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Summary. In this article the notion of the underlying simple graph of
a graph (as defined in [8]) is formalized in the Mizar system [5], along with
some convenient variants. The property of a graph to be without decorators (as
introduced in [7]) is formalized as well to serve as the base of graph enumerations
in the future.
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0. Introduction

In the Mizar Mathematical Library [2] there are several formalizations of
graphs with a varying degree of generality, see [1], [6], [10], [8], [9]. The GLIB
series (starting with [8]) formalizes general digraphs (that is, digraphs with
loops and parallel edges allowed) in Mizar [5] and provides a rich notation so
that any digraph in Mizar can be seen as an undirected graph simply by ignoring
the direction of the edges (although they are always there). In conclusion, there
is no need for another formalization of undirected graphs, in contrast to how
it is typically done in the literature (cf. [12], [3]), and the underlying (undirec-
ted) graph of a digraph (in the sense of [8]) is itself. For undirected graphs or
digraphs possibly containing loops and multiple parallel edges, the underlying
(simple) graph or digraph is derived by removing the loops and replacing each
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set of parallel edges with a single edge. That concept requires formalization and
this article provides subgraph modes that respectively remove loops, (directed)
parallel edges or both from a given (di)graph. “Much of graph theory is concer-
ned with the study of simple graphs” [4, p. 3] which results in many books only
studying simple graphs, even when graphs are more generally introduced in the
respective book (for example [11]).

The rather extensive preliminaries contain many theorems that would fit
well into earlier articles of the GLIB series, for example:

• The source and target of a directed edge in a graph are uniquely determi-
ned.

• A walk in a graph is uniquely determined by its vertex and edge sequence.

• Adding vertices to a graph doesn’t change adjacencies.

The next section introduces plain graphs. Graphs, as defined in [8], can
arbitrarily be expanded with decorators as done in [7]. Therefore for any non
empty set S the set containing all graphs with vertex and edge sets contained in
S does not exist because of possible decorators, even if S only contains a single
element. A graph is called plain if it does not contain additional decorators,
and then the set of all plain graphs with vertex and edge sets contained in S

can be constructed, which will be needed for graph enumeration at a later point
in time.

In the section after that the set of all loops of a graph is introduced as well
as a graph operator removing all loops from a given graph as a special case of
removing edges.

At the start of the following section, two equivalence relations are defined
on the edge set, where two edges are equivalent iff they are (directed) parallel.
Then modes are introduced to pick one edge out of each set of (directed) parallel
edges. Using such representative edge selections, the graphs with parallel edges
removed can be defined as induced subgraphs. While the directed and undirected
variants are formalized along each other, there are also some theorems focusing
on how they interact with each other.

This trend is continued in the last section, where the underlying simple
graphs are introduced as induced subgraphs on the representative edge selections
with the loops removed. Naturally, these subgraphs can also be constructed by
removing loops and then parallel edges from a graph or vice versa.
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1. Preliminaries

Now we state the propositions:

(1) Let us consider sets X, Y. If Y ⊆ X, then X \ (X \ Y ) = Y.

(2) Let us consider a binary relation R, and a set X. Then

(i) (R�X)` = X�R`, and

(ii) (X�R)` = R`�X.

Let us consider a function f and a set Y. Now we state the propositions:

(3) dom(Y �f) = f−1(Y ).
Proof: For every object x, x ∈ dom(Y �f) iff x ∈ f−1(Y ). �

(4) Y �f = f� dom(Y �f). The theorem is a consequence of (3).

(5) Let us consider a one-to-one function f , and a set X. Then

(i) (f�X)−1 = X�f−1, and

(ii) (X�f)−1 = f−1�X.

The theorem is a consequence of (2).

(6) Let us consider a graph G, and objects e, x1, y1, x2, y2. Suppose e joins
x1 to y1 in G and e joins x2 to y2 in G. Then

(i) x1 = x2, and

(ii) y1 = y2.

Let G be a trivial graph. Let us observe that the vertices of G is trivial and
every graph which is trivial and non-directed-multi is also non-multi.

Let G be a trivial, non-directed-multi graph. Let us observe that the edges
of G is trivial.

Now we state the propositions:

(7) Let us consider a graph G, sets X, Y, and objects e, x, y. Suppose e
joins x to y in G and x ∈ X and y ∈ Y. Then e joins a vertex from X to
a vertex from Y in G.

(8) Let us consider a trivial graph G, and a graph H. Suppose the vertices
of H ⊆ the vertices of G and the edges of H ⊆ the edges of G. Then H is
trivial and subgraph of G.

(9) Let us consider a graph G. Then G ≈ G�(the graph selectors).

Let us consider a graph G, sets X, Y, and an object e. Now we state the
propositions:

(10) e joins a vertex from X and a vertex from Y in G if and only if e joins
a vertex from Y and a vertex from X in G.
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(11) e joins a vertex from X and a vertex from Y in G if and only if e joins
a vertex from X to a vertex from Y in G or e joins a vertex from Y to a
vertex from X in G.

Let us consider a graph G and objects e, v, w. Now we state the propositions:

(12) If e joins a vertex from {v} and a vertex from {w} in G, then e joins v
and w in G.

(13) If e joins a vertex from {v} to a vertex from {w} in G, then e joins v to
w in G.

(14) Let us consider a graph G, and objects v, w. Suppose v 6= w. Then

(i) G.edgesDBetween({v}, {w}) missesG.edgesDBetween({w}, {v}), and

(ii) G.edgesBetween({v}, {w}) = G.edgesDBetween({v}, {w})∪
G.edgesDBetween({w}, {v}).

The theorem is a consequence of (11).

(15) Let us consider a graph G, and a set X. Then G.edgesBetween(X,X) =
G.edgesDBetween(X,X). The theorem is a consequence of (11).

(16) Let us consider a graph G, and sets X, Y. Then G.edgesBetween(X,Y ) =
G.edgesBetween(Y,X). The theorem is a consequence of (10).

