Underlying Simple Graphs

Sebastian Koch
Johannes Gutenberg University
Mainz, Germany ${ }^{11}$

Abstract

Summary. In this article the notion of the underlying simple graph of a graph (as defined in [8) is formalized in the Mizar system [5], along with some convenient variants. The property of a graph to be without decorators (as introduced in [7]) is formalized as well to serve as the base of graph enumerations in the future.

MSC: 68T99 03B35 05C76
Keywords: graph operations; underlying simple graph
MML identifier: GLIB_009, version: 8.1.09 5.59.1363

0 . Introduction

In the Mizar Mathematical Library [2] there are several formalizations of graphs with a varying degree of generality, see [1], 6], 10], 8], 9]. The GLIB_ series (starting with [8]) formalizes general digraphs (that is, digraphs with loops and parallel edges allowed) in Mizar [5] and provides a rich notation so that any digraph in Mizar can be seen as an undirected graph simply by ignoring the direction of the edges (although they are always there). In conclusion, there is no need for another formalization of undirected graphs, in contrast to how it is typically done in the literature (cf. [12], [3]), and the underlying (undirected) graph of a digraph (in the sense of [8]) is itself. For undirected graphs or digraphs possibly containing loops and multiple parallel edges, the underlying (simple) graph or digraph is derived by removing the loops and replacing each

[^0]set of parallel edges with a single edge. That concept requires formalization and this article provides subgraph modes that respectively remove loops, (directed) parallel edges or both from a given (di)graph. "Much of graph theory is concerned with the study of simple graphs" [4, p. 3] which results in many books only studying simple graphs, even when graphs are more generally introduced in the respective book (for example [11]).

The rather extensive preliminaries contain many theorems that would fit well into earlier articles of the GLIB series, for example:

- The source and target of a directed edge in a graph are uniquely determined.
- A walk in a graph is uniquely determined by its vertex and edge sequence.
- Adding vertices to a graph doesn't change adjacencies.

The next section introduces plain graphs. Graphs, as defined in [8], can arbitrarily be expanded with decorators as done in [7]. Therefore for any non empty set S the set containing all graphs with vertex and edge sets contained in S does not exist because of possible decorators, even if S only contains a single element. A graph is called plain if it does not contain additional decorators, and then the set of all plain graphs with vertex and edge sets contained in S can be constructed, which will be needed for graph enumeration at a later point in time.

In the section after that the set of all loops of a graph is introduced as well as a graph operator removing all loops from a given graph as a special case of removing edges.

At the start of the following section, two equivalence relations are defined on the edge set, where two edges are equivalent iff they are (directed) parallel. Then modes are introduced to pick one edge out of each set of (directed) parallel edges. Using such representative edge selections, the graphs with parallel edges removed can be defined as induced subgraphs. While the directed and undirected variants are formalized along each other, there are also some theorems focusing on how they interact with each other.

This trend is continued in the last section, where the underlying simple graphs are introduced as induced subgraphs on the representative edge selections with the loops removed. Naturally, these subgraphs can also be constructed by removing loops and then parallel edges from a graph or vice versa.

1. Preliminaries

Now we state the propositions:
(1) Let us consider sets X, Y. If $Y \subseteq X$, then $X \backslash(X \backslash Y)=Y$.
(2) Let us consider a binary relation R, and a set X. Then
(i) $(R \upharpoonright X)^{\smile}=X \upharpoonleft R^{\smile}$, and
(ii) $(X \upharpoonleft R)^{\smile}=R^{\smile} \mid X$.

Let us consider a function f and a set Y. Now we state the propositions:
(3) $\operatorname{dom}(Y \upharpoonleft f)=f^{-1}(Y)$.

Proof: For every object $x, x \in \operatorname{dom}(Y \mid f)$ iff $x \in f^{-1}(Y)$.
(4) $\quad Y \upharpoonleft f=f \upharpoonright \operatorname{dom}(Y \upharpoonleft f)$. The theorem is a consequence of (3).
(5) Let us consider a one-to-one function f, and a set X. Then
(i) $(f \upharpoonright X)^{-1}=X \upharpoonleft f^{-1}$, and
(ii) $(X \upharpoonleft f)^{-1}=f^{-1} \upharpoonright X$.

The theorem is a consequence of (2).
(6) Let us consider a graph G, and objects $e, x_{1}, y_{1}, x_{2}, y_{2}$. Suppose e joins x_{1} to y_{1} in G and e joins x_{2} to y_{2} in G. Then
(i) $x_{1}=x_{2}$, and
(ii) $y_{1}=y_{2}$.

Let G be a trivial graph. Let us observe that the vertices of G is trivial and every graph which is trivial and non-directed-multi is also non-multi.

Let G be a trivial, non-directed-multi graph. Let us observe that the edges of G is trivial.

Now we state the propositions:
(7) Let us consider a graph G, sets X, Y, and objects e, x, y. Suppose e joins x to y in G and $x \in X$ and $y \in Y$. Then e joins a vertex from X to a vertex from Y in G.
(8) Let us consider a trivial graph G, and a graph H. Suppose the vertices of $H \subseteq$ the vertices of G and the edges of $H \subseteq$ the edges of G. Then H is trivial and subgraph of G.
(9) Let us consider a graph G. Then $G \approx G \upharpoonright$ (the graph selectors).

Let us consider a graph G, sets X, Y, and an object e. Now we state the propositions:
e joins a vertex from X and a vertex from Y in G if and only if e joins a vertex from Y and a vertex from X in G.
(11) e joins a vertex from X and a vertex from Y in G if and only if e joins a vertex from X to a vertex from Y in G or e joins a vertex from Y to a vertex from X in G.
Let us consider a graph G and objects e, v, w. Now we state the propositions:
(12) If e joins a vertex from $\{v\}$ and a vertex from $\{w\}$ in G, then e joins v and w in G.
(13) If e joins a vertex from $\{v\}$ to a vertex from $\{w\}$ in G, then e joins v to w in G.
(14) Let us consider a graph G, and objects v, w. Suppose $v \neq w$. Then
(i) G.edgesDBetween $(\{v\},\{w\})$ misses G.edgesDBetween $(\{w\},\{v\})$, and
(ii) G.edgesBetween $(\{v\},\{w\})=G$.edgesDBetween $(\{v\},\{w\}) \cup$ G.edgesDBetween $(\{w\},\{v\})$.

The theorem is a consequence of (11).
(15) Let us consider a graph G, and a set X. Then G.edgesBetween $(X, X)=$ G.edgesDBetween (X, X). The theorem is a consequence of (11).
(16) Let us consider a graph G, and sets X, Y. Then G.edgesBetween $(X, Y)=$ G.edgesBetween (Y, X). The theorem is a consequence of (10).
Let us consider a graph G. Now we state the propositions:
(17) G is loopless if and only if for every object v, there exists no object e such that e joins v to v in G.
Proof: For every object v, there exists no object e such that e joins v and v in G.
(18) G is loopless if and only if for every object v, there exists no object e such that e joins a vertex from $\{v\}$ and a vertex from $\{v\}$ in G.
Proof: For every object v, there exists no object e such that e joins v and v in G.
(19) G is loopless if and only if for every object v, there exists no object e such that e joins a vertex from $\{v\}$ to a vertex from $\{v\}$ in G. The theorem is a consequence of (11) and (18).
(20) G is loopless if and only if for every object v, G.edgesBetween $(\{v\},\{v\})=$ \emptyset. The theorem is a consequence of (18).
(21) G is loopless if and only if for every object v, G.edgesDBetween $(\{v\},\{v\})=$ \emptyset. The theorem is a consequence of (19).
Let G be a loopless graph and v be an object. One can verify that
G.edgesBetween $(\{v\},\{v\})$ is empty and G.edgesDBetween $(\{v\},\{v\})$ is empty.
(22) Let us consider a graph G. Then G is non-multi if and only if for every objects v, w, G.edgesBetween $(\{v\},\{w\})$ is trivial. The theorem is a consequence of (12).
Let G be a non-multi graph and v, w be objects. One can verify that G.edgesBetween $(\{v\},\{w\})$ is trivial. Now we state the proposition:
(23) Let us consider a graph G. Then G is non-directed-multi if and only if for every objects v, w, G.edgesDBetween $(\{v\},\{w\})$ is trivial. The theorem is a consequence of (13) and (7).
Let G be a non-directed-multi graph and v, w be objects. One can check that G.edgesDBetween $(\{v\},\{w\})$ is trivial.

