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Poland

Summary. This is the fourth part of a four-article series containing a
Mizar [3], [2], [1] formalization of Kronecker’s construction about roots of po-
lynomials in field extensions, i.e. that for every field F and every polynomial
p ∈ F [X]\F there exists a field extension E of F such that p has a root over
E. The formalization follows Kronecker’s classical proof using F [X]/<p> as the
desired field extension E [6], [4], [5].

In the first part we show that an irreducible polynomial p ∈ F [X]\F has
a root over F [X]/<p>. Note, however, that this statement cannot be true in
a rigid formal sense: We do not have F ⊆ F [X]/< p> as sets, so F is not
a subfield of F [X]/<p>, and hence formally p is not even a polynomial over
F [X]/<p>. Consequently, we translate p along the canonical monomorphism
φ : F −→ F [X]/<p> and show that the translated polynomial φ(p) has a root
over F [X]/<p>.

Because F is not a subfield of F [X]/<p> we construct in the second part the
field (E \φF )∪F for a given monomorphism φ : F −→ E and show that this field
both is isomorphic to F and includes F as a subfield. In the literature this part of
the proof usually consists of saying that “one can identify F with its image φF in
F [X]/<p> and therefore consider F as a subfield of F [X]/<p>”. Interestingly, to
do so we need to assume that F ∩E = ∅, in particular Kronecker’s construction
can be formalized for fields F with F ∩ F [X] = ∅.

Surprisingly, as we show in the third part, this condition is not automatically
true for arbitrary fields F : With the exception of Z2 we construct for every field
F an isomorphic copy F ′ of F with F ′ ∩ F ′[X] 6= ∅. We also prove that for
Mizar’s representations of Zn, Q and R we have Zn ∩ Zn[X] = ∅, Q ∩ Q[X] = ∅
and R ∩ R[X] = ∅, respectively.

In this fourth part we finally define field extensions: E is a field extension
of F iff F is a subfield of E. Note, that in this case we have F ⊆ E as sets,
and thus a polynomial p over F is also a polynomial over E. We then apply the

c© 2019 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)229

https://content.sciendo.com/view/journals/forma/forma-overview.xml
https://orcid.org/0000-0001-9587-8737
http://creativecommons.org/licenses/by-sa/3.0/


230 christoph schwarzweller

construction of the second part to F [X]/<p> with the canonical monomorphism
φ : F −→ F [X]/<p>. Together with the first part this gives – for fields F with
F ∩ F [X] = ∅ – a field extension E of F in which p ∈ F [X]\F has a root.
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1. Preliminaries

From now on K, F , E denote fields and R, S denote rings.
Now we state the proposition:

(1) K is a subfield of K.

Let R be a non degenerated ring. One can verify that every subring of R is
non degenerated.

Let R be a commutative ring. Note that every subring of R is commutative.
Let R be an integral domain. Let us observe that every subring of R is

integral domain-like.
Now we state the proposition:

(2) Let us consider a subring S of R, a finite sequence F of elements of R,
and a finite sequence G of elements of S. If F = G, then

∑
F =

∑
G.

2. Ring and Field Extensions

Let R, S be rings. We say that S is R-extending if and only if

(Def. 1) R is a subring of S.

Let R be a ring. Note that there exists a ring which is R-extending.
Let R be a commutative ring. One can check that there exists a commutative

ring which is R-extending.
Let R be an integral domain. One can verify that there exists an integral

domain which is R-extending.
Let F be a field. Let us observe that there exists a field which is F -extending.
Let R be a ring.
A ring extension of R is an R-extending ring. Let R be a commutative ring.
A commutative ring extension of R is an R-extending commutative ring. Let

R be an integral domain.
A domain ring extension of R is an R-extending integral domain. Let F be

a field.
An extension of F is an F -extending field. Now we state the propositions:
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(3) R is a ring extension of R.

(4) Every commutative ring is a commutative ring extension of R.

