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Summary. This is the fourth part of a four-article series containing a
Mizar [3], [2], [I] formalization of Kronecker’s construction about roots of po-
lynomials in field extensions, i.e. that for every field F' and every polynomial
p € F[X]|\F there exists a field extension E of F such that p has a root over
E. The formalization follows Kronecker’s classical proof using F[X]/<p> as the
desired field extension E [6], [], [5].

In the first part we show that an irreducible polynomial p € F[X]\F has
a root over F[X]/<p>. Note, however, that this statement cannot be true in
a rigid formal sense: We do not have F C F[X]/<p> as sets, so F is not
a subfield of F[X]/<p>, and hence formally p is not even a polynomial over
F[X]/<p>. Consequently, we translate p along the canonical monomorphism
¢ : F — F[X]/<p> and show that the translated polynomial ¢(p) has a root
over F[X]/<p>.

Because F' is not a subfield of F[X]/<p> we construct in the second part the
field (E'\ ¢F)UF for a given monomorphism ¢ : I — FE and show that this field
both is isomorphic to F' and includes F' as a subfield. In the literature this part of
the proof usually consists of saying that “one can identify F' with its image ¢F' in
F[X]/<p> and therefore consider F' as a subfield of F[X]/<p>". Interestingly, to
do so we need to assume that F N E = ), in particular Kronecker’s construction
can be formalized for fields F' with F' N F[X] = (.

Surprisingly, as we show in the third part, this condition is not automatically
true for arbitrary fields F': With the exception of Zs we construct for every field
F an isomorphic copy F’ of F with F' N F'[X] # (. We also prove that for
Mizar’s representations of Z,, Q and R we have Z, N Z,[X] =0, QN Q[X] = 0
and R NR[X] = 0, respectively.

In this fourth part we finally define field extensions: E is a field extension
of F' iff F' is a subfield of E. Note, that in this case we have F' C F as sets,

and thus a polynomial p over F' is also a polynomial over E£. We then apply the
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construction of the second part to F[X]/<p> with the canonical monomorphism
¢ : F — F[X]/<p>. Together with the first part this gives — for fields F' with
FNF[X] =0 - a field extension F of F' in which p € F[X]\F has a root.
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1. PRELIMINARIES

From now on K, F, E denote fields and R, S denote rings.
Now we state the proposition:

(1) K is a subfield of K.

Let R be a non degenerated ring. One can verify that every subring of R is
non degenerated.

Let R be a commutative ring. Note that every subring of R is commutative.

Let R be an integral domain. Let us observe that every subring of R is
integral domain-like.

Now we state the proposition:

(2) Let us consider a subring S of R, a finite sequence F' of elements of R,
and a finite sequence G of elements of S. If F' = G, then >_ F =3 G.

2. RING AND FIELD EXTENSIONS

Let R, S be rings. We say that S is R-extending if and only if
(Def. 1) R is a subring of S.

Let R be a ring. Note that there exists a ring which is R-extending.

Let R be a commutative ring. One can check that there exists a commutative
ring which is R-extending.

Let R be an integral domain. One can verify that there exists an integral
domain which is R-extending.

Let F be a field. Let us observe that there exists a field which is F-extending.

Let R be a ring.

A ring extension of R is an R-extending ring. Let R be a commutative ring.

A commutative ring extension of R is an R-extending commutative ring. Let
R be an integral domain.

A domain ring extension of R is an R-extending integral domain. Let F' be
a field.

An extension of F' is an F-extending field. Now we state the propositions:
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3
4

R is a ring extension of R.

Every commutative ring is a commutative ring extension of R.

6
7

One can check that Cg is (Rp)-extending and Ry is (Fg)-extending and Fg
is (ZR?)-extending.

Let R be a ring and S be a ring extension of R. One can check that every
ring extension of S is R-extending.

F' is an extension of F.