Let us consider a graph G. Now we state the propositions:

(17) G is loopless if and only if for every object v, there exists no object e
such that e joins v to v in G.
Proof: For every object v, there exists no object e such that e joins v
and v in G. �

(18) G is loopless if and only if for every object v, there exists no object e
such that e joins a vertex from {v} and a vertex from {v} in G.
Proof: For every object v, there exists no object e such that e joins v
and v in G. �

(19) G is loopless if and only if for every object v, there exists no object e
such that e joins a vertex from {v} to a vertex from {v} in G. The theorem
is a consequence of (11) and (18).

(20) G is loopless if and only if for every object v,G.edgesBetween({v}, {v}) =
∅. The theorem is a consequence of (18).

(21) G is loopless if and only if for every object v,G.edgesDBetween({v}, {v}) =
∅. The theorem is a consequence of (19).

Let G be a loopless graph and v be an object. One can verify that
G.edgesBetween({v}, {v}) is empty and G.edgesDBetween({v}, {v}) is emp-

ty.
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(22) Let us consider a graph G. Then G is non-multi if and only if for every
objects v, w, G.edgesBetween({v}, {w}) is trivial. The theorem is a con-
sequence of (12).

Let G be a non-multi graph and v, w be objects. One can verify that
G.edgesBetween({v}, {w}) is trivial. Now we state the proposition:

(23) Let us consider a graph G. Then G is non-directed-multi if and only if
for every objects v, w, G.edgesDBetween({v}, {w}) is trivial. The theorem
is a consequence of (13) and (7).

Let G be a non-directed-multi graph and v, w be objects. One can check
that G.edgesDBetween({v}, {w}) is trivial.

Let G be a non trivial graph. Let us note that every subgraph of G which is
spanning is also non trivial.

Let G be a graph. One can check that every vertex of G which is isolated is
also non endvertex.

Let us consider a graph G and a vertex v of G. Now we state the propositions:

(24) (G.walkOf(v)).edgeSeq() = εα, where α is the edges of G.

(25) (G.walkOf(v)).edges() = ∅. The theorem is a consequence of (24).

Let G be a graph and W be a trivial walk of G. Note that W.edges() is
empty and trivial.

Let W be a walk of G. Note that W.vertices() is non empty.
Now we state the propositions:

(26) Let us consider graphs G1, G2, a walk W1 of G1, and a walk W2 of G2.
Suppose W1.vertexSeq() = W2.vertexSeq() and W1.edgeSeq() =
W2.edgeSeq(). Then W1 = W2.
Proof: For every natural number n such that 1 ¬ n ¬ lenW1 holds
W1(n) = W2(n). �

(27) Let us consider a graph G, a finite sequence p of elements of the vertices
of G, and a finite sequence q of elements of the edges of G. Suppose
len p = 1 + len q and for every element n of N such that 1 ¬ n and
n + 1 ¬ len p holds q(n) joins p(n) and p(n + 1) in G. Then there exists
a walk W of G such that

(i) W.vertexSeq() = p, and

(ii) W.edgeSeq() = q.

Proof: Define P[object, object] ≡ there exists a natural number m such
that m = $1 and if m is odd, then $2 = p(m+1 div 2) and if m is even, then
$2 = q(m div 2). For every natural number k such that k ∈ Seg(len p+len q)
there exists an element x of (the vertices of G)∪(the edges of G) such that
P[k, x]. Consider W being a finite sequence of elements of (the vertices of
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G) ∪ (the edges of G) such that domW = Seg(len p+ len q) and for every
natural number k such that k ∈ Seg(len p+len q) holds P[k,W (k)]. W (1) ∈
the vertices of G. For every odd element n of N such that n < lenW holds
W (n+1) joins W (n) and W (n+2) in G. For every natural number k such
that 1 ¬ k ¬ len p holds p(k) = (W.vertexSeq())(k). For every natural
number k such that 1 ¬ k ¬ len q holds q(k) = (W.edgeSeq())(k). �

(28) Let us consider a graphG, and a walkW ofG. Then len(W.vertexSeq()) =
W.length() + 1.

(29) Let us consider graphs G1, G2, a walk W1 of G1, a walk W2 of G2,
and an odd natural number n. If W1.vertexSeq() = W2.vertexSeq(), then
W1(n) = W2(n).

Let us consider graphs G1, G2, a walk W1 of G1, and a walk W2 of G2. Now
we state the propositions:

(30) Suppose W1.vertexSeq() = W2.vertexSeq(). Then

(i) lenW1 = lenW2, and

(ii) W1.length() = W2.length(), and

(iii) W1.first() = W2.first(), and

(iv) W1.last() = W2.last(), and

(v) W2 is walk from W1.first() to W1.last().

The theorem is a consequence of (29).

(31) If W1.vertexSeq() = W2.vertexSeq(), then if W1 is not trivial, then W2
is not trivial and if W1 is closed, then W2 is closed. The theorem is a con-
sequence of (30).

(32) Suppose W1.vertexSeq() = W2.vertexSeq() and lenW1 6= 5. Then

(i) if W1 is path-like, then W2 is path-like, and

(ii) if W1 is cycle-like, then W2 is cycle-like.

Proof: If W1 is path-like, then W2 is path-like. �

The scheme IndWalk deals with a graph G and a unary predicate P and
states that

(Sch. 1) For every walk W of G, P[W ]

provided

• for every trivial walk W of G, P[W ] and

• for every walk W of G and for every object e such that

e ∈W.last().edgesInOut() and P[W ] holds P[W.addEdge(e)].
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The scheme IndDWalk deals with a graph G and a unary predicate P and
states that

(Sch. 2) For every dwalk W of G, P[W ]

provided

• for every trivial dwalk W of G, P[W ] and

• for every dwalk W of G and for every object e such that

e ∈W.last().edgesOut() and P[W ] holds P[W.addEdge(e)].

Now we state the propositions:

(33) Let us consider a graph G1, a subset E of the edges of G1, and a subgraph
G2 of G1 induced by the vertices of G1 and E. If G2 is connected, then
G1 is connected.

(34) Let us consider a graph G1, a set E, and a subgraph G2 of G1 with edges
E removed. If G2 is connected, then G1 is connected.

Let G1 be a non connected graph and E be a set. One can check that every
subgraph of G1 with edges E removed is non connected.

