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Poland

Summary. This is the third part of a four-article series containing a Mizar
[3], [1], [2] formalization of Kronecker’s construction about roots of polynomials in
field extensions, i.e. that for every field F and every polynomial p ∈ F [X]\F there
exists a field extension E of F such that p has a root over E. The formalization
follows Kronecker’s classical proof using F [X]/<p> as the desired field extension
E [6], [4], [5].

In the first part we show that an irreducible polynomial p ∈ F [X]\F has
a root over F [X]/<p>. Note, however, that this statement cannot be true in
a rigid formal sense: We do not have F ⊆ F [X]/< p> as sets, so F is not
a subfield of F [X]/<p>, and hence formally p is not even a polynomial over
F [X]/<p>. Consequently, we translate p along the canonical monomorphism
φ : F −→ F [X]/<p> and show that the translated polynomial φ(p) has a root
over F [X]/<p>.

Because F is not a subfield of F [X]/<p> we construct in the second part the
field (E \φF )∪F for a given monomorphism φ : F −→ E and show that this field
both is isomorphic to F and includes F as a subfield. In the literature this part of
the proof usually consists of saying that “one can identify F with its image φF in
F [X]/<p> and therefore consider F as a subfield of F [X]/<p>”. Interestingly, to
do so we need to assume that F ∩E = ∅, in particular Kronecker’s construction
can be formalized for fields F with F ∩ F [X] = ∅.

Surprisingly, as we show in this third part, this condition is not automatically
true for arbitrary fields F : With the exception of Z2 we construct for every field
F an isomorphic copy F ′ of F with F ′ ∩ F ′[X] 6= ∅. We also prove that for
Mizar’s representations of Zn, Q and R we have Zn ∩ Zn[X] = ∅, Q ∩ Q[X] = ∅
and R ∩ R[X] = ∅, respectively.

In the fourth part we finally define field extensions: E is a field extension
of F iff F is a subfield of E. Note, that in this case we have F ⊆ E as sets,
and thus a polynomial p over F is also a polynomial over E. We then apply the
construction of the second part to F [X]/<p> with the canonical monomorphism
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φ : F −→ F [X]/<p>. Together with the first part this gives – for fields F with
F ∩ F [X] = ∅ – a field extension E of F in which p ∈ F [X]\F has a root.
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1. Preliminaries

Now we state the propositions:

(1) Let us consider a natural number n, and an object x. If n = {x}, then
x = 0.

(2) Let us consider a natural number n, and objects x, y. If n = {x, y} and
x 6= y, then x = 0 and y = 1 or x = 1 and y = 0.

(3) Let us consider a natural number n. If 1 < n, then 0Z/n = 0.

(4) 1Z/2 + 1Z/2 = 0Z/2. The theorem is a consequence of (3).

(5) Let us consider a ring R, and a non zero natural number n. Then
powerR(0R, n) = 0R.

One can verify that Z/3 is non degenerated and almost left invertible and
there exists a field which is finite and there exists a field which is infinite.

Let L be a non empty double loop structure. We say that L is almost trivial
if and only if

(Def. 1) for every element a of L, a = 1L or a = 0L.

Observe that every ring which is degenerated is also almost trivial and there
exists a field which is non almost trivial.

Now we state the proposition:

(6) Let us consider a ring R. Then R is almost trivial if and only if R is
degenerated or R and Z/2 are isomorphic. The theorem is a consequence
of (4).

Let R be a ring and a be an element of R. We say that a is trivial if and
only if

(Def. 2) a = 1R or a = 0R.

Let R be a non almost trivial ring. One can verify that there exists an element
of R which is non trivial.

Let R be a ring. We say that R is polynomial-disjoint if and only if

(Def. 3) ΩR ∩ ΩPolyRing(R) = ∅.

http://zbmath.org/classification/?q=cc:12E05
http://zbmath.org/classification/?q=cc:12F05
http://zbmath.org/classification/?q=cc:68T99
http://zbmath.org/classification/?q=cc:03B35
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2. Some Negative Results

Let R be a non almost trivial ring, x be a non trivial element of R, and o
be an object. The functor carr(x, o) yielding a non empty set is defined by the
term

(Def. 4) ΩR \ {x} ∪ {o}.
Let a, b be elements of carr(x, o). The functor addR(a, b) yielding an element

of carr(x, o) is defined by the term

(Def. 5)



(the addition of R)(x, x), if a = o and b = o and
(the addition of R)(x, x) 6= x,

(the addition of R)(a, x), if a 6= o and b = o and
(the addition of R)(a, x) 6= x,

(the addition of R)(x, b), if a = o and b 6= o and
(the addition of R)(x, b) 6= x,

(the addition of R)(a, b), if a 6= o and b 6= o and
(the addition of R)(a, b) 6= x,

o, otherwise.
The functor addR(x, o) yielding a binary operation on carr(x, o) is defined

by

(Def. 6) for every elements a, b of carr(x, o), it(a, b) = addR(a, b).

Let a, b be elements of carr(x, o). The functor multR(a, b) yielding an element
of carr(x, o) is defined by the term

(Def. 7)



(the multiplication of R)(x, x), if a = o and b = o and
(the multiplication of R)(x, x) 6= x,

(the multiplication of R)(a, x), if a 6= o and b = o and
(the multiplication of R)(a, x) 6= x,

(the multiplication of R)(x, b), if a = o and b 6= o and
(the multiplication of R)(x, b) 6= x,

(the multiplication of R)(a, b), if a 6= o and b 6= o and
(the multiplication of R)(a, b) 6= x,

o, otherwise.
The functor multR(x, o) yielding a binary operation on carr(x, o) is defined

by

(Def. 8) for every elements a, b of carr(x, o), it(a, b) = multR(a, b).