Let G be a non trivial graph. Let us note that every subgraph of G which is spanning is also non trivial.

Let G be a graph. One can check that every vertex of G which is isolated is also non endvertex.

Let us consider a graph G and a vertex v of G. Now we state the propositions:
(24) $\quad(G \cdot$ walkOf $(v)) \cdot \operatorname{edgeSeq}()=\varepsilon_{\alpha}$, where α is the edges of G.
(25) $\quad(G \cdot \operatorname{walkOf}(v)) \cdot \operatorname{edges}()=\emptyset$. The theorem is a consequence of (24).

Let G be a graph and W be a trivial walk of G. Note that W.edges() is empty and trivial.

Let W be a walk of G. Note that W.vertices () is non empty.
Now we state the propositions:
(26) Let us consider graphs G_{1}, G_{2}, a walk W_{1} of G_{1}, and a walk W_{2} of G_{2}. Suppose $W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$ and $W_{1} \cdot \operatorname{edgeSeq}()=$ W_{2}.edgeSeq(). Then $W_{1}=W_{2}$.
Proof: For every natural number n such that $1 \leqslant n \leqslant$ len W_{1} holds $W_{1}(n)=W_{2}(n)$.
(27) Let us consider a graph G, a finite sequence p of elements of the vertices of G, and a finite sequence q of elements of the edges of G. Suppose len $p=1+\operatorname{len} q$ and for every element n of \mathbb{N} such that $1 \leqslant n$ and $n+1 \leqslant \operatorname{len} p$ holds $q(n)$ joins $p(n)$ and $p(n+1)$ in G. Then there exists a walk W of G such that
(i) $W \cdot \operatorname{vertexSeq}()=p$, and
(ii) W.edgeSeq ()$=q$.

Proof: Define \mathcal{P} [object, object] \equiv there exists a natural number m such that $m=\$_{1}$ and if m is odd, then $\$_{2}=p(m+1 \operatorname{div} 2)$ and if m is even, then $\$_{2}=q(m \operatorname{div} 2)$. For every natural number k such that $k \in \operatorname{Seg}(\operatorname{len} p+\operatorname{len} q)$ there exists an element x of (the vertices of $G) \cup($ the edges of G) such that $\mathcal{P}[k, x]$. Consider W being a finite sequence of elements of (the vertices of
$G) \cup($ the edges of $G)$ such that $\operatorname{dom} W=\operatorname{Seg}(\operatorname{len} p+\operatorname{len} q)$ and for every natural number k such that $k \in \operatorname{Seg}(\operatorname{len} p+\operatorname{len} q)$ holds $\mathcal{P}[k, W(k)] . W(1) \in$ the vertices of G. For every odd element n of \mathbb{N} such that $n<$ len W holds $W(n+1)$ joins $W(n)$ and $W(n+2)$ in G. For every natural number k such that $1 \leqslant k \leqslant \operatorname{len} p$ holds $p(k)=(W$.vertexSeq ()$)(k)$. For every natural number k such that $1 \leqslant k \leqslant \operatorname{len} q$ holds $q(k)=(W$.edgeSeq ()$)(k)$.
(28) Let us consider a graph G, and a walk W of G. Then len(W.vertexSeq()) $=$ $W . \operatorname{length}()+1$.
(29) Let us consider graphs G_{1}, G_{2}, a walk W_{1} of G_{1}, a walk W_{2} of G_{2}, and an odd natural number n. If $W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$, then $W_{1}(n)=W_{2}(n)$.
Let us consider graphs G_{1}, G_{2}, a walk W_{1} of G_{1}, and a walk W_{2} of G_{2}. Now we state the propositions:
(30) Suppose $W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$. Then
(i) len $W_{1}=\operatorname{len} W_{2}$, and
(ii) $W_{1} \cdot$ length ()$=W_{2} \cdot$ length () , and
(iii) $W_{1} \cdot$ first ()$=W_{2}$.first ($)$, and
(iv) $W_{1} \cdot \operatorname{last}()=W_{2} \cdot \operatorname{last}()$, and
(v) W_{2} is walk from W_{1}.first() to W_{1}.last().

The theorem is a consequence of (29).
(31) If $W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$, then if W_{1} is not trivial, then W_{2} is not trivial and if W_{1} is closed, then W_{2} is closed. The theorem is a consequence of (30).
(32) \quad Suppose $W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$ and len $W_{1} \neq 5$. Then
(i) if W_{1} is path-like, then W_{2} is path-like, and
(ii) if W_{1} is cycle-like, then W_{2} is cycle-like.

Proof: If W_{1} is path-like, then W_{2} is path-like. \square
The scheme IndWalk deals with a graph \mathcal{G} and a unary predicate \mathcal{P} and states that
(Sch. 1) For every walk W of $\mathcal{G}, \mathcal{P}[W]$
provided

- for every trivial walk W of $\mathcal{G}, \mathcal{P}[W]$ and
- for every walk W of \mathcal{G} and for every object e such that $e \in W$.last().edgesInOut() and $\mathcal{P}[W]$ holds $\mathcal{P}[W$.addEdge $(e)]$.

The scheme IndDWalk deals with a graph \mathcal{G} and a unary predicate \mathcal{P} and states that
(Sch. 2) For every dwalk W of $\mathcal{G}, \mathcal{P}[W]$
provided

- for every trivial dwalk W of $\mathcal{G}, \mathcal{P}[W]$ and
- for every dwalk W of \mathcal{G} and for every object e such that $e \in W$.last().edgesOut() and $\mathcal{P}[W]$ holds $\mathcal{P}[W$.addEdge $(e)]$.

Now we state the propositions:
(33) Let us consider a graph G_{1}, a subset E of the edges of G_{1}, and a subgraph G_{2} of G_{1} induced by the vertices of G_{1} and E. If G_{2} is connected, then G_{1} is connected.
(34) Let us consider a graph G_{1}, a set E, and a subgraph G_{2} of G_{1} with edges E removed. If G_{2} is connected, then G_{1} is connected.
Let G_{1} be a non connected graph and E be a set. One can check that every subgraph of G_{1} with edges E removed is non connected.
(35) Let us consider a graph G_{1}, and a subgraph G_{2} of G_{1}. Suppose for every walk W_{1} of G_{1}, there exists a walk W_{2} of G_{2} such that W_{2} is walk from W_{1}.first() to W_{1}.last(). Let us consider a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$, then G_{1}.reachableFrom $\left(v_{1}\right)=G_{2}$.reachableFrom $\left(v_{2}\right)$.
(36) Let us consider a graph G_{1}, and a subgraph G_{2} of G_{1}. Suppose for every walk W_{1} of G_{1}, there exists a walk W_{2} of G_{2} such that W_{2} is walk from W_{1}.first() to W_{1}.last(). If G_{1} is connected, then G_{2} is connected.
Let us consider a graph G_{1} and a spanning subgraph G_{2} of G_{1}. Now we state the propositions:
(37) Suppose for every vertex v_{1} of G_{1} and for every vertex v_{2} of G_{2} such that $v_{1}=v_{2}$ holds G_{1}.reachableFrom $\left(v_{1}\right)=G_{2}$.reachableFrom $\left(v_{2}\right)$. Then $G_{1} \cdot \operatorname{componentSet}()=G_{2} \cdot \operatorname{componentSet}()$.
(38) Suppose for every vertex v_{1} of G_{1} and for every vertex v_{2} of G_{2} such that $v_{1}=v_{2}$ holds G_{1}.reachableFrom $\left(v_{1}\right)=G_{2}$.reachableFrom $\left(v_{2}\right)$. Then G_{1}.numComponents ()$=G_{2}$.numComponents () . The theorem is a consequence of (37).
(39) Let us consider a graph G. Then G is loopless if and only if for every vertex v of G, v and v are not adjacent.
Let G be a non complete graph. One can check that every subgraph of G which is spanning is also non complete.