(35) Let us consider a graph G1, and a subgraph G2 of G1. Suppose for every
walk W1 of G1, there exists a walk W2 of G2 such that W2 is walk from
W1.first() to W1.last(). Let us consider a vertex v1 of G1, and a vertex v2
of G2. If v1 = v2, then G1.reachableFrom(v1) = G2.reachableFrom(v2).

(36) Let us consider a graph G1, and a subgraph G2 of G1. Suppose for every
walk W1 of G1, there exists a walk W2 of G2 such that W2 is walk from
W1.first() to W1.last(). If G1 is connected, then G2 is connected.

Let us consider a graph G1 and a spanning subgraph G2 of G1. Now we state
the propositions:

(37) Suppose for every vertex v1 of G1 and for every vertex v2 of G2 such
that v1 = v2 holds G1.reachableFrom(v1) = G2.reachableFrom(v2). Then
G1.componentSet() = G2.componentSet().

(38) Suppose for every vertex v1 of G1 and for every vertex v2 of G2 such
that v1 = v2 holds G1.reachableFrom(v1) = G2.reachableFrom(v2). Then
G1.numComponents() = G2.numComponents(). The theorem is a conse-
quence of (37).

(39) Let us consider a graph G. Then G is loopless if and only if for every
vertex v of G, v and v are not adjacent.

Let G be a non complete graph. One can check that every subgraph of G
which is spanning is also non complete.

Now we state the propositions:
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(40) Let us consider graphs G2, G3, and a supergraph G1 of G3. If G1 ≈ G2,
then G2 is a supergraph of G3.

(41) Let us consider a graph G2, a set V , a supergraph G1 of G2 extended by
the vertices from V , sets x, y, and an object e. Then

(i) e joins x and y in G1 iff e joins x and y in G2, and

(ii) e joins x to y in G1 iff e joins x to y in G2, and

(iii) e joins a vertex from x and a vertex from y in G1 iff e joins a vertex
from x and a vertex from y in G2, and

(iv) e joins a vertex from x to a vertex from y in G1 iff e joins a vertex
from x to a vertex from y in G2.

(42) Let us consider graphs G1, G2. Suppose G1 ≈ G2. Then G2 is a graph
given by reversing directions of the edges ∅ of G1.

(43) Every graph is a graph given by reversing directions of the edges ∅ of G.

2. Plain Graphs

Let G be a graph. We say that G is plain if and only if

(Def. 1) domG = the graph selectors.

Note that G�(the graph selectors) is plain.
Let V be a non empty set, E be a set, and S, T be functions from E into

V . Let us observe that createGraph(V,E, S, T ) is plain.
Let G be a graph and X be a set. Note that G.set(WeightSelector, X) is non

plain and G.set(ELabelSelector, X) is non plain and G.set(VLabelSelector, X)
is non plain and there exists a graph which is plain.

Now we state the proposition:

(44) Let us consider plain graphs G1, G2. If G1 ≈ G2, then G1 = G2.

Let G be a graph. Note that there exists a subgraph of G which is plain.
Let V be a set. One can check that there exists a subgraph of G with vertices

V removed which is plain.
Let E be a set. Let us note that there exists a subgraph of G induced by V

and E which is plain and there exists a subgraph of G with edges E removed
which is plain and there exists a graph given by reversing directions of the edges
E of G which is plain.

Let v be a set. One can verify that there exists a subgraph of G with vertex
v removed which is plain.

Let e be a set. One can verify that there exists a subgraph of G with edge e
removed which is plain and there exists a supergraph of G which is plain.
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Let V be a set. Let us note that there exists a supergraph of G extended by
the vertices from V which is plain.

Let v, e, w be objects. One can check that there exists a supergraph of
G extended by e between vertices v and w which is plain and there exists
a supergraph of G extended by v, w and e between them which is plain.

Let v be an object and V be a set. Let us note that there exists a supergraph
of G extended by vertex v and edges from V of G to v which is plain and there
exists a supergraph of G extended by vertex v and edges from v to V of G
which is plain and there exists a supergraph of G extended by vertex v and
edges between v and V of G which is plain.

3. Graphs with Loops Removed

Let G be a graph. The functor G.loops() yielding a subset of the edges of G
is defined by

(Def. 2) for every object e, e ∈ it iff there exists an object v such that e joins v
and v in G.

Now we state the propositions:

(45) Let us consider a graph G, and an object e. Then e ∈ G.loops() if and
only if there exists an object v such that e joins v to v in G.

(46) Let us consider a graph G, and objects e, v, w. If e joins v and w in G

and v 6= w, then e /∈ G.loops().

(47) Let us consider a graph G. Then G is loopless if and only if G.loops() = ∅.
Let G be a loopless graph. Let us observe that G.loops() is empty.
Let G be a non loopless graph. Let us observe that G.loops() is non empty.
Now we state the propositions:

(48) Let us consider a graph G1, and a subgraph G2 of G1. Then G2.loops() ⊆
G1.loops(). The theorem is a consequence of (45).

(49) Let us consider a graphG2, and a supergraphG1 ofG2. ThenG2.loops() ⊆
G1.loops(). The theorem is a consequence of (48).

(50) Let us consider graphsG1,G2. IfG1 ≈ G2, thenG1.loops() = G2.loops().
The theorem is a consequence of (48).

(51) Let us consider a graph G1, a set E, and a graph G2 given by reversing
directions of the edges E of G1. Then G1.loops() = G2.loops().

(52) Let us consider a graph G2, a set V , and a supergraph G1 of G2 extended
by the vertices from V . Then G1.loops() = G2.loops(). The theorem is
a consequence of (41) and (49).
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(53) Let us consider a graph G2, objects v1, e, v2, and a supergraph G1 of G2
extended by e between vertices v1 and v2. If v1 6= v2, then G1.loops() =
G2.loops(). The theorem is a consequence of (50) and (49).

(54) Let us consider a graph G2, a vertex v of G2, an object e, and a su-
pergraph G1 of G2 extended by e between vertices v and v. Suppose
e /∈ the edges of G2. Then G1.loops() = G2.loops()∪{e}. The theorem
is a consequence of (45) and (49).

(55) Let us consider a graph G2, objects v1, e, v2, and a supergraph G1 of G2
extended by v1, v2 and e between them. Then G1.loops() = G2.loops().
The theorem is a consequence of (49) and (50).

