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Summary. In this articles adjacency-preserving mappings from a graph to
another are formalized in the Mizar system [7], [2]. The generality of the approach
seems to be largely unpreceeded in the literature to the best of the author’s
knowledge. However, the most important property defined in the article is that
of two graphs being isomorphic, which has been extensively studied. Another
graph decorator is introduced as well.
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0. Introduction

Writing this article has been rather challenging. “Much of graph theory is
concerned with the study of simple graphs” [3, p. 3], so most graph theory
books are only concerned with graph homomorphisms between simple graphs,
if they are concerned with anything more general than isomorphisms at all. [3]
writes about general graphs; isomorphisms are done in the first chapter while
homomorphisms are only looked at in the context of vertex colorings in chap-
ter 14. The book “Graphs and homomorphisms” [8] only handles (di)graphs
without multiple parallel edges. The book “Graph coloring problems” [10]
notes homomorphisms between loopless graphs, but doesn’t elaborate. [6] only
handles homomorphisms between simple graphs. [14] shortly describes homo-
morphisms between undirected graphs. [9] handles homomorphisms between
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digraphs without parallel edges. [16] writes about general graphs but, like most
graph books, only about isomorphisms. The best source so far has been [11],
where graph homomorphisms are introduced for digraphs possibly containing
loops and multiple parallel edges (just like graphs are formalized in [15]) but the
focus is almost immediately shifted to homomorphisms between simple graphs.
So a quick overview of the formalized notation seems in order.

A graph G consists of a non empty set V (G) called vertices of G, a set E(G)
called edges of G and two functions s(G), t(G) : E(G)→ V (G), the source and
target of G. For e ∈ E(G), v, w ∈ V (G) we write e joins v to w if s(G)(e) = v

and t(G)(e) = w, and we write e joins v and w if e joins v to w or e joins w to
v. Let G1, G2 be graphs. A partial graph mapping from G1 to G2 is an ordered
pair F = 〈〈FV, FE〉〉 with the following properties:

• FV is a partial function from V (G1) to V (G2).
• FE is a partial function from E(G1) to E(G2).
• For any e ∈ domFE holds s(G)(e), t(G)(e) ∈ domFV.
• For any e ∈ domFE and v, w ∈ domFV such that e joins v and w holds
FE(e) joins FV(v) and FV(w).

Note that 〈〈f, ∅〉〉 is a valid partial graph mapping for any partial function f :
V (G1)→ V (G2), especially for f = ∅. Now define the following attributes:

• F is empty if domFV = ∅.
• F is total (or a homomorphism) if domFV = V (G1) and domFE = E(G1).
• F is onto (or surjective) if rngFV = V (G2) and rngFE = E(G2).
• F is one-to-one (or injective) if FV and FE are.
• F is semi-continuous if for any e ∈ domFE and v, w ∈ domFV such that
FE(e) joins FV(v) and FV(w) holds e joins v and w.
• F is continuous if for any ẽ ∈ E(G2) and v, w ∈ domFV such that ẽ joins
FV(v) and FV(w) exists an e ∈ domFE such that FE(e) = ẽ and e joins v
and w.
• F is a weak subgraph-embedding if it is total and one-to-one.
• F is a strong subgraph-embedding if it is total, one-to-one and continuous.
• F is an isomorphism if it is total, one-to-one and onto.

Because modes in Mizar must always be inhabitated, partial graph mappings
are the chosen foundation rather than homomorphisms, which may not exist
between two graphs. The attributes total, onto and one-to-one were named like
their function analogons from [4] and [5]. The continuous attribute was inspired
by the continuous vertex mappings of [11] and is in fact sometimes different
from semi-continuous. Semi-continuous seemed like the natural generalization
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of continuous for graph mappings instead of vertex mappings, but that turned
out to be false. Still, a semi-continuous graph mapping already carries a lot of
properties from G1 to G2, so the definition was kept. Corresponding attributes
for directed graph mappings are given in this article as well.

If F is a weak subgraph-embedding, then G1 is isomorphic to a subgraph
of G2. If F is a strong subgraph-embedding, then G1 is isomorphic to an in-
duced subgraph of G2. The short term embedding was desperately avoided to
be available for embeddings of graphs into the plane and other surfaces. If F
is one-to-one, it is also semi-continuous. If F is semi-continuous and onto, it is
also continuous.

Originally, only an article about graph isomorphisms was planned, but it
was changed to provide a solid foundation of general graph mappings. Now this
article also includes the restriction of F to subgraphs of G1 or G2, the domain
and range of F defined as the plain subgraphs of G1 and G2 induced by domFV,
domFE and rngFV, rngFE respectively, and the images of walks under F . Of
course the inverse of F and the composition of two graph mappings are included
as well.

Additionally, the ordering of a graph, which is just an enumeration of its
vertices, has been introduced as yet another graph decorator. This decorator is
planned as a tool to identify graphs with trees from [1]. Attributes describing
if F preserves the weights, edge labels, vertex labels or the ordering have been
added as well.