Now we state the propositions:
(40) Let us consider graphs G_{2}, G_{3}, and a supergraph G_{1} of G_{3}. If $G_{1} \approx G_{2}$, then G_{2} is a supergraph of G_{3}.
(41) Let us consider a graph G_{2}, a set V, a supergraph G_{1} of G_{2} extended by the vertices from V, sets x, y, and an object e. Then
(i) e joins x and y in G_{1} iff e joins x and y in G_{2}, and
(ii) e joins x to y in G_{1} iff e joins x to y in G_{2}, and
(iii) e joins a vertex from x and a vertex from y in G_{1} iff e joins a vertex from x and a vertex from y in G_{2}, and
(iv) e joins a vertex from x to a vertex from y in G_{1} iff e joins a vertex from x to a vertex from y in G_{2}.
(42) Let us consider graphs G_{1}, G_{2}. Suppose $G_{1} \approx G_{2}$. Then G_{2} is a graph given by reversing directions of the edges \emptyset of G_{1}.
(43) Every graph is a graph given by reversing directions of the edges \emptyset of G.

2. Plain Graphs

Let G be a graph. We say that G is plain if and only if
(Def. 1) $\operatorname{dom} G=$ the graph selectors.
Note that $G \upharpoonright$ (the graph selectors) is plain.
Let V be a non empty set, E be a set, and S, T be functions from E into V. Let us observe that createGraph (V, E, S, T) is plain.

Let G be a graph and X be a set. Note that G.set(WeightSelector, X) is non plain and G.set(ELabelSelector, X) is non plain and G.set(VLabelSelector, X) is non plain and there exists a graph which is plain.

Now we state the proposition:
(44) Let us consider plain graphs G_{1}, G_{2}. If $G_{1} \approx G_{2}$, then $G_{1}=G_{2}$.

Let G be a graph. Note that there exists a subgraph of G which is plain.
Let V be a set. One can check that there exists a subgraph of G with vertices V removed which is plain.

Let E be a set. Let us note that there exists a subgraph of G induced by V and E which is plain and there exists a subgraph of G with edges E removed which is plain and there exists a graph given by reversing directions of the edges E of G which is plain.

Let v be a set. One can verify that there exists a subgraph of G with vertex v removed which is plain.

Let e be a set. One can verify that there exists a subgraph of G with edge e removed which is plain and there exists a supergraph of G which is plain.

Let V be a set. Let us note that there exists a supergraph of G extended by the vertices from V which is plain.

Let v, e, w be objects. One can check that there exists a supergraph of G extended by e between vertices v and w which is plain and there exists a supergraph of G extended by v, w and e between them which is plain.

Let v be an object and V be a set. Let us note that there exists a supergraph of G extended by vertex v and edges from V of G to v which is plain and there exists a supergraph of G extended by vertex v and edges from v to V of G which is plain and there exists a supergraph of G extended by vertex v and edges between v and V of G which is plain.

3. Graphs with Loops Removed

Let G be a graph. The functor G.loops() yielding a subset of the edges of G is defined by
(Def. 2) for every object $e, e \in i t$ iff there exists an object v such that e joins v and v in G.

Now we state the propositions:
(45) Let us consider a graph G, and an object e. Then $e \in G$.loops() if and only if there exists an object v such that e joins v to v in G.
(46) Let us consider a graph G, and objects e, v, w. If e joins v and w in G and $v \neq w$, then $e \notin G$.loops () .
(47) Let us consider a graph G. Then G is loopless if and only if $G \cdot \operatorname{loops}()=\emptyset$.

Let G be a loopless graph. Let us observe that G.loops() is empty.
Let G be a non loopless graph. Let us observe that G.loops() is non empty. Now we state the propositions:
(48) Let us consider a graph G_{1}, and a subgraph G_{2} of G_{1}. Then $G_{2} \cdot \operatorname{loops}() \subseteq$ $G_{1} \cdot \operatorname{loops}()$. The theorem is a consequence of (45).
(49) Let us consider a graph G_{2}, and a supergraph G_{1} of G_{2}. Then $G_{2} \cdot \operatorname{loops}() \subseteq$ $G_{1} \cdot \operatorname{loops}()$. The theorem is a consequence of (48).
(50) Let us consider graphs G_{1}, G_{2}. If $G_{1} \approx G_{2}$, then G_{1}. loops ()$=G_{2} \cdot \operatorname{loops}()$. The theorem is a consequence of (48).
(51) Let us consider a graph G_{1}, a set E, and a graph G_{2} given by reversing directions of the edges E of G_{1}. Then $G_{1} \cdot \operatorname{loops}()=G_{2} \cdot \operatorname{loops}()$.
(52) Let us consider a graph G_{2}, a set V, and a supergraph G_{1} of G_{2} extended by the vertices from V. Then $G_{1} \cdot \operatorname{loops}()=G_{2} \cdot \operatorname{loops}()$. The theorem is a consequence of (41) and (49).
(53) Let us consider a graph G_{2}, objects v_{1}, e, v_{2}, and a supergraph G_{1} of G_{2} extended by e between vertices v_{1} and v_{2}. If $v_{1} \neq v_{2}$, then $G_{1} \cdot \operatorname{loops}()=$ G_{2}.loops(). The theorem is a consequence of (50) and (49).
(54) Let us consider a graph G_{2}, a vertex v of G_{2}, an object e, and a supergraph G_{1} of G_{2} extended by e between vertices v and v. Suppose $e \notin$ the edges of G_{2}. Then $G_{1} \cdot \operatorname{loops}()=G_{2} \cdot \operatorname{loops}() \cup\{e\}$. The theorem is a consequence of (45) and (49).
(55) Let us consider a graph G_{2}, objects v_{1}, e, v_{2}, and a supergraph G_{1} of G_{2} extended by v_{1}, v_{2} and e between them. Then $G_{1} \cdot \operatorname{loops}()=G_{2} \cdot \operatorname{loops}()$. The theorem is a consequence of (49) and (50).
(56) Let us consider a graph G_{2}, an object v, a set V, and a supergraph G_{1} of G_{2} extended by vertex v and edges between v and V of G_{2}. Then $G_{1} \cdot \operatorname{loops}()=G_{2} \cdot \operatorname{loops}()$. The theorem is a consequence of (49) and (50).
(57) Let us consider a graph G, and a path P of G. Then
(i) P.edges() misses G.loops(), or
(ii) there exist objects v, e such that e joins v and v in G and $P=$ G.walkOf (v, e, v).