(56) Let us consider a graph G2, an object v, a set V , and a supergraph
G1 of G2 extended by vertex v and edges between v and V of G2. Then
G1.loops() = G2.loops(). The theorem is a consequence of (49) and (50).

(57) Let us consider a graph G, and a path P of G. Then

(i) P .edges() misses G.loops(), or

(ii) there exist objects v, e such that e joins v and v in G and P =
G.walkOf(v, e, v).

Let G be a graph. A subgraph of G with loops removed is a subgraph of G
with edges G.loops() removed. Now we state the proposition:

(58) Let us consider a loopless graph G1, and a graph G2. Then G1 ≈ G2 if
and only if G2 is a subgraph of G1 with loops removed.

Let us consider graphs G1, G2 and a subgraph G3 of G1 with loops removed.

(59) G2 ≈ G3 if and only if G2 is a subgraph of G1 with loops removed.

(60) If G1 ≈ G2, then G3 is a subgraph of G2 with loops removed. The
theorem is a consequence of (50).

Let G be a graph. Observe that every subgraph of G with loops removed is
loopless and there exists a subgraph of G with loops removed which is plain.

Let G be a non-multi graph. Observe that every subgraph of G with loops
removed is simple.

Let G be a non-directed-multi graph. One can check that every subgraph of
G with loops removed is directed-simple.

Let G be a complete graph. Observe that every subgraph of G with loops
removed is complete.

Now we state the propositions:

(61) Let us consider a graph G1, a subgraph G2 of G1 with loops removed,
and a walk W1 of G1. Then there exists a walk W2 of G2 such that W2 is
walk from W1.first() to W1.last(). The theorem is a consequence of (57).
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(62) Let us consider a graph G1, a subgraph G2 of G1 with loops removed,
a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
G1.reachableFrom(v1) = G2.reachableFrom(v2). The theorem is a conse-
quence of (61) and (35).

Let G be a connected graph. Observe that every subgraph of G with loops
removed is connected. Let G be a non connected graph. Observe that every
subgraph of G with loops removed is non connected. Let us consider a graph G1
and a subgraph G2 of G1 with loops removed. Now we state the propositions:

(63) G1.componentSet() = G2.componentSet(). The theorem is a consequen-
ce of (62) and (37).

(64) G1.numComponents() = G2.numComponents(). The theorem is a con-
sequence of (62) and (38).

(65) G1 is chordal if and only if G2 is chordal. The theorem is a consequence
of (46) and (57).

Let G be a chordal graph. Let us observe that every subgraph of G with
loops removed is chordal. Now we state the proposition:

(66) Let us consider a graph G1, a set v, a subgraph G2 of G1 with loops
removed, and a subgraph G3 of G1 with vertex v removed. Then every
subgraph of G2 with vertex v removed is a subgraph of G3 with loops
removed. The theorem is a consequence of (1), (48), (59), and (60).

Let us consider a graphG1, a subgraphG2 ofG1 with loops removed, a vertex
v1 of G1, and a vertex v2 of G2. Now we state the propositions:

(67) If v1 = v2, then v1 is cut-vertex iff v2 is cut-vertex. The theorem is
a consequence of (66) and (64).

(68) If v1 = v2 and v1 is endvertex, then v2 is endvertex. The theorem is
a consequence of (46).

4. Graphs with Parallel Edges Removed

Let G be a graph. The functors: EdgeParEqRel(G) and DEdgeParEqRel(G)
yielding equivalence relations of the edges of G are defined by conditions

(Def. 3) for all objects e1, e2, 〈〈e1, e2〉〉 ∈ EdgeParEqRel(G) iff there exist objects
v1, v2 such that e1 joins v1 and v2 in G and e2 joins v1 and v2 in G,

(Def. 4) for all objects e1, e2, 〈〈e1, e2〉〉 ∈ DEdgeParEqRel(G) iff there exist objects
v1, v2 such that e1 joins v1 to v2 in G and e2 joins v1 to v2 in G,

respectively.
Let us consider a graph G. Now we state the propositions:

(69) DEdgeParEqRel(G) ⊆ EdgeParEqRel(G).
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(70) G is non-multi if and only if EdgeParEqRel(G) = idα, where α is the ed-
ges of G.

(71) G is non-directed-multi if and only if DEdgeParEqRel(G) = idα, where
α is the edges of G.

Let G be an edgeless graph. One can verify that EdgeParEqRel(G) is empty
and DEdgeParEqRel(G) is empty.

Let G be a non edgeless graph. Observe that EdgeParEqRel(G) is non empty
and DEdgeParEqRel(G) is non empty.

Let G be a graph.
A representative selection of the parallel edges of G is a subset of the edges

of G defined by

(Def. 5) for every objects v, w, e0 such that e0 joins v and w in G there exists
an object e such that e joins v and w in G and e ∈ it and for every object
e′ such that e′ joins v and w in G and e′ ∈ it holds e′ = e.

A representative selection of the directed-parallel edges of G is a subset of
the edges of G defined by

(Def. 6) for every objects v, w, e0 such that e0 joins v to w in G there exists
an object e such that e joins v to w in G and e ∈ it and for every object
e′ such that e′ joins v to w in G and e′ ∈ it holds e′ = e.

Let G be an edgeless graph. Let us observe that every representative selection
of the parallel edges of G is empty and every representative selection of the
directed-parallel edges of G is empty.

Let G be a non edgeless graph. Let us observe that every representative se-
lection of the parallel edges of G is non empty and every representative selection
of the directed-parallel edges of G is non empty.