1. Preliminaries

Now we state the propositions:

(1) Let us consider functions A, B, C, D. Suppose D ·A = C� domA. Then
(D� domB) ·A = C� dom(B ·A).
Proof: Set f = (D� domB) ·A. Set g = C� dom(B ·A). For every object
x such that x ∈ dom f holds f(x) = g(x). �

(2) Let us consider a one-to-one function A, and functions C, D. Suppose
D ·A = C� domA. Then C · (A−1) = D� dom(A−1).
Proof: For every object y, y ∈ dom(C ·(A−1)) iff y ∈ dom(D� dom(A−1)).
For every object y such that y ∈ dom(C · (A−1)) holds (C · (A−1))(y) =
(D� dom(A−1))(y). �

Let G be a non finite graph and X be a set. One can verify that
G.set(WeightSelector, X) is non finite and G.set(ELabelSelector, X) is non

finite and G.set(VLabelSelector, X) is non finite.
Let G be a non loopless graph. One can check that G.set(WeightSelector, X)

is non loopless and G.set(ELabelSelector, X) is non loopless and
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G.set(VLabelSelector, X) is non loopless.
Let G be a non non-multi graph. Note that G.set(WeightSelector, X) is non

non-multi and G.set(ELabelSelector, X) is non non-multi and
G.set(VLabelSelector, X) is non non-multi. Let G be a non non-directed-

multi graph. Let us note that G.set(WeightSelector, X) is non non-directed-
multi and G.set(ELabelSelector, X) is non non-directed-multi and

G.set(VLabelSelector, X) is non non-directed-multi.
Let G be a non connected graph. Observe that G.set(WeightSelector, X) is

non connected and G.set(ELabelSelector, X) is non connected and
G.set(VLabelSelector, X) is non connected.
Let G be a non acyclic graph. Let us observe that G.set(WeightSelector, X)

is non acyclic and G.set(ELabelSelector, X) is non acyclic and
G.set(VLabelSelector, X) is non acyclic. Let G be a graph. We say that G

is elabel-full if and only if

(Def. 1) ELabelSelector ∈ domG and there exists a many sorted set f indexed
by the edges of G such that G(ELabelSelector) = f .

We say that G is vlabel-full if and only if

(Def. 2) VLabelSelector ∈ domG and there exists a many sorted set f indexed
by the vertices of G such that G(VLabelSelector) = f .

Let us observe that every graph which is elabel-full is also elabeled and every
graph which is vlabel-full is also vlabeled.

Let G be an e-graph. We say that G is elabel-distinct if and only if

(Def. 3) the elabel of G is one-to-one.

Let G be a v-graph. We say that G is vlabel-distinct if and only if

(Def. 4) the vlabel of G is one-to-one.

LetG be a graph. Observe thatG.set(ELabelSelector, idthe edges of G) is elabel-
full and elabel-distinct and G.set(VLabelSelector, idthe vertices of G) is vlabel-full
and vlabel-distinct and there exists an e-graph which is elabel-distinct and
elabel-full and there exists a v-graph which is vlabel-distinct and vlabel-full.

Let G be an elabel-full graph. Let us observe that the elabel of G yields
a many sorted set indexed by the edges of G. Let G be a vlabel-full graph.
Observe that the vlabel of G yields a many sorted set indexed by the vertices
of G. Let G be an elabel-distinct e-graph. Let us note that the elabel of G is
one-to-one.

Let G be a vlabel-distinct v-graph. Observe that the vlabel of G is one-to-
one. Let G be an elabel-full graph and X be a set. One can verify that

G.set(WeightSelector, X) is elabel-full andG.set(VLabelSelector, X) is elabel-
full. Let G be a vlabel-full graph. One can check that G.set(WeightSelector, X)
is vlabel-full and G.set(ELabelSelector, X) is vlabel-full.
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Let G be an elabel-distinct e-graph. Note that G.set(WeightSelector, X) is
elabel-distinct and G.set(VLabelSelector, X) is elabel-distinct.

Let G be a vlabel-distinct v-graph. Let us observe that G.set(WeightSelector,
X) is vlabel-distinct and G.set(ELabelSelector, X) is vlabel-distinct and the-

re exists an ev-graph which is elabel-full, elabel-distinct, vlabel-full, and vlabel-
distinct.

Let G1 be a w-graph, E be a set, and G2 be a graph given by reversing
directions of the edges E of G1. Observe that G2.set(WeightSelector, the weight
of G1) is weighted.

Let G1 be an e-graph. One can verify that G2.set(ELabelSelector, the elabel
of G1) is elabeled.

Let G1 be a v-graph, V be a set, and G2 be a graph given by reversing
directions of the edges V of G1. Observe that G2.set(VLabelSelector, the vlabel
of G1) is vlabeled.

Let G1 be an elabel-full graph, E be a set, and G2 be a graph given by rever-
sing directions of the edges E of G1. Note that G2.set(ELabelSelector, the elabel
of G1) is elabel-full.