Let G be a graph. A subgraph of G with loops removed is a subgraph of G with edges G.loops() removed. Now we state the proposition:
(58) Let us consider a loopless graph G_{1}, and a graph G_{2}. Then $G_{1} \approx G_{2}$ if and only if G_{2} is a subgraph of G_{1} with loops removed.
Let us consider graphs G_{1}, G_{2} and a subgraph G_{3} of G_{1} with loops removed.
(59) $\quad G_{2} \approx G_{3}$ if and only if G_{2} is a subgraph of G_{1} with loops removed.
(60) If $G_{1} \approx G_{2}$, then G_{3} is a subgraph of G_{2} with loops removed. The theorem is a consequence of (50).
Let G be a graph. Observe that every subgraph of G with loops removed is loopless and there exists a subgraph of G with loops removed which is plain.

Let G be a non-multi graph. Observe that every subgraph of G with loops removed is simple.

Let G be a non-directed-multi graph. One can check that every subgraph of G with loops removed is directed-simple.

Let G be a complete graph. Observe that every subgraph of G with loops removed is complete.

Now we state the propositions:
(61) Let us consider a graph G_{1}, a subgraph G_{2} of G_{1} with loops removed, and a walk W_{1} of G_{1}. Then there exists a walk W_{2} of G_{2} such that W_{2} is walk from W_{1}.first() to $W_{1} \cdot \operatorname{last}()$. The theorem is a consequence of (57).
(62) Let us consider a graph G_{1}, a subgraph G_{2} of G_{1} with loops removed, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$, then
G_{1}.reachableFrom $\left(v_{1}\right)=G_{2}$.reachableFrom $\left(v_{2}\right)$. The theorem is a consequence of (61) and (35).
Let G be a connected graph. Observe that every subgraph of G with loops removed is connected. Let G be a non connected graph. Observe that every subgraph of G with loops removed is non connected. Let us consider a graph G_{1} and a subgraph G_{2} of G_{1} with loops removed. Now we state the propositions:
(63) $\quad G_{1} \cdot \operatorname{componentSet}()=G_{2} \cdot$ componentSet () . The theorem is a consequence of (62) and (37).
(64) G_{1}.numComponents ()$=G_{2}$.numComponents(). The theorem is a consequence of (62) and (38).
(65) G_{1} is chordal if and only if G_{2} is chordal. The theorem is a consequence of (46) and (57).
Let G be a chordal graph. Let us observe that every subgraph of G with loops removed is chordal. Now we state the proposition:
(66) Let us consider a graph G_{1}, a set v, a subgraph G_{2} of G_{1} with loops removed, and a subgraph G_{3} of G_{1} with vertex v removed. Then every subgraph of G_{2} with vertex v removed is a subgraph of G_{3} with loops removed. The theorem is a consequence of (1), (48), (59), and (60).
Let us consider a graph G_{1}, a subgraph G_{2} of G_{1} with loops removed, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. Now we state the propositions:
(67) If $v_{1}=v_{2}$, then v_{1} is cut-vertex iff v_{2} is cut-vertex. The theorem is a consequence of (66) and (64).
(68) If $v_{1}=v_{2}$ and v_{1} is endvertex, then v_{2} is endvertex. The theorem is a consequence of (46).

4. Graphs with Parallel Edges Removed

Let G be a graph. The functors: $\operatorname{EdgeParEqRel}(G)$ and $\operatorname{DEdgeParEqRel}(G)$ yielding equivalence relations of the edges of G are defined by conditions
(Def. 3) for all objects $e_{1}, e_{2},\left\langle e_{1}, e_{2}\right\rangle \in \operatorname{EdgeParEqRel}(G)$ iff there exist objects v_{1}, v_{2} such that e_{1} joins v_{1} and v_{2} in G and e_{2} joins v_{1} and v_{2} in G,
(Def. 4) for all objects $e_{1}, e_{2},\left\langle e_{1}, e_{2}\right\rangle \in \operatorname{DEdgeParEqRel}(G)$ iff there exist objects v_{1}, v_{2} such that e_{1} joins v_{1} to v_{2} in G and e_{2} joins v_{1} to v_{2} in G, respectively.

Let us consider a graph G. Now we state the propositions:
(69) $\operatorname{DEdgeParEqRel}(G) \subseteq \operatorname{EdgeParEqRel}(G)$.
(70) G is non-multi if and only if $\operatorname{EdgeParEqRel}(G)=\operatorname{id}_{\alpha}$, where α is the edges of G.
(71) G is non-directed-multi if and only if $\operatorname{DEdgeParEqRel}(G)=\mathrm{id}_{\alpha}$, where α is the edges of G.
Let G be an edgeless graph. One can verify that $\operatorname{EdgeParEqRel}(G)$ is empty and $\operatorname{DEdgeParEqRel}(G)$ is empty.

Let G be a non edgeless graph. Observe that $\operatorname{EdgeParEqRel}(G)$ is non empty and $\operatorname{DEdgeParEqRel}(G)$ is non empty.

Let G be a graph.
A representative selection of the parallel edges of G is a subset of the edges of G defined by
(Def. 5) for every objects v, w, e_{0} such that e_{0} joins v and w in G there exists an object e such that e joins v and w in G and $e \in i t$ and for every object e^{\prime} such that e^{\prime} joins v and w in G and $e^{\prime} \in i t$ holds $e^{\prime}=e$.
A representative selection of the directed-parallel edges of G is a subset of the edges of G defined by
(Def. 6) for every objects v, w, e_{0} such that e_{0} joins v to w in G there exists an object e such that e joins v to w in G and $e \in i t$ and for every object e^{\prime} such that e^{\prime} joins v to w in G and $e^{\prime} \in i t$ holds $e^{\prime}=e$.
Let G be an edgeless graph. Let us observe that every representative selection of the parallel edges of G is empty and every representative selection of the directed-parallel edges of G is empty.

Let G be a non edgeless graph. Let us observe that every representative selection of the parallel edges of G is non empty and every representative selection of the directed-parallel edges of G is non empty.