Now we state the propositions:

(72) Let us consider a graph G, and a representative selection of the directed-
parallel edges E1 of G. Then there exists a representative selection of the
parallel edges E2 of G such that E2 ⊆ E1.
Proof: Set A = {{e, where e is an element of the edges of G : e joins
v1 and v2 in G and e ∈ E1}, where v1, v2 are vertices of G : there exists
an object e0 such that e0 joins v1 and v2 in G}. Define P[object, object] ≡
there exists a non empty set S such that $1 = S and $2 = the element of
S. For every object x such that x ∈ A there exists an object y such that
P[x, y]. Consider f being a function such that dom f = A and for every
object x such that x ∈ A holds P[x, f(x)]. For every object e such that
e ∈ rng f holds e ∈ E1. Reconsider E2 = rng f as a subset of the edges of
G. For every objects v, w, e0 such that e0 joins v and w in G there exists
an object e such that e joins v and w in G and e ∈ E2 and for every object
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e′ such that e′ joins v and w in G and e′ ∈ E2 holds e′ = e. �

(73) Let us consider a graph G, and a representative selection of the parallel
edges E2 of G. Then there exists a representative selection of the directed-
parallel edges E1 of G such that E2 ⊆ E1.
Proof: Set A = {{e, where e is an element of the edges of G : e joins v1
to v2 in G}, where v1, v2 are vertices of G : there exists an object e0 such
that e0 joins v1 to v2 in G and for every object e0 such that e0 joins v1
to v2 in G holds e0 /∈ E2}. Define P[object, object] ≡ there exists a non
empty set S such that $1 = S and $2 = the element of S. For every object
x such that x ∈ A there exists an object y such that P[x, y]. Consider f
being a function such that dom f = A and for every object x such that
x ∈ A holds P[x, f(x)]. For every object e such that e ∈ rng f holds
e ∈ the edges of G. Reconsider E1 = E2 ∪ rng f as a subset of the edges
of G. For every objects v, w, e0 such that e0 joins v to w in G there exists
an object e such that e joins v to w in G and e ∈ E1 and for every object
e′ such that e′ joins v to w in G and e′ ∈ E1 holds e′ = e. �

(74) Let us consider a non-multi graph G, and a representative selection of
the parallel edges E of G. Then E = the edges of G.

(75) Let us consider a graph G. Suppose there exists a representative selection
of the parallel edges E of G such that E = the edges of G. Then G is non-
multi.

(76) Let us consider a non-directed-multi graph G, and a representative se-
lection of the directed-parallel edges E of G. Then E = the edges of
G.

(77) Let us consider a graph G. Suppose there exists a representative selection
of the directed-parallel edges E of G such that E = the edges of G. Then
G is non-directed-multi.

(78) Let us consider a graph G1, a subgraph G2 of G1, and a representative
selection of the parallel edges E of G1. Suppose E ⊆ the edges of G2. Then
E is a representative selection of the parallel edges of G2.

(79) Let us consider a graph G1, a subgraph G2 of G1, and a representative
selection of the directed-parallel edges E of G1. Suppose E ⊆ the edges
of G2. Then E is a representative selection of the directed-parallel edges
of G2.

(80) Let us consider a graph G1, a subgraph G2 of G1, and a representative
selection of the parallel edges E2 of G2. Then there exists a representative
selection of the parallel edges E1 of G1 such that E2 = E1 ∩ (the edges of
G2).
Proof: Set A = {{e, where e is an element of the edges of G1 : e joins v1
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and v2 in G1}, where v1, v2 are vertices of G1 : there exists an object e0
such that e0 joins v1 and v2 in G1 and for every object e0 such that e0
joins v1 and v2 in G1 holds e0 /∈ E2}. Define P[object, object] ≡ there
exists a non empty set S such that $1 = S and $2 = the element of S. For
every object x such that x ∈ A there exists an object y such that P[x, y].
Consider f being a function such that dom f = A and for every object x
such that x ∈ A holds P[x, f(x)]. For every object e such that e ∈ rng f
holds e ∈ the edges of G1. Reconsider E1 = E2 ∪ rng f as a subset of
the edges of G1. For every objects v, w, e0 such that e0 joins v and w in
G1 there exists an object e such that e joins v and w in G1 and e ∈ E1
and for every object e′ such that e′ joins v and w in G1 and e′ ∈ E1 holds
e′ = e. For every object x, x ∈ E2 iff x ∈ E1 and x ∈ the edges of G2. �

(81) Let us consider a graph G1, a subgraph G2 of G1, and a representative
selection of the directed-parallel edges E2 of G2. Then there exists a re-
presentative selection of the directed-parallel edges E1 of G1 such that
E2 = E1 ∩ (the edges of G2).
Proof: Set A = {{e, where e is an element of the edges of G1 : e joins
v1 to v2 in G1}, where v1, v2 are vertices of G1 : there exists an object e0
such that e0 joins v1 to v2 in G1 and for every object e0 such that e0
joins v1 to v2 in G1 holds e0 /∈ E2}. Define P[object, object] ≡ there exists
a non empty set S such that $1 = S and $2 = the element of S. For
every object x such that x ∈ A there exists an object y such that P[x, y].
Consider f being a function such that dom f = A and for every object x
such that x ∈ A holds P[x, f(x)]. For every object e such that e ∈ rng f
holds e ∈ the edges of G1. Reconsider E1 = E2 ∪ rng f as a subset of
the edges of G1. For every objects v, w, e0 such that e0 joins v to w in G1
there exists an object e such that e joins v to w in G1 and e ∈ E1 and for
every object e′ such that e′ joins v to w in G1 and e′ ∈ E1 holds e′ = e.
For every object x, x ∈ E2 iff x ∈ E1 and x ∈ the edges of G2. �

(82) Let us consider a graph G1, a representative selection of the parallel
edges E1 of G1, a subgraph G2 of G1 induced by the vertices of G1 and
E1, and a representative selection of the parallel edges E2 of G2. Then
E1 = E2.
Proof: For every object e such that e ∈ E1 holds e ∈ E2. �

(83) Let us consider a graph G1, a representative selection of the directed-
parallel edges E1 of G1, a subgraph G2 of G1 induced by the vertices of
G1 and E1, and a representative selection of the directed-parallel edges E2
of G2. Then E1 = E2.
Proof: For every object e such that e ∈ E1 holds e ∈ E2. �
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(84) Let us consider a graph G1, a representative selection of the directed-
parallel edges E1 of G1, a subgraph G2 of G1 induced by the vertices of
G1 and E1, and a representative selection of the parallel edges E2 of G2.
Then

(i) E2 ⊆ E1, and

(ii) E2 is a representative selection of the parallel edges of G1.

Let us consider a graph G and representative selections of the parallel edges
E1, E2 of G. Now we state the propositions:

(85) There exists a one-to-one function f such that

(i) dom f = E1, and

(ii) rng f = E2, and

(iii) for every objects e, v, w such that e ∈ E1 holds e joins v and w in G
iff f(e) joins v and w in G.