Let G1 be a vlabel-full graph, V be a set, and G2 be a graph given by rever-
sing directions of the edges V ofG1. Note thatG2.set(VLabelSelector, the vlabel
of G1) is vlabel-full. Let G1 be an elabel-distinct e-graph, E be a set, and
G2 be a graph given by reversing directions of the edges E of G1. Note that
G2.set(ELabelSelector, the elabel of G1) is elabel-distinct. Let G1 be a vlabel-
distinct v-graph. Observe thatG2.set(VLabelSelector, the vlabel ofG1) is vlabel-
distinct.

2. Ordering of a Graph

The functor OrderingSelector yielding an element of N is defined by the term

(Def. 5) 8.

Let G be a graph structure. We say that G is ordered if and only if

(Def. 6) OrderingSelector ∈ domG and G(OrderingSelector) is an enumeration
of the vertices of G.

Let G be a graph and X be a set. Note that G.set(OrderingSelector, X) is
graph-like and G.set(OrderingSelector, X) is non plain.

Let G be a w-graph. One can verify that G.set(OrderingSelector, X) is we-
ighted.

Let G be an e-graph. One can check that G.set(OrderingSelector, X) is ela-
beled.

Let G be a v-graph. Note that G.set(OrderingSelector, X) is vlabeled.
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Let G be a graph and X be an enumeration of the vertices of G. Note that
G.set(OrderingSelector, X) is ordered and there exists a graph structure which
is graph-like, weighted, elabeled, vlabeled, and ordered.

Let G be an ordered graph. The ordering of G yielding an enumeration of
the vertices of G is defined by the term

(Def. 7) G(OrderingSelector).

Now we state the proposition:

(3) Let us consider a graph G, and a set X.
Then G ≈ G.set(OrderingSelector, X).

Let G be an elabel-full graph and X be a set. Let us note that
G.set(OrderingSelector, X) is elabel-full.
Let G be a vlabel-full graph. Let us note that G.set(OrderingSelector, X) is

vlabel-full.
Let G be an elabel-distinct e-graph. Let us note that G.set(OrderingSelector,
X) is elabel-distinct.
Let G be a vlabel-distinct v-graph. Observe that G.set(OrderingSelector, X)

is vlabel-distinct.
Let G be a finite graph. Let us observe that G.set(OrderingSelector, X) is

finite.
Let G be a non finite graph. Let us observe that G.set(OrderingSelector, X)

is non finite.
Let G be a loopless graph. Let us observe that G.set(OrderingSelector, X)

is loopless.
LetG be a non loopless graph. Let us observe thatG.set(OrderingSelector, X)

is non loopless.
Let G be a trivial graph. Let us observe that G.set(OrderingSelector, X) is

trivial.
Let G be a non trivial graph. Let us observe that G.set(OrderingSelector, X)

is non trivial.
Let G be a non-multi graph. Let us observe that G.set(OrderingSelector, X)

is non-multi.
Let G be a non non-multi graph. Let us observe that
G.set(OrderingSelector, X) is non non-multi.
Let G be a non-directed-multi graph. Let us observe that
G.set(OrderingSelector, X) is non-directed-multi.
Let G be a non non-directed-multi graph. Let us observe that
G.set(OrderingSelector, X) is non non-directed-multi.
Let G be a connected graph. Let us observe that G.set(OrderingSelector, X)

is connected.
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Let G be a non connected graph. Let us note that G.set(OrderingSelector, X)
is non connected.

Let G be an acyclic graph. Let us note that G.set(OrderingSelector, X) is
acyclic.

Let G be a non acyclic graph. One can check that G.set(OrderingSelector, X)
is non acyclic.

Let G be an edgeless graph. One can check that G.set(OrderingSelector, X)
is edgeless.

LetG be a non edgeless graph. Let us observe thatG.set(OrderingSelector, X)
is non edgeless.

Let G be an ordered graph. Let us observe that G.set(WeightSelector, X) is
ordered and G.set(ELabelSelector, X) is ordered and G.set(VLabelSelector, X)
is ordered.

Let G1 be an ordered graph and G2 be a spanning subgraph of G1. Note
that G2.set(OrderingSelector, the ordering of G1) is ordered.

Let E be a set and G2 be a graph given by reversing directions of the edges
E of G1. Let us observe that G2.set(OrderingSelector, the ordering of G1) is
ordered.

3. Graph Mappings

Let G1, G2 be graphs. A partial graph mapping from G1 to G2 is an object
defined by

(Def. 8) there exist functions f , g such that it = 〈〈f, g〉〉 and dom f ⊆ the vertices
of G1 and rng f ⊆ the vertices of G2 and dom g ⊆ the edges of G1 and
rng g ⊆ the edges of G2 and for every object e such that e ∈ dom g holds
(the source of G1)(e), (the target of G1)(e) ∈ dom f and for every objects
e, v, w such that e ∈ dom g and v, w ∈ dom f holds if e joins v and w in
G1, then g(e) joins f(v) and f(w) in G2.