Now we state the propositions:
(72) Let us consider a graph G, and a representative selection of the directedparallel edges E_{1} of G. Then there exists a representative selection of the parallel edges E_{2} of G such that $E_{2} \subseteq E_{1}$.
Proof: Set $A=\{\{e$, where e is an element of the edges of $G: e$ joins v_{1} and v_{2} in G and $\left.e \in E_{1}\right\}$, where v_{1}, v_{2} are vertices of G : there exists an object e_{0} such that e_{0} joins v_{1} and v_{2} in $\left.G\right\}$. Define \mathcal{P} [object, object] \equiv there exists a non empty set S such that $\$_{1}=S$ and $\$_{2}=$ the element of S. For every object x such that $x \in A$ there exists an object y such that $\mathcal{P}[x, y]$. Consider f being a function such that $\operatorname{dom} f=A$ and for every object x such that $x \in A$ holds $\mathcal{P}[x, f(x)]$. For every object e such that $e \in \operatorname{rng} f$ holds $e \in E_{1}$. Reconsider $E_{2}=\operatorname{rng} f$ as a subset of the edges of G. For every objects v, w, e_{0} such that e_{0} joins v and w in G there exists an object e such that e joins v and w in G and $e \in E_{2}$ and for every object
e^{\prime} such that e^{\prime} joins v and w in G and $e^{\prime} \in E_{2}$ holds $e^{\prime}=e . \square$
(73) Let us consider a graph G, and a representative selection of the parallel edges E_{2} of G. Then there exists a representative selection of the directedparallel edges E_{1} of G such that $E_{2} \subseteq E_{1}$.
Proof: Set $A=\left\{\left\{e\right.\right.$, where e is an element of the edges of $G: e$ joins v_{1} to v_{2} in $\left.G\right\}$, where v_{1}, v_{2} are vertices of G : there exists an object e_{0} such that e_{0} joins v_{1} to v_{2} in G and for every object e_{0} such that e_{0} joins v_{1} to v_{2} in G holds $\left.e_{0} \notin E_{2}\right\}$. Define \mathcal{P} [object, object] \equiv there exists a non empty set S such that $\$_{1}=S$ and $\$_{2}=$ the element of S. For every object x such that $x \in A$ there exists an object y such that $\mathcal{P}[x, y]$. Consider f being a function such that $\operatorname{dom} f=A$ and for every object x such that $x \in A$ holds $\mathcal{P}[x, f(x)]$. For every object e such that $e \in \operatorname{rng} f$ holds $e \in$ the edges of G. Reconsider $E_{1}=E_{2} \cup \operatorname{rng} f$ as a subset of the edges of G. For every objects v, w, e_{0} such that e_{0} joins v to w in G there exists an object e such that e joins v to w in G and $e \in E_{1}$ and for every object e^{\prime} such that e^{\prime} joins v to w in G and $e^{\prime} \in E_{1}$ holds $e^{\prime}=e$.
(74) Let us consider a non-multi graph G, and a representative selection of the parallel edges E of G. Then $E=$ the edges of G.
(75) Let us consider a graph G. Suppose there exists a representative selection of the parallel edges E of G such that $E=$ the edges of G. Then G is nonmulti.
(76) Let us consider a non-directed-multi graph G, and a representative selection of the directed-parallel edges E of G. Then $E=$ the edges of G.
(77) Let us consider a graph G. Suppose there exists a representative selection of the directed-parallel edges E of G such that $E=$ the edges of G. Then G is non-directed-multi.
(78) Let us consider a graph G_{1}, a subgraph G_{2} of G_{1}, and a representative selection of the parallel edges E of G_{1}. Suppose $E \subseteq$ the edges of G_{2}. Then E is a representative selection of the parallel edges of G_{2}.
(79) Let us consider a graph G_{1}, a subgraph G_{2} of G_{1}, and a representative selection of the directed-parallel edges E of G_{1}. Suppose $E \subseteq$ the edges of G_{2}. Then E is a representative selection of the directed-parallel edges of G_{2}.
(80) Let us consider a graph G_{1}, a subgraph G_{2} of G_{1}, and a representative selection of the parallel edges E_{2} of G_{2}. Then there exists a representative selection of the parallel edges E_{1} of G_{1} such that $E_{2}=E_{1} \cap$ (the edges of G_{2}).
Proof: Set $A=\left\{\left\{e\right.\right.$, where e is an element of the edges of $G_{1}: e$ joins v_{1}
and v_{2} in $\left.G_{1}\right\}$, where v_{1}, v_{2} are vertices of G_{1} : there exists an object e_{0} such that e_{0} joins v_{1} and v_{2} in G_{1} and for every object e_{0} such that e_{0} joins v_{1} and v_{2} in G_{1} holds $\left.e_{0} \notin E_{2}\right\}$. Define \mathcal{P} [object, object] \equiv there exists a non empty set S such that $\$_{1}=S$ and $\$_{2}=$ the element of S. For every object x such that $x \in A$ there exists an object y such that $\mathcal{P}[x, y]$. Consider f being a function such that $\operatorname{dom} f=A$ and for every object x such that $x \in A$ holds $\mathcal{P}[x, f(x)]$. For every object e such that $e \in \operatorname{rng} f$ holds $e \in$ the edges of G_{1}. Reconsider $E_{1}=E_{2} \cup \operatorname{rng} f$ as a subset of the edges of G_{1}. For every objects v, w, e_{0} such that e_{0} joins v and w in G_{1} there exists an object e such that e joins v and w in G_{1} and $e \in E_{1}$ and for every object e^{\prime} such that e^{\prime} joins v and w in G_{1} and $e^{\prime} \in E_{1}$ holds $e^{\prime}=e$. For every object $x, x \in E_{2}$ iff $x \in E_{1}$ and $x \in$ the edges of G_{2}.
(81) Let us consider a graph G_{1}, a subgraph G_{2} of G_{1}, and a representative selection of the directed-parallel edges E_{2} of G_{2}. Then there exists a representative selection of the directed-parallel edges E_{1} of G_{1} such that $E_{2}=E_{1} \cap\left(\right.$ the edges of $\left.G_{2}\right)$.
Proof: Set $A=\left\{\left\{e\right.\right.$, where e is an element of the edges of $G_{1}: e$ joins v_{1} to v_{2} in $\left.G_{1}\right\}$, where v_{1}, v_{2} are vertices of G_{1} : there exists an object e_{0} such that e_{0} joins v_{1} to v_{2} in G_{1} and for every object e_{0} such that e_{0} joins v_{1} to v_{2} in G_{1} holds $\left.e_{0} \notin E_{2}\right\}$. Define \mathcal{P} [object, object] \equiv there exists a non empty set S such that $\$_{1}=S$ and $\$_{2}=$ the element of S. For every object x such that $x \in A$ there exists an object y such that $\mathcal{P}[x, y]$. Consider f being a function such that $\operatorname{dom} f=A$ and for every object x such that $x \in A$ holds $\mathcal{P}[x, f(x)]$. For every object e such that $e \in \operatorname{rng} f$ holds $e \in$ the edges of G_{1}. Reconsider $E_{1}=E_{2} \cup \operatorname{rng} f$ as a subset of the edges of G_{1}. For every objects v, w, e_{0} such that e_{0} joins v to w in G_{1} there exists an object e such that e joins v to w in G_{1} and $e \in E_{1}$ and for every object e^{\prime} such that e^{\prime} joins v to w in G_{1} and $e^{\prime} \in E_{1}$ holds $e^{\prime}=e$. For every object $x, x \in E_{2}$ iff $x \in E_{1}$ and $x \in$ the edges of G_{2}.
(82) Let us consider a graph G_{1}, a representative selection of the parallel edges E_{1} of G_{1}, a subgraph G_{2} of G_{1} induced by the vertices of G_{1} and E_{1}, and a representative selection of the parallel edges E_{2} of G_{2}. Then $E_{1}=E_{2}$.
Proof: For every object e such that $e \in E_{1}$ holds $e \in E_{2}$.
(83) Let us consider a graph G_{1}, a representative selection of the directedparallel edges E_{1} of G_{1}, a subgraph G_{2} of G_{1} induced by the vertices of G_{1} and E_{1}, and a representative selection of the directed-parallel edges E_{2} of G_{2}. Then $E_{1}=E_{2}$.
Proof: For every object e such that $e \in E_{1}$ holds $e \in E_{2}$.
(84) Let us consider a graph G_{1}, a representative selection of the directedparallel edges E_{1} of G_{1}, a subgraph G_{2} of G_{1} induced by the vertices of G_{1} and E_{1}, and a representative selection of the parallel edges E_{2} of G_{2}. Then
(i) $E_{2} \subseteq E_{1}$, and
(ii) E_{2} is a representative selection of the parallel edges of G_{1}.

Let us consider a graph G and representative selections of the parallel edges E_{1}, E_{2} of G. Now we state the propositions:
(85) There exists a one-to-one function f such that
(i) $\operatorname{dom} f=E_{1}$, and
(ii) $\operatorname{rng} f=E_{2}$, and
(iii) for every objects e, v, w such that $e \in E_{1}$ holds e joins v and w in G iff $f(e)$ joins v and w in G.
Proof: Define \mathcal{P} [object, object $] \equiv \$_{2} \in E_{2}$ and there exist objects v, w such that $\$_{1}$ joins v and w in G and $\$_{2}$ joins v and w in G. For every objects x, y_{1}, y_{2} such that $x \in E_{1}$ and $\mathcal{P}\left[x, y_{1}\right]$ and $\mathcal{P}\left[x, y_{2}\right]$ holds $y_{1}=y_{2}$. For every object x such that $x \in E_{1}$ there exists an object y such that $\mathcal{P}[x, y]$. Consider f being a function such that $\operatorname{dom} f=E_{1}$ and for every object x such that $x \in E_{1}$ holds $\mathcal{P}[x, f(x)]$. Consider v_{0}, w_{0} being objects such that e joins v_{0} and w_{0} in G and $f(e)$ joins v_{0} and w_{0} in G.
(86) $\overline{\overline{E_{1}}}=\overline{\overline{E_{2}}}$. The theorem is a consequence of (85).