Proof: Define P[object, object] ≡ $2 ∈ E2 and there exist objects v, w
such that $1 joins v and w in G and $2 joins v and w in G. For every
objects x, y1, y2 such that x ∈ E1 and P[x, y1] and P[x, y2] holds y1 = y2.
For every object x such that x ∈ E1 there exists an object y such that
P[x, y]. Consider f being a function such that dom f = E1 and for every
object x such that x ∈ E1 holds P[x, f(x)]. Consider v0, w0 being objects
such that e joins v0 and w0 in G and f(e) joins v0 and w0 in G. �

(86) E1 = E2 . The theorem is a consequence of (85).

Let us consider a graph G and representative selections of the directed-
parallel edges E1, E2 of G. Now we state the propositions:

(87) There exists a one-to-one function f such that

(i) dom f = E1, and

(ii) rng f = E2, and

(iii) for every objects e, v, w such that e ∈ E1 holds e joins v to w in G

iff f(e) joins v to w in G.

Proof: Define P[object, object] ≡ $2 ∈ E2 and there exist objects v, w
such that $1 joins v to w in G and $2 joins v to w in G. For every objects
x, y1, y2 such that x ∈ E1 and P[x, y1] and P[x, y2] holds y1 = y2. For
every object x such that x ∈ E1 there exists an object y such that P[x, y].
Consider f being a function such that dom f = E1 and for every object x
such that x ∈ E1 holds P[x, f(x)]. Consider v0, w0 being objects such that
e joins v0 to w0 in G and f(e) joins v0 to w0 in G. v0 = v and w0 = w. �

(88) E1 = E2 . The theorem is a consequence of (87).
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Let G be a graph.
A subgraph of G with parallel edges removed is a subgraph of G defined by

(Def. 7) there exists a representative selection of the parallel edges E of G such
that it is a subgraph of G induced by the vertices of G and E.

A subgraph of G with directed-parallel edges removed is a subgraph of G
defined by

(Def. 8) there exists a representative selection of the directed-parallel edges E of
G such that it is a subgraph of G induced by the vertices of G and E.

Observe that every subgraph of G with parallel edges removed is spanning
and non-multi and every subgraph of G with directed-parallel edges removed is
spanning and non-directed-multi and there exists a subgraph of G with parallel
edges removed which is plain and there exists a subgraph of G with directed-
parallel edges removed which is plain.

Let G be a loopless graph. Let us observe that every subgraph of G with
parallel edges removed is simple and every subgraph of G with directed-parallel
edges removed is directed-simple.

Now we state the propositions:

(89) Let us consider a non-multi graph G1, and a graph G2. Then G1 ≈ G2
if and only if G2 is a subgraph of G1 with parallel edges removed. The
theorem is a consequence of (74).

(90) Let us consider a non-directed-multi graph G1, and a graph G2. Then
G1 ≈ G2 if and only if G2 is a subgraph of G1 with directed-parallel edges
removed. The theorem is a consequence of (76).

(91) Let us consider graphs G1, G2, and a subgraph G3 of G1 with parallel
edges removed. If G1 ≈ G2, then G3 is a subgraph of G2 with parallel
edges removed. The theorem is a consequence of (78).

(92) Let us consider graphs G1, G2, and a subgraph G3 of G1 with directed-
parallel edges removed. Suppose G1 ≈ G2. Then G3 is a subgraph of G2
with directed-parallel edges removed. The theorem is a consequence of
(79).

(93) Let us consider graphs G1, G2, and a subgraph G3 of G1 with parallel
edges removed. If G2 ≈ G3, then G2 is a subgraph of G1 with parallel
edges removed.

(94) Let us consider graphs G1, G2, and a subgraph G3 of G1 with directed-
parallel edges removed. Suppose G2 ≈ G3. Then G2 is a subgraph of G1
with directed-parallel edges removed.

Let us consider a graph G1 and a subgraph G2 of G1 with directed-parallel
edges removed. Now we state the propositions:
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(95) Every subgraph of G2 with parallel edges removed is a subgraph of G1
with parallel edges removed. The theorem is a consequence of (84).

(96) There exists a subgraph G3 of G1 with parallel edges removed such
that G3 is a subgraph of G2 with parallel edges removed. The theorem is
a consequence of (72) and (78).

(97) Let us consider a graph G1, and a subgraph G3 of G1 with parallel
edges removed. Then there exists a subgraph G2 of G1 with directed-
parallel edges removed such that G3 is a subgraph of G2 with parallel
edges removed. The theorem is a consequence of (73) and (78).

Let G be a complete graph. Let us observe that every subgraph of G with
parallel edges removed is complete and every subgraph of G with directed-
parallel edges removed is complete.

Now we state the propositions:

(98) Let us consider a graph G1, a subgraph G2 of G1 with parallel edges
removed, and a walk W1 of G1. Then there exists a walk W2 of G2 such
that W1.vertexSeq() = W2.vertexSeq().
Proof: Define P[walk of G1] ≡ there exists a walk W2 of G2 such that
$1.vertexSeq() = W2.vertexSeq(). For every trivial walk W of G1, P[W ].
For every walk W of G1 and for every object e such that
e ∈ W.last().edgesInOut() and P[W ] holds P[W.addEdge(e)]. For every
walk W1 of G1, P[W1]. �

(99) Let us consider a graph G1, a subgraph G2 of G1 with directed-parallel
edges removed, and a walk W1 of G1. Then there exists a walk W2 of G2
such thatW1.vertexSeq() = W2.vertexSeq(). The theorem is a consequence
of (95) and (98).

(100) Let us consider a graph G1, a subgraph G2 of G1 with parallel edges
removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
G1.reachableFrom(v1) = G2.reachableFrom(v2). The theorem is a con-
sequence of (35).

(101) Let us consider a graph G1, a subgraph G2 of G1 with directed-parallel
edges removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
G1.reachableFrom(v1) = G2.reachableFrom(v2). The theorem is a conse-
quence of (35).

Let G be a connected graph. Note that every subgraph of G with parallel
edges removed is connected and every subgraph of G with directed-parallel edges
removed is connected.