Let us observe that every partial graph mapping from G1 to G2 is pair.
Let F be a partial graph mapping from G1 to G2. We introduce the notation

FV as a synonym of (F )1 and FE as a synonym of (F )2.
One can check that 〈〈FV, FE〉〉 reduces to F .
One can verify that FV is function-like and relation-like as a set and FE is

function-like and relation-like as a set and FV is (the vertices of G1)-defined and
(the vertices of G2)-valued as a function and FE is (the edges of G1)-defined and
(the edges of G2)-valued as a function.

Note that the functor FV yields a partial function from the vertices of G1 to
the vertices of G2. Observe that the functor FE yields a partial function from
the edges of G1 to the edges of G2. Now we state the proposition:
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(4) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and objects e, v, w. Suppose e ∈ dom(FE) and v, w ∈ dom(FV). If e
joins v and w in G1, then (FE)(e) joins (FV)(v) and (FV)(w) in G2.

Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
and an object e. Now we state the propositions:

(5) Suppose e ∈ dom(FE). Then (the source ofG1)(e), (the target ofG1)(e) ∈
dom(FV).

(6) Suppose e ∈ rngFE. Then (the source of G2)(e), (the target of G2)(e) ∈
rngFV. The theorem is a consequence of (5) and (4).

(7) Let us consider graphs G1, G2, and a partial graph mapping F from G1
to G2. Then

(i) dom(FE) ⊆ G1.edgesBetween(dom(FV)), and

(ii) rngFE ⊆ G2.edgesBetween(rngFV).

Proof: For every object e such that e ∈ dom(FE) holds
e ∈ G1.edgesBetween(dom(FV)). For every object e such that e ∈ rngFE
holds e ∈ G2.edgesBetween(rngFV). �

(8) Let us consider graphs G1, G2, a partial function f from the vertices of
G1 to the vertices of G2, and a partial function g from the edges of G1
to the edges of G2. Suppose for every object e such that e ∈ dom g holds
(the source of G1)(e), (the target of G1)(e) ∈ dom f and for every objects
e, v, w such that e ∈ dom g and v, w ∈ dom f holds if e joins v and w in
G1, then g(e) joins f(v) and f(w) in G2. Then 〈〈f, g〉〉 is a partial graph
mapping from G1 to G2.

Let us consider graphs G1, G2, G3, G4 and a partial graph mapping F from
G1 to G2. Now we state the propositions:

(9) If G1 ≈ G3 and G2 ≈ G4, then F is a partial graph mapping from G3 to
G4. The theorem is a consequence of (5), (4), and (8).

(10) Suppose there exist sets E1, E2 such that G3 is a graph given by reversing
directions of the edges E1 of G1 and G4 is a graph given by reversing
directions of the edges E2 of G2. Then F is a partial graph mapping from
G3 to G4. The theorem is a consequence of (5), (4), and (8).

Let G be a graph. The functor idG yielding a partial graph mapping from
G to G is defined by the term

(Def. 9) 〈〈idα, idβ〉〉, where α is the vertices of G and β is the edges of G.

Now we state the propositions:

(11) Let us consider graphs G1, G2. Suppose G1 ≈ G2. Then

(i) idG1 = idG2 , and
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(ii) idG1 is a partial graph mapping from G1 to G2.

The theorem is a consequence of (9).

(12) Let us consider a graph G1, a set E, and a graph G2 given by reversing
directions of the edges E of G1. Then

(i) idG1 = idG2 , and

(ii) idG1 is a partial graph mapping from G1 to G2.

Proof: There exist sets E1, E2 such that G1 is a graph given by reversing
directions of the edges E1 of G1 and G2 is a graph given by reversing
directions of the edges E2 of G1. �

Let G1, G2 be graphs and F be a partial graph mapping from G1 to G2. We
say that F is empty if and only if

(Def. 10) dom(FV) is empty.

We say that F is total if and only if

(Def. 11) dom(FV) = the vertices of G1 and dom(FE) = the edges of G1.

We say that F is onto if and only if

(Def. 12) rngFV = the vertices of G2 and rngFE = the edges of G2.

We say that F is one-to-one if and only if

(Def. 13) FV is one-to-one and FE is one-to-one.

We say that F is directed if and only if

(Def. 14) for every objects e, v, w such that e ∈ dom(FE) and v, w ∈ dom(FV)
holds if e joins v to w in G1, then (FE)(e) joins (FV)(v) to (FV)(w) in G2.

We say that F is semi-continuous if and only if

(Def. 15) for every objects e, v, w such that e ∈ dom(FE) and v, w ∈ dom(FV)
holds if (FE)(e) joins (FV)(v) and (FV)(w) in G2, then e joins v and w in
G1.

We say that F is continuous if and only if

(Def. 16) for every objects ẽ, v, w such that v, w ∈ dom(FV) and ẽ joins (FV)(v)
and (FV)(w) in G2 there exists an object e such that e joins v and w in
G1 and e ∈ dom(FE) and (FE)(e) = ẽ.