A~~~ Y~ /~ —~
ot

)
)
) Every integral domain is a domain ring extension of R.
)
)

FE is an extension of F' if and only if F' is a subfield of E.

Let R be a commutative ring and S be a commutative ring extension of R.
One can verify that every commutative ring extension of S is R-extending.

Let R be an integral domain and S be a domain ring extension of R. Let us
observe that every domain ring extension of S is R-extending.

Let F be a field and E be an extension of F'. Observe that every extension
of F is F-extending.

Let R be a non degenerated ring. Observe that every ring extension of R is
non degenerated.

3. EXTENSIONS OF PoLyYNOMIAL RINGS

Now we state the propositions:
(8) Let us consider a ring extension S of R. Then every polynomial over R
is a polynomial over S.
(9) Let us consider a subring R of S. Then every polynomial over R is
a polynomial over S.
(10) Let us consider a ring extension S of R. Then the carrier of PolyRing(R) C
the carrier of PolyRing(S). The theorem is a consequence of (8).
(11) If S is a ring extension of R, then OpgiyRing(s) = OPolyRing(R)-
(12) If S is a ring extension of R, then 0.5 = 0.R. The theorem is a conse-
quence of (11).
(13) If Sis a ring extension of R, then 1pgyRing(s) = IPolyRing(R)- L he theorem
is a consequence of (12).
(14) Let us consider a ring extension S of R. Then 1.5 = 1.R. The theorem
is a consequence of (13).
(15) Let us consider a ring extension S of R, polynomials p, ¢ over R, and
polynomials py, g1 over S. If p=p; and ¢ = q1, then p+q=p1 + ¢1.
(16) Let us consider a ring extension S of R. Then the addition of PolyRing
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(R) = (the addition of PolyRing(S)) | (the carrier of PolyRing(R)). The
theorem is a consequence of (10) and (15).

(17) Let us consider a ring extension S of R, polynomials p, ¢ over R, and
polynomials p1, g1 over S. If p = p; and g = ¢q1, then p* ¢ = py * ¢q1. The
theorem is a consequence of (2).

(18) Suppose S is a ring extension of R. Then the multiplication of PolyRing

(R) = (the multiplication of PolyRing(S)) | (the carrier of PolyRing(R)).
The theorem is a consequence of (10) and (17).

Let R be a ring and S be a ring extension of R. One can verify that
PolyRing(S) is (PolyRing(R))-extending. Now we state the propositions:

(19) Let us consider a ring R, and a ring extension S of R. Then PolyRing(S)
is a ring extension of PolyRing(R).

(20) Let us consider a ring extension S of R, an element p of the carrier of
PolyRing(R), and an element ¢ of the carrier of PolyRing(S). If p = ¢,
then degp = degq. The theorem is a consequence of (11).

(21) Let us consider a non degenerated ring R, a ring extension S of R,
an element a of R, and an element b of S. If a = b, then rpoly(1,a) =
rpoly(1,b). The theorem is a consequence of (10).

4. EVALUATION OF POLYNOMIALS IN RING EXTENSIONS

Now we state the propositions:

(22) Let us consider an element a of S. Suppose S is a ring extension of R.
Then ExtEval(0.R,a) = Og.

(23) Let us consider a non degenerated ring R, a ring extension S of R, and
an element a of S. Then ExtEval(1.R,a) = 1g.

(24) Let us consider a ring extension S of R, an element a of S, and polyno-
mials p, ¢ over R. Then ExtEval(p+ ¢, a) = ExtEval(p, a) + ExtEval(q, a).

(25) Let us consider a commutative ring R, a commutative ring extension S of
R, an element a of S, and polynomials p, ¢ over R. Then ExtEval(pxq,a) =
ExtEval(p, a) - ExtEval(q, a).

(26) Let us consider a ring extension S of R, an element p of the carrier
of PolyRing(R), an element ¢ of the carrier of PolyRing(.S), and an ele-
ment a of S. If p = ¢, then ExtEval(p,a) = eval(g,a). The theorem is
a consequence of (11).