Let F be a non almost trivial field and x be a non trivial element of F . The
functor ExField(x, o) yielding a strict double loop structure is defined by

(Def. 9) the carrier of it = carr(x, o) and the addition of it = addR(x, o) and
the multiplication of it = multR(x, o) and the one of it = 1F and the zero
of it = 0F .
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One can check that ExField(x, o) is non degenerated and ExField(x, o) is
Abelian.

From now on o denotes an object, F denotes a non almost trivial field, and
x, a denote elements of F .

Let us consider a non trivial element x of F and an object o. Now we state
the propositions:

(7) If o /∈ ΩF , then ExField(x, o) is right zeroed and right complementable.

(8) If o /∈ ΩF , then ExField(x, o) is add-associative.

Let F be a non almost trivial field, x be a non trivial element of F , and o
be an object. One can verify that ExField(x, o) is commutative.

Let us consider a non trivial element x of F and an object o. Now we state
the propositions:

(9) If o /∈ ΩF , then ExField(x, o) is well unital.

(10) If o /∈ ΩF , then ExField(x, o) is associative.

(11) If o /∈ ΩF , then ExField(x, o) is distributive.

(12) If o /∈ ΩF , then ExField(x, o) is almost left invertible.

(13) Let us consider a non trivial element x of F , and a ring P . Suppose
P = ExField(x, 〈0F , 1F 〉). Then 〈0F , 1F 〉 ∈ ΩP ∩ ΩPolyRing(P ).

(14) There exists a field K such that ΩK ∩ ΩPolyRing(K) 6= ∅. The theorem is
a consequence of (7), (8), (10), (9), (12), (11), and (13).

In the sequel n denotes a non zero natural number.

(15) There exists a field K and there exists a polynomial p over K such that
deg p = n and p ∈ ΩK ∩ΩPolyRing(K). The theorem is a consequence of (7),
(8), (10), (9), (12), (11), and (5).

(16) There exists a field K and there exists an object x such that x /∈
rng(the canonical homomorphism of K into quotient field) and x ∈ ΩK ∩
ΩPolyRing(K). The theorem is a consequence of (7), (8), (10), (9), (12), (11),
and (13).

Let us note that there exists a field which is non polynomial-disjoint.
Let F be a non almost trivial field, x be a non trivial element of F , and o be

an object. The functor isoR(x, o) yielding a function from F into ExField(x, o)
is defined by

(Def. 10) it(x) = o and for every element a of F such that a 6= x holds it(a) = a.

One can check that isoR(x, o) is onto.
Now we state the propositions:

(17) Let us consider a non trivial element x of F , and an object o. If o /∈ ΩF ,
then isoR(x, o) is one-to-one.
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(18) Let us consider a non trivial element x of F , and an object u. Suppose
u /∈ ΩF . Then isoR(x, u) is additive, multiplicative, and unity-preserving.
The theorem is a consequence of (7), (10), (8), (9), and (11).

Let us consider a non almost trivial field F . Now we state the propositions:

(19) There exists a non polynomial-disjoint field K such that K and F are
isomorphic. The theorem is a consequence of (7), (8), (9), (10), (11), (12),
(13), and (18).

(20) There exists a non polynomial-disjoint field K and there exists a poly-
nomial p over K such that K and F are isomorphic and deg p = n and
p ∈ ΩK ∩ΩPolyRing(K). The theorem is a consequence of (7), (8), (10), (9),
(12), (11), (5), and (18).

3. An Intuitive “Solution”

Let R be a ring. We say that R is flat if and only if

(Def. 11) for every elements a, b of R, rk(a) = rk(b).

One can check that there exists a ring which is flat.
Now we state the proposition:

(21) Let us consider a flat ring R, and a polynomial p over R. Then p /∈ ΩR.

Note that every flat ring is polynomial-disjoint.

(22) Let us consider a non degenerated ring R. Suppose 0 ∈ the carrier of R.
Then R is not flat.

One can check that ZR is non flat and FQ is non flat and RF is non flat.
Let n be a non trivial natural number. One can verify that Z/n is non flat.

4. Some Positive Results

Now we state the proposition:

(23) Let us consider a ring R, a polynomial p over R, and a natural number
n. Then p 6= n.

Let n be a non trivial natural number. Let us observe that Z/n is polynomial-
disjoint and there exists a finite field which is polynomial-disjoint.

(24) Let us consider a ring R, a polynomial p over R, and an integer i. Then
p 6= i. The theorem is a consequence of (23).

One can verify that ZR is polynomial-disjoint.

(25) Let us consider a ring R, a polynomial p over R, and a rational number
r. Then p 6= r.
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Observe that FQ is polynomial-disjoint. Now we state the proposition:

(26) Let us consider a ring R, a polynomial p over R, and a real number r.
Then p 6= r.

Note that RF is polynomial-disjoint and there exists an infinite field which
is polynomial-disjoint.

Let R be a polynomial-disjoint ring. Let us observe that PolyRing(R) is
polynomial-disjoint.

Let F be a field and p be an element of ΩPolyRing(F ). One can check that
PolyRing(F )
{p}–ideal is polynomial-disjoint.

Let F be a polynomial-disjoint field and p be a non constant element of
the carrier of PolyRing(F ). One can check that PolyRing(p) is polynomial-
disjoint.
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