We say that F is semi-directed-continuous if and only if

(Def. 17) for every objects e, v, w such that e ∈ dom(FE) and v, w ∈ dom(FV)
holds if (FE)(e) joins (FV)(v) to (FV)(w) in G2, then e joins v to w in G1.

We say that F is directed-continuous if and only if

(Def. 18) for every objects ẽ, v, w such that v, w ∈ dom(FV) and ẽ joins (FV)(v)
to (FV)(w) in G2 there exists an object e such that e joins v to w in G1
and e ∈ dom(FE) and (FE)(e) = ẽ.
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Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(13) F is directed if and only if for every object e such that e ∈ dom(FE) holds
(the source of G2)((FE)(e)) = (FV)((the source of G1)(e)) and (the target
of G2)((FE)(e)) = (FV)((the target of G1)(e)). The theorem is a consequ-
ence of (5).

(14) F is directed if and only if (the source of G2) · (FE) = (FV) · ((the source
of G1)� dom(FE)) and (the target of G2) · (FE) = (FV) · ((the target of
G1)� dom(FE)). The theorem is a consequence of (13) and (5).

(15) F is semi-continuous if and only if for every objects e, v, w such that
e ∈ dom(FE) and v, w ∈ dom(FV) holds e joins v and w in G1 iff (FE)(e)
joins (FV)(v) and (FV)(w) in G2.

(16) F is semi-directed-continuous if and only if for every objects e, v, w
such that e ∈ dom(FE) and v, w ∈ dom(FV) holds e joins v to w in G1 iff
(FE)(e) joins (FV)(v) to (FV)(w) in G2.
Proof: If F is semi-directed-continuous, then for every objects e, v, w
such that e ∈ dom(FE) and v, w ∈ dom(FV) holds e joins v to w in G1 iff
(FE)(e) joins (FV)(v) to (FV)(w) in G2. �

Let G1, G2 be graphs. Note that there exists a partial graph mapping from
G1 to G2 which is empty, one-to-one, directed-continuous, directed, continuous,
semi-directed-continuous, and semi-continuous and there exists a partial graph
mapping from G1 to G2 which is non empty, one-to-one, directed, semi-directed-
continuous, and semi-continuous.

Let F be an empty partial graph mapping from G1 to G2. One can verify
that FV is empty as a set and FE is empty as a set.

Let F be a non empty partial graph mapping from G1 to G2. One can verify
that FV is non empty as a set.

Let F be a one-to-one partial graph mapping from G1 to G2. One can verify
that FV is one-to-one as a function and FE is one-to-one as a function.

Now we state the propositions:

(17) Let us consider graphs G1, G2, and a partial graph mapping F from
G1 to G2. If FV is one-to-one, then F is semi-continuous. The theorem is
a consequence of (5) and (4).

(18) Let us consider graphs G1, G2, and a directed partial graph mapping F
from G1 to G2. If FV is one-to-one, then F is semi-directed-continuous.
The theorem is a consequence of (5).

(19) Let us consider graphs G1, G2, and a semi-continuous partial graph
mapping F from G1 to G2. Suppose rngFE = the edges of G2. Then F is
continuous.
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(20) Let us consider graphs G1, G2, and a semi-directed-continuous partial
graph mapping F from G1 to G2. Suppose rngFE = the edges of G2. Then
F is directed-continuous.

(21) Let us consider graphs G1, G2, and a partial graph mapping F from G1
to G2. Suppose FV is one-to-one and rngFE = the edges of G2. Then F is
continuous. The theorem is a consequence of (17) and (19).

(22) Let us consider graphs G1, G2, and a directed partial graph mapping F
from G1 to G2. Suppose FV is one-to-one and rngFE = the edges of G2.
Then F is directed-continuous. The theorem is a consequence of (18) and
(20).

(23) Let us consider graphs G1, G2, and a continuous partial graph mapping
F from G1 to G2. If FE is one-to-one, then F is semi-continuous.

Let us consider graphs G1, G2 and a directed-continuous partial graph map-
ping F from G1 to G2. Now we state the propositions:

(24) If FE is one-to-one, then F is semi-directed-continuous.

(25) If FE is one-to-one, then F is directed. The theorem is a consequence of
(4).

(26) Let us consider graphs G1, G2, a semi-continuous partial graph mapping
F from G1 to G2, and objects v1, v2. Suppose v1, v2 ∈ dom(FV) and
(FV)(v1) = (FV)(v2) and there exist objects e, w such that e ∈ dom(FE)
and w ∈ dom(FV) and (FE)(e) joins (FV)(v1) and (FV)(w) in G2. Then
v1 = v2.

(27) Let us consider graphs G1, G2, and a semi-continuous partial graph
mapping F from G1 to G2. Suppose for every object v such that v ∈
dom(FV) there exist objects e, w such that e ∈ dom(FE) and w ∈ dom(FV)
and (FE)(e) joins (FV)(v) and (FV)(w) in G2. Then FV is one-to-one. The
theorem is a consequence of (26).

