| = for every non empty ordinal numbers
a, b such that len CNF(a) = $; holds a + b C a & b. P[1]. For every non
zero natural number n such that P[n] holds P[n + 1]. For every non zero
natural number n, P[n]. O

Let us consider ordinal numbers a, b, c. Now we state the propositions:
(93) Ifa®db=a®c, then b=c.
PROOF: Set Fy = w-exponent(CNF(b)). Set F3 = w-exponent(CNF(c)).
Set Ly = w-LC(CNF(b)). Set L3 = w-LC(CNF(c¢)). rng E2 = rng Es.
Ey = Ej5. For every object = such that € dom Lo holds Lo(z) = L3(x).
> CNF(b) = > CNF(c¢). O
(94) If b € c, then a ®b € a® c. The theorem is a consequence of (69), (11),
(71), and (68).
(95) If b C e, then a @b C a® c. The theorem is a consequence of (94).
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