Let G be a non connected graph. One can verify that every subgraph of G
with parallel edges removed is non connected and every subgraph of G with
directed-parallel edges removed is non connected.
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Now we state the propositions:

(102) Let us consider a graph G1, and a subgraph G2 of G1 with parallel edges
removed. Then G1.componentSet() = G2.componentSet(). The theorem is
a consequence of (100) and (37).

(103) Let us consider a graph G1, and a subgraph G2 of G1 with directed-
parallel edges removed. Then G1.componentSet() = G2.componentSet().
The theorem is a consequence of (101) and (37).

(104) Let us consider a graph G1, and a subgraph G2 of G1 with parallel ed-
ges removed. Then G1.numComponents() = G2.numComponents(). The
theorem is a consequence of (100) and (38).

(105) Let us consider a graph G1, and a subgraph G2 of G1 with directed-
parallel edges removed. Then G1.numComponents() =
G2.numComponents(). The theorem is a consequence of (101) and (38).

(106) Let us consider a graph G1, and a subgraph G2 of G1 with parallel edges
removed. Then G1 is chordal if and only if G2 is chordal. The theorem is
a consequence of (98), (30), (32), and (29).

(107) Let us consider a graph G1, and a subgraph G2 of G1 with directed-
parallel edges removed. Then G1 is chordal if and only if G2 is chordal.
The theorem is a consequence of (95) and (106).

Let G be a chordal graph. Note that every subgraph of G with parallel
edges removed is chordal and every subgraph of G with directed-parallel edges
removed is chordal.

Now we state the propositions:

(108) Let us consider a graph G1, a set v, a subgraph G2 of G1 with parallel
edges removed, and a subgraph G3 of G1 with vertex v removed. Then
every subgraph of G2 with vertex v removed is a subgraph of G3 with
parallel edges removed. The theorem is a consequence of (93) and (91).

(109) Let us consider a graph G1, a subgraph G2 of G1 with parallel edges
removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then v1 is
cut-vertex iff v2 is cut-vertex. The theorem is a consequence of (108) and
(104).

(110) Let us consider a graph G1, a subgraph G2 of G1 with directed-parallel
edges removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
v1 is cut-vertex iff v2 is cut-vertex. The theorem is a consequence of (95)
and (109).

(111) Let us consider a graph G1, a subgraph G2 of G1 with parallel edges
removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then v1 is
isolated iff v2 is isolated.
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Proof: v1.edgesInOut() = ∅. �

(112) Let us consider a graph G1, a subgraph G2 of G1 with directed-parallel
edges removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
v1 is isolated iff v2 is isolated. The theorem is a consequence of (95) and
(111).

(113) Let us consider a graph G1, a subgraph G2 of G1 with parallel edges
removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2 and v1 is
endvertex, then v2 is endvertex. The theorem is a consequence of (111).

(114) Let us consider a graph G1, a subgraph G2 of G1 with directed-parallel
edges removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2 and v1
is endvertex, then v2 is endvertex. The theorem is a consequence of (112).

Let G be a graph. A simple graph of G is a subgraph of G defined by

(Def. 9) there exists a representative selection of the parallel edges E of G such
that it is a subgraph of G induced by the vertices of G and E \(G.loops()).

A directed-simple graph of G is a subgraph of G defined by

(Def. 10) there exists a representative selection of the directed-parallel edges E
of G such that it is a subgraph of G induced by the vertices of G and
E \ (G.loops()).

Now we state the propositions:

(115) Let us consider a graph G1, and a subgraph G2 of G1 with parallel edges
removed. Then every subgraph of G2 with loops removed is a simple graph
of G1. The theorem is a consequence of (48).

(116) Let us consider a graph G1, and a subgraph G2 of G1 with directed-
parallel edges removed. Then every subgraph of G2 with loops removed is
a directed-simple graph of G1. The theorem is a consequence of (48).

Let us consider a graph G1 and a subgraph G2 of G1 with loops removed.
Now we state the propositions:

(117) Every subgraph of G2 with parallel edges removed is a simple graph of
G1. The theorem is a consequence of (80).

(118) Every subgraph of G2 with directed-parallel edges removed is a directed-
simple graph of G1. The theorem is a consequence of (81).

(119) Let us consider a graph G1, and a simple graph G3 of G1. Then there
exists a subgraph G2 of G1 with parallel edges removed such that G3 is
a subgraph of G2 with loops removed.
Proof: Consider E being a representative selection of the parallel edges
of G1 such that G3 is a subgraph of G1 induced by the vertices of G1 and
E \ (G1.loops()). Set G2 = the subgraph of G1 induced by the vertices of
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G1 and E. For every object e, e ∈ the edges of G3 iff e ∈ (the edges of
G2) \ (G2.loops()). �

(120) Let us consider a graph G1, and a directed-simple graph G3 of G1. Then
there exists a subgraph G2 of G1 with directed-parallel edges removed
such that G3 is a subgraph of G2 with loops removed.
Proof: Consider E being a representative selection of the directed-parallel
edges of G1 such that G3 is a subgraph of G1 induced by the vertices of G1
and E\(G1.loops()). Set G2 = the subgraph of G1 induced by the vertices
of G1 and E. For every object e, e ∈ the edges of G3 iff e ∈ (the edges of
G2) \ (G2.loops()). �

Let us consider a graph G1 and a subgraph G2 of G1 with loops removed.
Now we state the propositions:

(121) Every simple graph of G1 is a subgraph of G2 with parallel edges remo-
ved.

(122) Every directed-simple graph of G1 is a subgraph of G2 with directed-
parallel edges removed. The theorem is a consequence of (45) and (6).

Let us consider a loopless graph G1 and a graph G2. Now we state the
propositions:

(123) G2 is a simple graph of G1 if and only if G2 is a subgraph of G1 with
parallel edges removed.

(124) G2 is a directed-simple graph of G1 if and only if G2 is a subgraph of G1
with directed-parallel edges removed.

(125) Let us consider a non-multi graph G1, and a graph G2. Then G2 is
a simple graph of G1 if and only if G2 is a subgraph of G1 with loops
removed. The theorem is a consequence of (74).