(28) Let us consider graphs G1, G2, a semi-directed-continuous partial graph
mapping F from G1 to G2, and objects v1, v2. Suppose v1, v2 ∈ dom(FV)
and (FV)(v1) = (FV)(v2) and there exist objects e, w such that e ∈
dom(FE) and w ∈ dom(FV) and (FE)(e) joins (FV)(v1) to (FV)(w) in
G2. Then v1 = v2.

(29) Let us consider graphs G1, G2, and a semi-directed-continuous partial
graph mapping F from G1 to G2. Suppose for every object v such that v ∈
dom(FV) there exist objects e, w such that e ∈ dom(FE) and w ∈ dom(FV)
and (FE)(e) joins (FV)(v) to (FV)(w) in G2. Then FV is one-to-one. The
theorem is a consequence of (28).

Let G1, G2 be graphs. One can verify that every partial graph mapping from
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G1 to G2 which is one-to-one is also semi-continuous and every partial graph
mapping from G1 to G2 which is one-to-one and directed is also semi-directed-
continuous and every partial graph mapping from G1 to G2 which is one-to-one
and onto is also continuous and every partial graph mapping from G1 to G2
which is directed, one-to-one, and onto is also directed-continuous.

Every partial graph mapping from G1 to G2 which is semi-continuous and
onto is also continuous and every partial graph mapping from G1 to G2 which is
semi-directed-continuous is also directed and semi-continuous and every partial
graph mapping from G1 to G2 which is semi-directed-continuous and onto is
also directed-continuous and every partial graph mapping from G1 to G2 which
is directed-continuous is also continuous.

Every partial graph mapping from G1 to G2 which is directed-continuous and
one-to-one is also directed and semi-directed-continuous and every partial graph
mapping from G1 to G2 which is empty is also one-to-one, directed-continuous,
directed, and continuous and every partial graph mapping from G1 to G2 which
is total is also non empty and every partial graph mapping from G1 to G2 which
is onto is also non empty.

Let G be a graph. One can verify that idG is total, non empty, onto, one-to-
one, and directed-continuous.

Let us consider graphs G1, G2, a partial function f from the vertices of G1
to the vertices of G2, and a partial function g from the edges of G1 to the edges
of G2. Now we state the propositions:

(30) Suppose for every object e such that e ∈ dom g holds (the source of
G1)(e), (the target of G1)(e) ∈ dom f and for every objects e, v, w such
that e ∈ dom g and v, w ∈ dom f holds if e joins v to w in G1, then g(e)
joins f(v) to f(w) in G2. Then 〈〈f, g〉〉 is a directed partial graph mapping
from G1 to G2. The theorem is a consequence of (8).

(31) Suppose for every object e such that e ∈ dom g holds (the source of
G1)(e), (the target of G1)(e) ∈ dom f and for every objects e, v, w such
that e ∈ dom g and v, w ∈ dom f holds e joins v and w in G1 iff g(e)
joins f(v) and f(w) in G2. Then 〈〈f, g〉〉 is a semi-continuous partial graph
mapping from G1 to G2. The theorem is a consequence of (8).

(32) Suppose for every object e such that e ∈ dom g holds (the source of
G1)(e), (the target of G1)(e) ∈ dom f and for every objects e, v, w such
that e ∈ dom g and v, w ∈ dom f holds e joins v to w in G1 iff g(e)
joins f(v) to f(w) in G2. Then 〈〈f, g〉〉 is a semi-directed-continuous partial
graph mapping from G1 to G2. The theorem is a consequence of (8).

(33) Let us consider graphs G1, G2. Then 〈〈∅, ∅〉〉 is an empty, one-to-one,
directed-continuous partial graph mapping from G1 to G2.
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(34) Let us consider graphs G1, G2, and a partial graph mapping F from G1
to G2. Suppose F is total. Let us consider a vertex v of G1. Then (FV)(v)
is a vertex of G2.

(35) Let us consider graphs G1, G2, and a partial graph mapping F from G1
to G2. Suppose F is total. Then

(i) if G2 is loopless, then G1 is loopless, and

(ii) if G2 is edgeless, then G1 is edgeless.

The theorem is a consequence of (4).

(36) Let us consider graphs G1, G2, and a continuous partial graph mapping
F from G1 to G2. Suppose rngFV = the vertices of G2. If G1 is loopless,
then G2 is loopless.
Proof: For every object v, there exists no object e such that e joins v
and v in G2. �

(37) Let us consider graphs G1, G2, and a semi-continuous partial graph
mapping F from G1 to G2. If F is onto, then if G1 is loopless, then G2 is
loopless.

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(38) If rngFE = the edges of G2, then if G1 is edgeless, then G2 is edgeless.

(39) If F is onto, then if G1 is edgeless, then G2 is edgeless.

(40) Let us consider a graph G1, a non-multi graph G2, and partial graph
mappings F1, F2 from G1 to G2. Suppose F1V = F2V and dom(F1E) =
dom(F2E). Then F1 = F2. The theorem is a consequence of (5) and (4).