Let us consider a graph G and representative selections of the directedparallel edges E_{1}, E_{2} of G. Now we state the propositions:
(87) There exists a one-to-one function f such that
(i) $\operatorname{dom} f=E_{1}$, and
(ii) $\operatorname{rng} f=E_{2}$, and
(iii) for every objects e, v, w such that $e \in E_{1}$ holds e joins v to w in G iff $f(e)$ joins v to w in G.
Proof: Define \mathcal{P} [object, object $] \equiv \$_{2} \in E_{2}$ and there exist objects v, w such that $\$_{1}$ joins v to w in G and $\$_{2}$ joins v to w in G. For every objects x, y_{1}, y_{2} such that $x \in E_{1}$ and $\mathcal{P}\left[x, y_{1}\right]$ and $\mathcal{P}\left[x, y_{2}\right]$ holds $y_{1}=y_{2}$. For every object x such that $x \in E_{1}$ there exists an object y such that $\mathcal{P}[x, y]$. Consider f being a function such that $\operatorname{dom} f=E_{1}$ and for every object x such that $x \in E_{1}$ holds $\mathcal{P}[x, f(x)]$. Consider v_{0}, w_{0} being objects such that e joins v_{0} to w_{0} in G and $f(e)$ joins v_{0} to w_{0} in $G . v_{0}=v$ and $w_{0}=w$.
(88) $\overline{\overline{E_{1}}}=\overline{\overline{E_{2}}}$. The theorem is a consequence of (87).

Let G be a graph.
A subgraph of G with parallel edges removed is a subgraph of G defined by
(Def. 7) there exists a representative selection of the parallel edges E of G such that $i t$ is a subgraph of G induced by the vertices of G and E.
A subgraph of G with directed-parallel edges removed is a subgraph of G defined by
(Def. 8) there exists a representative selection of the directed-parallel edges E of G such that it is a subgraph of G induced by the vertices of G and E.
Observe that every subgraph of G with parallel edges removed is spanning and non-multi and every subgraph of G with directed-parallel edges removed is spanning and non-directed-multi and there exists a subgraph of G with parallel edges removed which is plain and there exists a subgraph of G with directedparallel edges removed which is plain.

Let G be a loopless graph. Let us observe that every subgraph of G with parallel edges removed is simple and every subgraph of G with directed-parallel edges removed is directed-simple.

Now we state the propositions:
(89) Let us consider a non-multi graph G_{1}, and a graph G_{2}. Then $G_{1} \approx G_{2}$ if and only if G_{2} is a subgraph of G_{1} with parallel edges removed. The theorem is a consequence of (74).
(90) Let us consider a non-directed-multi graph G_{1}, and a graph G_{2}. Then $G_{1} \approx G_{2}$ if and only if G_{2} is a subgraph of G_{1} with directed-parallel edges removed. The theorem is a consequence of (76).
(91) Let us consider graphs G_{1}, G_{2}, and a subgraph G_{3} of G_{1} with parallel edges removed. If $G_{1} \approx G_{2}$, then G_{3} is a subgraph of G_{2} with parallel edges removed. The theorem is a consequence of (78).
(92) Let us consider graphs G_{1}, G_{2}, and a subgraph G_{3} of G_{1} with directedparallel edges removed. Suppose $G_{1} \approx G_{2}$. Then G_{3} is a subgraph of G_{2} with directed-parallel edges removed. The theorem is a consequence of (79).
(93) Let us consider graphs G_{1}, G_{2}, and a subgraph G_{3} of G_{1} with parallel edges removed. If $G_{2} \approx G_{3}$, then G_{2} is a subgraph of G_{1} with parallel edges removed.
(94) Let us consider graphs G_{1}, G_{2}, and a subgraph G_{3} of G_{1} with directedparallel edges removed. Suppose $G_{2} \approx G_{3}$. Then G_{2} is a subgraph of G_{1} with directed-parallel edges removed.
Let us consider a graph G_{1} and a subgraph G_{2} of G_{1} with directed-parallel edges removed. Now we state the propositions:
(95) Every subgraph of G_{2} with parallel edges removed is a subgraph of G_{1} with parallel edges removed. The theorem is a consequence of (84).
(96) There exists a subgraph G_{3} of G_{1} with parallel edges removed such that G_{3} is a subgraph of G_{2} with parallel edges removed. The theorem is a consequence of (72) and (78).
(97) Let us consider a graph G_{1}, and a subgraph G_{3} of G_{1} with parallel edges removed. Then there exists a subgraph G_{2} of G_{1} with directedparallel edges removed such that G_{3} is a subgraph of G_{2} with parallel edges removed. The theorem is a consequence of (73) and (78).
Let G be a complete graph. Let us observe that every subgraph of G with parallel edges removed is complete and every subgraph of G with directedparallel edges removed is complete.

Now we state the propositions:
(98) Let us consider a graph G_{1}, a subgraph G_{2} of G_{1} with parallel edges removed, and a walk W_{1} of G_{1}. Then there exists a walk W_{2} of G_{2} such that $W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$.
Proof: Define $\mathcal{P}\left[\right.$ walk of $\left.G_{1}\right] \equiv$ there exists a walk W_{2} of G_{2} such that $\$_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$. For every trivial walk W of $G_{1}, \mathcal{P}[W]$. For every walk W of G_{1} and for every object e such that
$e \in W$.last($)$.edgesInOut () and $\mathcal{P}[W]$ holds $\mathcal{P}[W$.addEdge $(e)]$. For every walk W_{1} of $G_{1}, \mathcal{P}\left[W_{1}\right]$.
(99) Let us consider a graph G_{1}, a subgraph G_{2} of G_{1} with directed-parallel edges removed, and a walk W_{1} of G_{1}. Then there exists a walk W_{2} of G_{2} such that $W_{1} \cdot \operatorname{vertexSeq}()=W_{2}$.vertexSeq(). The theorem is a consequence of (95) and (98).
(100) Let us consider a graph G_{1}, a subgraph G_{2} of G_{1} with parallel edges removed, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$, then G_{1}.reachableFrom $\left(v_{1}\right)=G_{2}$.reachableFrom $\left(v_{2}\right)$. The theorem is a consequence of (35).
(101) Let us consider a graph G_{1}, a subgraph G_{2} of G_{1} with directed-parallel edges removed, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$, then G_{1}.reachableFrom $\left(v_{1}\right)=G_{2}$.reachableFrom $\left(v_{2}\right)$. The theorem is a consequence of (35).
Let G be a connected graph. Note that every subgraph of G with parallel edges removed is connected and every subgraph of G with directed-parallel edges removed is connected.

Let G be a non connected graph. One can verify that every subgraph of G with parallel edges removed is non connected and every subgraph of G with directed-parallel edges removed is non connected.