(5) Every integral domain is a domain ring extension of R.

(6) F is an extension of F .

(7) E is an extension of F if and only if F is a subfield of E.

One can check that CF is (RF)-extending and RF is (FQ)-extending and FQ
is (ZR)-extending.

Let R be a ring and S be a ring extension of R. One can check that every
ring extension of S is R-extending.

Let R be a commutative ring and S be a commutative ring extension of R.
One can verify that every commutative ring extension of S is R-extending.

Let R be an integral domain and S be a domain ring extension of R. Let us
observe that every domain ring extension of S is R-extending.

Let F be a field and E be an extension of F . Observe that every extension
of E is F -extending.

Let R be a non degenerated ring. Observe that every ring extension of R is
non degenerated.

3. Extensions of Polynomial Rings

Now we state the propositions:

(8) Let us consider a ring extension S of R. Then every polynomial over R
is a polynomial over S.

(9) Let us consider a subring R of S. Then every polynomial over R is
a polynomial over S.

(10) Let us consider a ring extension S ofR. Then the carrier of PolyRing(R) ⊆
the carrier of PolyRing(S). The theorem is a consequence of (8).

(11) If S is a ring extension of R, then 0PolyRing(S) = 0PolyRing(R).

(12) If S is a ring extension of R, then 0.S = 0.R. The theorem is a conse-
quence of (11).

(13) If S is a ring extension of R, then 1PolyRing(S) = 1PolyRing(R). The theorem
is a consequence of (12).

(14) Let us consider a ring extension S of R. Then 1.S = 1.R. The theorem
is a consequence of (13).

(15) Let us consider a ring extension S of R, polynomials p, q over R, and
polynomials p1, q1 over S. If p = p1 and q = q1, then p+ q = p1 + q1.

(16) Let us consider a ring extension S of R. Then the addition of PolyRing
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(R) = (the addition of PolyRing(S)) � (the carrier of PolyRing(R)). The
theorem is a consequence of (10) and (15).

(17) Let us consider a ring extension S of R, polynomials p, q over R, and
polynomials p1, q1 over S. If p = p1 and q = q1, then p ∗ q = p1 ∗ q1. The
theorem is a consequence of (2).

(18) Suppose S is a ring extension of R. Then the multiplication of PolyRing
(R) = (the multiplication of PolyRing(S)) � (the carrier of PolyRing(R)).
The theorem is a consequence of (10) and (17).

Let R be a ring and S be a ring extension of R. One can verify that
PolyRing(S) is (PolyRing(R))-extending. Now we state the propositions:

(19) Let us consider a ring R, and a ring extension S of R. Then PolyRing(S)
is a ring extension of PolyRing(R).

(20) Let us consider a ring extension S of R, an element p of the carrier of
PolyRing(R), and an element q of the carrier of PolyRing(S). If p = q,
then deg p = deg q. The theorem is a consequence of (11).

(21) Let us consider a non degenerated ring R, a ring extension S of R,
an element a of R, and an element b of S. If a = b, then rpoly(1, a) =
rpoly(1, b). The theorem is a consequence of (10).

4. Evaluation of Polynomials in Ring Extensions

Now we state the propositions:

(22) Let us consider an element a of S. Suppose S is a ring extension of R.
Then ExtEval(0.R, a) = 0S .

(23) Let us consider a non degenerated ring R, a ring extension S of R, and
an element a of S. Then ExtEval(1.R, a) = 1S .

(24) Let us consider a ring extension S of R, an element a of S, and polyno-
mials p, q over R. Then ExtEval(p+ q, a) = ExtEval(p, a) + ExtEval(q, a).

(25) Let us consider a commutative ring R, a commutative ring extension S of
R, an element a of S, and polynomials p, q over R. Then ExtEval(p∗q, a) =
ExtEval(p, a) · ExtEval(q, a).