(41) Let us consider a graph G1, a non-directed-multi graph G2, and directed
partial graph mappings F1, F2 from G1 to G2. Suppose F1V = F2V and
dom(F1E) = dom(F2E). Then F1 = F2. The theorem is a consequence of
(5).

(42) Let us consider a non-multi graph G1, a graph G2, and a semi-continuous
partial graph mapping F from G1 to G2. Then FE is one-to-one. The
theorem is a consequence of (5) and (4).

(43) Let us consider a non-multi graph G1, a graph G2, and a partial graph
mapping F from G1 to G2. If FV is one-to-one, then FE is one-to-one. The
theorem is a consequence of (5) and (4).

(44) Let us consider a non-directed-multi graph G1, a graph G2, and a direc-
ted partial graph mapping F from G1 to G2. If FV is one-to-one, then FE
is one-to-one. The theorem is a consequence of (5).

Let G1 be a graph and G2 be a loopless graph. Observe that every partial
graph mapping fromG1 toG2 which is directed and semi-continuous is also semi-
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directed-continuous and every partial graph mapping from G1 to G2 which is
directed and continuous is also directed-continuous.

LetG1 be a trivial graph andG2 be a graph. Observe that every partial graph
mapping from G1 to G2 is directed and every partial graph mapping from G1 to
G2 which is semi-continuous is also semi-directed-continuous and every partial
graph mapping from G1 to G2 which is continuous is also directed-continuous.

Let G1 be a trivial, non-directed-multi graph. Note that every partial graph
mapping from G1 to G2 is one-to-one.

LetG1 be a trivial, edgeless graph. Observe that every partial graph mapping
from G1 to G2 which is non empty is also total.

Let G1 be a graph and G2 be a trivial, edgeless graph. Note that every
partial graph mapping from G1 to G2 which is non empty is also onto and every
partial graph mapping from G1 to G2 is semi-continuous and continuous.

Let G1, G2 be graphs and F be a partial graph mapping from G1 to G2. We
say that F is weak subgraph embedding if and only if

(Def. 19) F is total and one-to-one.

We say that F is strong subgraph embedding if and only if

(Def. 20) F is total, one-to-one, and continuous.

We say that F is isomorphism if and only if

(Def. 21) F is total, one-to-one, and onto.

We say that F is directed-isomorphism if and only if

(Def. 22) F is directed, total, one-to-one, and onto.

One can check that every partial graph mapping from G1 to G2 which is weak
subgraph embedding is also total, non empty, one-to-one, and semi-continuous
and every partial graph mapping from G1 to G2 which is total and one-to-one
is also weak subgraph embedding and every partial graph mapping from G1 to
G2 which is strong subgraph embedding is also total, non empty, one-to-one,
continuous, and weak subgraph embedding and every partial graph mapping
from G1 to G2 which is total, one-to-one, and continuous is also strong subgraph
embedding.

Every partial graph mapping from G1 to G2 which is weak subgraph embed-
ding and continuous is also strong subgraph embedding and every partial graph
mapping from G1 to G2 which is isomorphism is also onto, semi-continuous,
continuous, total, non empty, one-to-one, weak subgraph embedding, and strong
subgraph embedding and every partial graph mapping from G1 to G2 which is
total, one-to-one, onto, and continuous is also isomorphism and every partial
graph mapping from G1 to G2 which is strong subgraph embedding and onto is
also isomorphism.
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Every partial graph mapping from G1 to G2 which is weak subgraph embed-
ding, continuous, and onto is also isomorphism and every partial graph mapping
from G1 to G2 which is directed-isomorphism is also directed, isomorphism,
continuous, total, non empty, semi-directed-continuous, semi-continuous, one-
to-one, weak subgraph embedding, and strong subgraph embedding and every
partial graph mapping from G1 to G2 which is directed and isomorphism is also
directed-continuous and directed-isomorphism.

Let G be a graph. Let us note that idG is weak subgraph embedding, strong
subgraph embedding, isomorphism, and directed-isomorphism and there exists
a partial graph mapping from G to G which is weak subgraph embedding, strong
subgraph embedding, isomorphism, and directed-isomorphism.

Now we state the propositions:

(45) Let us consider graphs G1, G2, and a partial graph mapping F from G1
to G2. Suppose F is weak subgraph embedding. Then

(i) G1.order() ⊆ G2.order(), and

(ii) G1.size() ⊆ G2.size().