Now we state the propositions:
(102) Let us consider a graph G_{1}, and a subgraph G_{2} of G_{1} with parallel edges removed. Then $G_{1} \cdot \operatorname{componentSet}()=G_{2} \cdot$ componentSet () . The theorem is a consequence of (100) and (37).
(103) Let us consider a graph G_{1}, and a subgraph G_{2} of G_{1} with directedparallel edges removed. Then $G_{1} \cdot \operatorname{componentSet}()=G_{2} \cdot \operatorname{componentSet}()$. The theorem is a consequence of (101) and (37).
(104) Let us consider a graph G_{1}, and a subgraph G_{2} of G_{1} with parallel edges removed. Then G_{1}.numComponents ()$=G_{2}$.numComponents(). The theorem is a consequence of (100) and (38).
(105) Let us consider a graph G_{1}, and a subgraph G_{2} of G_{1} with directedparallel edges removed. Then G_{1}.numComponents ()$=$ G_{2}.numComponents(). The theorem is a consequence of (101) and (38).
(106) Let us consider a graph G_{1}, and a subgraph G_{2} of G_{1} with parallel edges removed. Then G_{1} is chordal if and only if G_{2} is chordal. The theorem is a consequence of (98), (30), (32), and (29).
(107) Let us consider a graph G_{1}, and a subgraph G_{2} of G_{1} with directedparallel edges removed. Then G_{1} is chordal if and only if G_{2} is chordal. The theorem is a consequence of (95) and (106).
Let G be a chordal graph. Note that every subgraph of G with parallel edges removed is chordal and every subgraph of G with directed-parallel edges removed is chordal.

Now we state the propositions:
(108) Let us consider a graph G_{1}, a set v, a subgraph G_{2} of G_{1} with parallel edges removed, and a subgraph G_{3} of G_{1} with vertex v removed. Then every subgraph of G_{2} with vertex v removed is a subgraph of G_{3} with parallel edges removed. The theorem is a consequence of (93) and (91).
(109) Let us consider a graph G_{1}, a subgraph G_{2} of G_{1} with parallel edges removed, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$, then v_{1} is cut-vertex iff v_{2} is cut-vertex. The theorem is a consequence of (108) and (104).
(110) Let us consider a graph G_{1}, a subgraph G_{2} of G_{1} with directed-parallel edges removed, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$, then v_{1} is cut-vertex iff v_{2} is cut-vertex. The theorem is a consequence of (95) and (109).
(111) Let us consider a graph G_{1}, a subgraph G_{2} of G_{1} with parallel edges removed, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$, then v_{1} is isolated iff v_{2} is isolated.

Proof: v_{1}. edgesInOut ()$=\emptyset$.
(112) Let us consider a graph G_{1}, a subgraph G_{2} of G_{1} with directed-parallel edges removed, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$, then v_{1} is isolated iff v_{2} is isolated. The theorem is a consequence of (95) and (111).
(113) Let us consider a graph G_{1}, a subgraph G_{2} of G_{1} with parallel edges removed, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$ and v_{1} is endvertex, then v_{2} is endvertex. The theorem is a consequence of (111).
(114) Let us consider a graph G_{1}, a subgraph G_{2} of G_{1} with directed-parallel edges removed, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$ and v_{1} is endvertex, then v_{2} is endvertex. The theorem is a consequence of (112).
Let G be a graph. A simple graph of G is a subgraph of G defined by
(Def. 9) there exists a representative selection of the parallel edges E of G such that $i t$ is a subgraph of G induced by the vertices of G and $E \backslash(G$.loops()).
A directed-simple graph of G is a subgraph of G defined by
(Def. 10) there exists a representative selection of the directed-parallel edges E of G such that it is a subgraph of G induced by the vertices of G and $E \backslash(G$.loops ()$)$.
Now we state the propositions:
(115) Let us consider a graph G_{1}, and a subgraph G_{2} of G_{1} with parallel edges removed. Then every subgraph of G_{2} with loops removed is a simple graph of G_{1}. The theorem is a consequence of (48).
(116) Let us consider a graph G_{1}, and a subgraph G_{2} of G_{1} with directedparallel edges removed. Then every subgraph of G_{2} with loops removed is a directed-simple graph of G_{1}. The theorem is a consequence of (48).
Let us consider a graph G_{1} and a subgraph G_{2} of G_{1} with loops removed. Now we state the propositions:
(117) Every subgraph of G_{2} with parallel edges removed is a simple graph of G_{1}. The theorem is a consequence of (80).
(118) Every subgraph of G_{2} with directed-parallel edges removed is a directedsimple graph of G_{1}. The theorem is a consequence of (81).
(119) Let us consider a graph G_{1}, and a simple graph G_{3} of G_{1}. Then there exists a subgraph G_{2} of G_{1} with parallel edges removed such that G_{3} is a subgraph of G_{2} with loops removed.
Proof: Consider E being a representative selection of the parallel edges of G_{1} such that G_{3} is a subgraph of G_{1} induced by the vertices of G_{1} and $E \backslash\left(G_{1}\right.$.loops ()$)$. Set $G_{2}=$ the subgraph of G_{1} induced by the vertices of
G_{1} and E. For every object $e, e \in$ the edges of G_{3} iff $e \in$ (the edges of $\left.G_{2}\right) \backslash\left(G_{2} \cdot \operatorname{loops}()\right)$.
(120) Let us consider a graph G_{1}, and a directed-simple graph G_{3} of G_{1}. Then there exists a subgraph G_{2} of G_{1} with directed-parallel edges removed such that G_{3} is a subgraph of G_{2} with loops removed.
Proof: Consider E being a representative selection of the directed-parallel edges of G_{1} such that G_{3} is a subgraph of G_{1} induced by the vertices of G_{1} and $E \backslash\left(G_{1}\right.$.loops()). Set $G_{2}=$ the subgraph of G_{1} induced by the vertices of G_{1} and E. For every object $e, e \in$ the edges of G_{3} iff $e \in$ (the edges of $\left.G_{2}\right) \backslash\left(G_{2} \cdot \operatorname{loops}()\right)$.
Let us consider a graph G_{1} and a subgraph G_{2} of G_{1} with loops removed. Now we state the propositions:
(121) Every simple graph of G_{1} is a subgraph of G_{2} with parallel edges removed.
(122) Every directed-simple graph of G_{1} is a subgraph of G_{2} with directedparallel edges removed. The theorem is a consequence of (45) and (6).
Let us consider a loopless graph G_{1} and a graph G_{2}. Now we state the propositions:
(123) G_{2} is a simple graph of G_{1} if and only if G_{2} is a subgraph of G_{1} with parallel edges removed.
(124) $\quad G_{2}$ is a directed-simple graph of G_{1} if and only if G_{2} is a subgraph of G_{1} with directed-parallel edges removed.
(125) Let us consider a non-multi graph G_{1}, and a graph G_{2}. Then G_{2} is a simple graph of G_{1} if and only if G_{2} is a subgraph of G_{1} with loops removed. The theorem is a consequence of (74).
(126) Let us consider a non-directed-multi graph G_{1}, and a graph G_{2}. Then G_{2} is a directed-simple graph of G_{1} if and only if G_{2} is a subgraph of G_{1} with loops removed. The theorem is a consequence of (76).
Let G be a graph. Note that every simple graph of G is spanning, loopless, non-multi, and simple and every directed-simple graph of G is spanning, loopless, non-directed-multi, and directed-simple and there exists a simple graph of G which is plain and there exists a directed-simple graph of G which is plain.