(27) Let us consider a ring extension S of R, an element p of the carrier of
PolyRing(R), an element ¢ of the carrier of PolyRing(S), an element a of
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R, and an element b of S. If ¢ = p and b = a, then eval(q,b) = eval(p, a).
The theorem is a consequence of (26).

Let R be a ring, S be a ring extension of R, p be an element of the carrier
of PolyRing(R), and a be an element of S. We say that a is a root of p in S if
and only if

(Def. 2) ExtEval(p,a) = 0s.
We say that p has a root in S if and only if
(Def. 3) there exists an element a of S such that a is a root of p in S.
The functor Roots(S, p) yielding a subset of S is defined by the term
(Def. 4)  {a, where a is an element of S : a is a root of p in S}.
Now we state the proposition:

(28) Let us consider a ring extension S of R, and an element p of the carrier
of PolyRing(R). Then Roots(p) C Roots(S, p).

Let R be a ring, S be a non degenerated ring, and p be a polynomial over
R. We say that p splits in S if and only if
(Def. 5) there exists a non zero element a of S and there exists a product of linear
polynomials ¢ of S such that p=a - q.
Now we state the proposition:

(29) Let us consider a field F', and a polynomial p over F. If degp = 1, then
p splits in F.

5. THE DEGREE OF FIELD EXTENSIONS

Let R be a ring and S be a ring extension of R. The functor VecSp(S, R)
yielding a strict vector space structure over R is defined by
(Def. 6) the carrier of it = the carrier of S and the addition of it = the addition
of S and the zero of it = Og and the left multiplication of it =
(the multiplication of S)[((the carrier of R) x (the carrier of 5)).
Observe that VecSp(S, R) is non empty and VecSp(S, R) is Abelian, add-
associative, right zeroed, and right complementable and VecSp(S, R) is scalar
distributive, scalar associative, scalar unital, and vector distributive.
Now we state the proposition:
(30) Let us consider a ring extension S of R. Then VecSp(S, R) is a vector
space over R.
Let F be a field and E be an extension of F'. The functor deg(F, F) yielding
an integer is defined by the term
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dim(VecSp(E, F)), if VecSp(FE,F) is finite dimensional,
(Def. 7) .
-1, otherwise.
Let us note that deg(F, F) is a dim-like.
We say that E is F-finite if and only if

(Def. 8) VecSp(FE, F) is finite dimensional.

Observe that there exists an extension of F' which is F-finite.
Let E be an F-finite extension of F'. One can verify that deg(E, F') is natural.

6. KRONECKER’S CONSTRUCTION

Let F be a field and p be a non constant element of the carrier of PolyRing(F).
Let us note that the carrier of PolyRing(p) is F-polynomial membered and
PolyRing(p) is F-polynomial membered.

Let p be an irreducible element of the carrier of PolyRing(F'). The func-
tor Kroneckerlso(p) yielding a function from the carrier of PolyRing(p) into
the carrier of KroneckerField(F,p) is defined by

(Def. 9) for every element ¢ of the carrier of PolyRing(p), it(q) =

[Q] EqRel(PolyRing(F),{p}—ideal)"

Observe that KroneckerIso(p) is additive, multiplicative, unity-preserving,
one-to-one, and onto and KroneckerField(F,p) is (PolyRing(p))-homomorphic,
(PolyRing(p))-monomorphic, and (PolyRing(p))-isomorphic.

PolyRing(p) is (KroneckerField(F, p))-homomorphic, (KroneckerField(F, p))-
monomorphic, and (KroneckerField(F,p))-isomorphic and PolyRing(p) is F-
homomorphic and F-monomorphic.

Now we state the proposition:

(31) Let us consider a polynomial-disjoint field F', and a non constant element
f of the carrier of PolyRing(F'). Then there exists an extension F of F
such that f has a root in E.
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