(126) Let us consider a non-directed-multi graph G1, and a graph G2. Then
G2 is a directed-simple graph of G1 if and only if G2 is a subgraph of G1
with loops removed. The theorem is a consequence of (76).

Let G be a graph. Note that every simple graph of G is spanning, loopless,
non-multi, and simple and every directed-simple graph ofG is spanning, loopless,
non-directed-multi, and directed-simple and there exists a simple graph of G
which is plain and there exists a directed-simple graph of G which is plain.

Now we state the propositions:

(127) Let us consider a simple graph G1, and a graph G2. Then G1 ≈ G2 if
and only if G2 is a simple graph of G1. The theorem is a consequence of
(74).

(128) Let us consider a directed-simple graph G1, and a graph G2. Then G1 ≈
G2 if and only if G2 is a directed-simple graph of G1. The theorem is
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a consequence of (76).

(129) Let us consider graphs G1, G2, and a simple graph G3 of G1. If G1 ≈ G2,
then G3 is a simple graph of G2. The theorem is a consequence of (50)
and (78).

(130) Let us consider graphs G1, G2, and a directed-simple graph G3 of G1.
If G1 ≈ G2, then G3 is a directed-simple graph of G2. The theorem is
a consequence of (50) and (79).

(131) Let us consider graphs G1, G2, and a simple graph G3 of G1. If G2 ≈ G3,
then G2 is a simple graph of G1.

(132) Let us consider graphs G1, G2, and a directed-simple graph G3 of G1. If
G2 ≈ G3, then G2 is a directed-simple graph of G1.

Let us consider a graph G1 and a directed-simple graph G2 of G1. Now we
state the propositions:

(133) Every simple graph of G2 is a simple graph of G1. The theorem is a con-
sequence of (122), (123), (95), and (117).

(134) There exists a simple graph G3 of G1 such that G3 is a simple graph of
G2. The theorem is a consequence of (122), (96), (117), and (123).

(135) Let us consider a graph G1, and a simple graph G3 of G1. Then there
exists a directed-simple graph G2 of G1 such that G3 is a simple graph of
G2. The theorem is a consequence of (121), (97), (118), and (123).

Let G be a complete graph. Observe that every simple graph of G is complete
and every directed-simple graph of G is complete.

Now we state the propositions:

(136) Let us consider a graph G1, a simple graph G2 of G1, and a walk W1 of
G1. Then there exists a walk W2 of G2 such that W2 is walk from W1.first()
to W1.last(). The theorem is a consequence of (119) and (61).

(137) Let us consider a graph G1, a directed-simple graph G2 of G1, and a walk
W1 of G1. Then there exists a walk W2 of G2 such that W2 is walk from
W1.first() to W1.last(). The theorem is a consequence of (133) and (136).

(138) Let us consider a graph G1, a simple graph G2 of G1, a vertex v1 of
G1, and a vertex v2 of G2. If v1 = v2, then G1.reachableFrom(v1) =
G2.reachableFrom(v2). The theorem is a consequence of (136) and (35).

(139) Let us consider a graph G1, a directed-simple graph G2 of G1, a vertex
v1 of G1, and a vertex v2 of G2. If v1 = v2, then G1.reachableFrom(v1) =
G2.reachableFrom(v2). The theorem is a consequence of (137) and (35).

Let G be a connected graph. Observe that every simple graph of G is con-
nected and every directed-simple graph of G is connected.
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Let G be a non connected graph. One can verify that every simple graph of
G is non connected and every directed-simple graph of G is non connected.

Now we state the propositions:

(140) Let us consider a graph G1, and a simple graph G2 of G1.
Then G1.componentSet() = G2.componentSet(). The theorem is a conse-
quence of (138) and (37).

(141) Let us consider a graph G1, and a directed-simple graph G2 of G1. Then
G1.componentSet() = G2.componentSet(). The theorem is a consequence
of (139) and (37).

(142) Let us consider a graph G1, and a simple graph G2 of G1.
ThenG1.numComponents() = G2.numComponents(). The theorem is a con-
sequence of (138) and (38).

(143) Let us consider a graph G1, and a directed-simple graph G2 of G1. Then
G1.numComponents() = G2.numComponents(). The theorem is a conse-
quence of (139) and (38).

(144) Let us consider a graph G1, and a simple graph G2 of G1. Then G1 is
chordal if and only if G2 is chordal. The theorem is a consequence of (119),
(65), and (106).

(145) Let us consider a graph G1, and a directed-simple graph G2 of G1. Then
G1 is chordal if and only if G2 is chordal. The theorem is a consequence
of (120), (65), and (107).

Let G be a chordal graph. One can check that every simple graph of G is
chordal and every directed-simple graph of G is chordal.

Now we state the propositions:

(146) Let us consider a graph G1, a simple graph G2 of G1, a vertex v1 of G1,
and a vertex v2 of G2. If v1 = v2, then v1 is cut-vertex iff v2 is cut-vertex.
The theorem is a consequence of (119), (67), and (109).

(147) Let us consider a graph G1, a directed-simple graph G2 of G1, a vertex
v1 of G1, and a vertex v2 of G2. If v1 = v2, then v1 is cut-vertex iff v2 is
cut-vertex. The theorem is a consequence of (120), (67), and (110).

(148) Let us consider a loopless graph G1, a simple graph G2 of G1, a vertex
v1 of G1, and a vertex v2 of G2. If v1 = v2, then v1 is isolated iff v2 is
isolated. The theorem is a consequence of (119), (58), and (111).

(149) Let us consider a loopless graph G1, a directed-simple graph G2 of G1,
a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then v1 is isolated iff
v2 is isolated. The theorem is a consequence of (120), (58), and (112).

(150) Let us consider a graph G1, a simple graph G2 of G1, a vertex v1 of G1,
and a vertex v2 of G2. If v1 = v2 and v1 is endvertex, then v2 is endvertex.
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The theorem is a consequence of (119), (113), and (68).

(151) Let us consider a graph G1, a directed-simple graph G2 of G1, a vertex
v1 of G1, and a vertex v2 of G2. If v1 = v2 and v1 is endvertex, then v2 is
endvertex. The theorem is a consequence of (120), (114), and (68).
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