(26) Let us consider a ring extension S of R, an element p of the carrier
of PolyRing(R), an element q of the carrier of PolyRing(S), and an ele-
ment a of S. If p = q, then ExtEval(p, a) = eval(q, a). The theorem is
a consequence of (11).

(27) Let us consider a ring extension S of R, an element p of the carrier of
PolyRing(R), an element q of the carrier of PolyRing(S), an element a of
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R, and an element b of S. If q = p and b = a, then eval(q, b) = eval(p, a).
The theorem is a consequence of (26).

Let R be a ring, S be a ring extension of R, p be an element of the carrier
of PolyRing(R), and a be an element of S. We say that a is a root of p in S if
and only if

(Def. 2) ExtEval(p, a) = 0S .

We say that p has a root in S if and only if

(Def. 3) there exists an element a of S such that a is a root of p in S.

The functor Roots(S, p) yielding a subset of S is defined by the term

(Def. 4) {a, where a is an element of S : a is a root of p in S}.

Now we state the proposition:

(28) Let us consider a ring extension S of R, and an element p of the carrier
of PolyRing(R). Then Roots(p) ⊆ Roots(S, p).

Let R be a ring, S be a non degenerated ring, and p be a polynomial over
R. We say that p splits in S if and only if

(Def. 5) there exists a non zero element a of S and there exists a product of linear
polynomials q of S such that p = a · q.

Now we state the proposition:

(29) Let us consider a field F , and a polynomial p over F . If deg p = 1, then
p splits in F .

5. The Degree of Field Extensions

Let R be a ring and S be a ring extension of R. The functor VecSp(S,R)
yielding a strict vector space structure over R is defined by

(Def. 6) the carrier of it = the carrier of S and the addition of it = the addition
of S and the zero of it = 0S and the left multiplication of it =
(the multiplication of S)�((the carrier of R)× (the carrier of S)).

Observe that VecSp(S,R) is non empty and VecSp(S,R) is Abelian, add-
associative, right zeroed, and right complementable and VecSp(S,R) is scalar
distributive, scalar associative, scalar unital, and vector distributive.

Now we state the proposition:

(30) Let us consider a ring extension S of R. Then VecSp(S,R) is a vector
space over R.

Let F be a field and E be an extension of F . The functor deg(E,F ) yielding
an integer is defined by the term
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(Def. 7)

{
dim(VecSp(E,F )), if VecSp(E,F ) is finite dimensional,
−1, otherwise.

Let us note that deg(E,F ) is a dim-like.
We say that E is F -finite if and only if

(Def. 8) VecSp(E,F ) is finite dimensional.

Observe that there exists an extension of F which is F -finite.
Let E be an F -finite extension of F . One can verify that deg(E,F ) is natural.

6. Kronecker’s Construction

Let F be a field and p be a non constant element of the carrier of PolyRing(F ).
Let us note that the carrier of PolyRing(p) is F -polynomial membered and
PolyRing(p) is F -polynomial membered.

Let p be an irreducible element of the carrier of PolyRing(F ). The func-
tor KroneckerIso(p) yielding a function from the carrier of PolyRing(p) into
the carrier of KroneckerField(F, p) is defined by

(Def. 9) for every element q of the carrier of PolyRing(p), it(q) =
[q]EqRel(PolyRing(F ),{p}–ideal).

Observe that KroneckerIso(p) is additive, multiplicative, unity-preserving,
one-to-one, and onto and KroneckerField(F, p) is (PolyRing(p))-homomorphic,
(PolyRing(p))-monomorphic, and (PolyRing(p))-isomorphic.

PolyRing(p) is (KroneckerField(F, p))-homomorphic, (KroneckerField(F, p))-
monomorphic, and (KroneckerField(F, p))-isomorphic and PolyRing(p) is F -
homomorphic and F -monomorphic.

Now we state the proposition:

(31) Let us consider a polynomial-disjoint field F , and a non constant element
f of the carrier of PolyRing(F ). Then there exists an extension E of F
such that f has a root in E.
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