Now we state the propositions:
(127) Let us consider a simple graph G_{1}, and a graph G_{2}. Then $G_{1} \approx G_{2}$ if and only if G_{2} is a simple graph of G_{1}. The theorem is a consequence of (74).
(128) Let us consider a directed-simple graph G_{1}, and a graph G_{2}. Then $G_{1} \approx$ G_{2} if and only if G_{2} is a directed-simple graph of G_{1}. The theorem is
a consequence of (76).
(129) Let us consider graphs G_{1}, G_{2}, and a simple graph G_{3} of G_{1}. If $G_{1} \approx G_{2}$, then G_{3} is a simple graph of G_{2}. The theorem is a consequence of (50) and (78).
(130) Let us consider graphs G_{1}, G_{2}, and a directed-simple graph G_{3} of G_{1}. If $G_{1} \approx G_{2}$, then G_{3} is a directed-simple graph of G_{2}. The theorem is a consequence of (50) and (79).
(131) Let us consider graphs G_{1}, G_{2}, and a simple graph G_{3} of G_{1}. If $G_{2} \approx G_{3}$, then G_{2} is a simple graph of G_{1}.
(132) Let us consider graphs G_{1}, G_{2}, and a directed-simple graph G_{3} of G_{1}. If $G_{2} \approx G_{3}$, then G_{2} is a directed-simple graph of G_{1}.
Let us consider a graph G_{1} and a directed-simple graph G_{2} of G_{1}. Now we state the propositions:
(133) Every simple graph of G_{2} is a simple graph of G_{1}. The theorem is a consequence of (122), (123), (95), and (117).
(134) There exists a simple graph G_{3} of G_{1} such that G_{3} is a simple graph of G_{2}. The theorem is a consequence of (122), (96), (117), and (123).
(135) Let us consider a graph G_{1}, and a simple graph G_{3} of G_{1}. Then there exists a directed-simple graph G_{2} of G_{1} such that G_{3} is a simple graph of G_{2}. The theorem is a consequence of (121), (97), (118), and (123).

Let G be a complete graph. Observe that every simple graph of G is complete and every directed-simple graph of G is complete.

Now we state the propositions:
(136) Let us consider a graph G_{1}, a simple graph G_{2} of G_{1}, and a walk W_{1} of G_{1}. Then there exists a walk W_{2} of G_{2} such that W_{2} is walk from W_{1}.first() to $W_{1} \cdot \operatorname{last}()$. The theorem is a consequence of (119) and (61).
(137) Let us consider a graph G_{1}, a directed-simple graph G_{2} of G_{1}, and a walk W_{1} of G_{1}. Then there exists a walk W_{2} of G_{2} such that W_{2} is walk from W_{1}.first() to W_{1}.last(). The theorem is a consequence of (133) and (136).
(138) Let us consider a graph G_{1}, a simple graph G_{2} of G_{1}, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$, then G_{1}.reachableFrom $\left(v_{1}\right)=$ G_{2}.reachableFrom $\left(v_{2}\right)$. The theorem is a consequence of (136) and (35).
(139) Let us consider a graph G_{1}, a directed-simple graph G_{2} of G_{1}, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$, then G_{1} reachableFrom $\left(v_{1}\right)=$ G_{2}.reachableFrom $\left(v_{2}\right)$. The theorem is a consequence of (137) and (35).
Let G be a connected graph. Observe that every simple graph of G is connected and every directed-simple graph of G is connected.

Let G be a non connected graph. One can verify that every simple graph of G is non connected and every directed-simple graph of G is non connected.

Now we state the propositions:
(140) Let us consider a graph G_{1}, and a simple graph G_{2} of G_{1}.

Then $G_{1} \cdot \operatorname{componentSet}()=G_{2} \cdot \operatorname{componentSet}()$. The theorem is a consequence of (138) and (37).
(141) Let us consider a graph G_{1}, and a directed-simple graph G_{2} of G_{1}. Then $G_{1} \cdot \operatorname{componentSet}()=G_{2} \cdot \operatorname{componentSet}()$. The theorem is a consequence of (139) and (37).
(142) Let us consider a graph G_{1}, and a simple graph G_{2} of G_{1}.

Then G_{1}.numComponents ()$=G_{2}$.numComponents () . The theorem is a consequence of (138) and (38).
(143) Let us consider a graph G_{1}, and a directed-simple graph G_{2} of G_{1}. Then G_{1}.numComponents ()$=G_{2}$.numComponents(). The theorem is a consequence of (139) and (38).
(144) Let us consider a graph G_{1}, and a simple graph G_{2} of G_{1}. Then G_{1} is chordal if and only if G_{2} is chordal. The theorem is a consequence of (119), (65), and (106).
(145) Let us consider a graph G_{1}, and a directed-simple graph G_{2} of G_{1}. Then G_{1} is chordal if and only if G_{2} is chordal. The theorem is a consequence of (120), (65), and (107).
Let G be a chordal graph. One can check that every simple graph of G is chordal and every directed-simple graph of G is chordal.

Now we state the propositions:
(146) Let us consider a graph G_{1}, a simple graph G_{2} of G_{1}, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$, then v_{1} is cut-vertex iff v_{2} is cut-vertex. The theorem is a consequence of (119), (67), and (109).
(147) Let us consider a graph G_{1}, a directed-simple graph G_{2} of G_{1}, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$, then v_{1} is cut-vertex iff v_{2} is cut-vertex. The theorem is a consequence of (120), (67), and (110).
(148) Let us consider a loopless graph G_{1}, a simple graph G_{2} of G_{1}, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$, then v_{1} is isolated iff v_{2} is isolated. The theorem is a consequence of (119), (58), and (111).
(149) Let us consider a loopless graph G_{1}, a directed-simple graph G_{2} of G_{1}, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$, then v_{1} is isolated iff v_{2} is isolated. The theorem is a consequence of (120), (58), and (112).
(150) Let us consider a graph G_{1}, a simple graph G_{2} of G_{1}, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$ and v_{1} is endvertex, then v_{2} is endvertex.

The theorem is a consequence of (119), (113), and (68).
(151) Let us consider a graph G_{1}, a directed-simple graph G_{2} of G_{1}, a vertex v_{1} of G_{1}, and a vertex v_{2} of G_{2}. If $v_{1}=v_{2}$ and v_{1} is endvertex, then v_{2} is endvertex. The theorem is a consequence of (120), (114), and (68).

References

[1] Grzegorz Bancerek. Introduction to trees Formalized Mathematics, 1(2):421-427, 1990.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s10817-017-9440-6
[3] Lowell W. Beineke and Robin J. Wilson, editors. Selected Topics in Graph Theory. Academic Press, London, 1978. ISBN 0-12-086250-6.
[4] John Adrian Bondy and U. S. R. Murty. Graph Theory. Graduate Texts in Mathematics, 244. Springer, New York, 2008. ISBN 978-1-84628-969-9.
[5] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi 10.1007/s10817-015-9345-1
[6] Krzysztof Hryniewiecki. Graphs, Formalized Mathematics, 2(3):365-370, 1991.
[7] Gilbert Lee. Weighted and labeled graphs Formalized Mathematics, 13(2):279-293, 2005.
[8] Gilbert Lee and Piotr Rudnicki. Alternative graph structures Formalized Mathematics, 13(2):235-252, 2005.
[9] Piotr Rudnicki and Lorna Stewart. Simple graphs as simplicial complexes: the Mycielskian of a graph. Formalized Mathematics, 20(2):161-174, 2012. doi 10.2478/v10037-012-00198.
[10] Yozo Toda. The formalization of simple graphs Formalized Mathematics, 5(1):137-144, 1996.
[11] Klaus Wagner. Graphentheorie. B.I-Hochschultaschenbücher; 248. Bibliograph. Inst., Mannheim, 1970. ISBN 3-411-00248-4.
[12] Robin James Wilson. Introduction to Graph Theory. Oliver \& Boyd, Edinburgh, 1972. ISBN 0-05-002534-1.

Accepted August 29, 2019

[^0]: ${ }^{1}$ The author is enrolled in the Johannes Gutenberg University in Mayence, Germany, mailto: skoch02@students.uni-mainz.de