(46) Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
and subsetsX, Y of the vertices ofG1. Suppose F is weak subgraph embed-
ding. Then G1.edgesBetween(X,Y ) ⊆ G2.edgesBetween((FV)◦X, (FV)◦Y ).
Proof: Set f = FE�G1.edgesBetween(X,Y ). For every object y such that
y ∈ rng f holds y ∈ G2.edgesBetween((FV)◦X, (FV)◦Y ). �

(47) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and a subset X of the vertices of G1. Suppose F is weak subgraph
embedding. Then G1.edgesBetween(X) ⊆ G2.edgesBetween((FV)◦X).
Proof: Set f = FE�G1.edgesBetween(X). For every object y such that
y ∈ rng f holds y ∈ G2.edgesBetween((FV)◦X). �

(48) Let us consider graphs G1, G2, a directed partial graph mapping F from
G1 to G2, and subsets X, Y of the vertices of G1. Suppose F is weak
subgraph embedding. Then G1.edgesDBetween(X,Y ) ⊆
G2.edgesDBetween((FV)◦X, (FV)◦Y ).
Proof: Set f = FE�G1.edgesDBetween(X,Y ). For every object y such
that y ∈ rng f holds y ∈ G2.edgesDBetween((FV)◦X, (FV)◦Y ). �

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(49) Suppose F is weak subgraph embedding. Then

(i) if G2 is trivial, then G1 is trivial, and

(ii) if G2 is non-multi, then G1 is non-multi, and
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(iii) if G2 is simple, then G1 is simple, and

(iv) if G2 is finite, then G1 is finite.

Proof: If G2 is non-multi, then G1 is non-multi. G1.order() ⊆ G2.order()
and G1.size() ⊆ G2.size(). �

(50) Suppose F is directed and weak subgraph embedding. Then

(i) if G2 is non-directed-multi, then G1 is non-directed-multi, and

(ii) if G2 is directed-simple, then G1 is directed-simple.

Proof: If G2 is non-directed-multi, then G1 is non-directed-multi. G1 is
loopless and non-directed-multi. �

(51) Let us consider finite graphs G1, G2, and a partial graph mapping F

from G1 to G2. Suppose F is strong subgraph embedding and G1.order() =
G2.order() and G1.size() = G2.size(). Then F is isomorphism.

(52) Let us consider graphs G1, G2, and a partial graph mapping F from G1
to G2. Suppose F is strong subgraph embedding. If G2 is complete, then
G1 is complete.

Let G1, G2 be graphs. We say that G2 is G1-isomorphic if and only if

(Def. 23) there exists a partial graph mapping F from G1 to G2 such that F is
isomorphism.

We say that G2 is G1-directed-isomorphic if and only if

(Def. 24) there exists a partial graph mapping F from G1 to G2 such that F is
directed-isomorphism.

Let G be a graph. Note that every graph which is G-directed-isomorphic is
also G-isomorphic and there exists a graph which is G-directed-isomorphic and
G-isomorphic.

Now we state the proposition:

(53) Every graph is directed-isomorphic and isomorphic to itself.

Let G1 be a graph and G2 be a G1-isomorphic graph. Let us observe that
there exists a partial graph mapping from G1 to G2 which is isomorphism, strong
subgraph embedding, weak subgraph embedding, total, non empty, one-to-one,
onto, semi-continuous, and continuous.

An isomorphism between G1 and G2 is an isomorphism partial graph map-
ping from G1 to G2. Let G2 be a G1-directed-isomorphic graph. One can verify
that there exists a partial graph mapping from G1 to G2 which is isomorphism,
strong subgraph embedding, weak subgraph embedding, total, non empty, one-
to-one, onto, directed, semi-directed-continuous, and directed-continuous.

A directed isomorphism of G1 and G2 is a directed-isomorphism partial
graph mapping from G1 to G2. Let G1, G2 be w-graphs and F be a partial
graph mapping from G1 to G2. We say that F preserves weight if and only if
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(Def. 25) (the weight of G2) · (FE) = (the weight of G1)� dom(FE).

Let G1, G2 be e-graphs. We say that F preserves elabel if and only if

(Def. 26) (the elabel of G2) · (FE) = (the elabel of G1)� dom(FE).

Let G1, G2 be v-graphs. We say that F preserves vlabel if and only if

(Def. 27) (the vlabel of G2) · (FV) = (the vlabel of G1)� dom(FV).

Let G1, G2 be ordered graphs. We say that F preserves ordering if and only
if

(Def. 28) (the ordering of G2) · (FV) = the ordering of G1� dom(FV).

Let G be a w-graph. Note that idG preserves weight.
Let G be an e-graph. Let us note that idG preserves elabel.
Let G be a v-graph. Observe that idG preserves vlabel.
Let G be an ordered graph. Let us observe that idG preserves ordering.
Let G1, G2 be graphs and F be a partial graph mapping from G1 to G2. The

functor domF yielding a subgraph of G1 induced by dom(FV) and dom(FE) is
defined by the term

(Def. 29) the plain subgraph of G1 induced by dom(FV) and dom(FE).

The functor rngF yielding a subgraph of G2 induced by rngFV and rngFE is
defined by the term

(Def. 30) the plain subgraph of G2 induced by rngFV and rngFE.

One can verify that domF is plain and rngF is plain.
Let us consider graphs G1, G2 and a non empty partial graph mapping F

from G1 to G2. Now we state the propositions:

(54) (i) the vertices of domF = dom(FV), and

(ii) the edges of domF = dom(FE), and

(iii) the vertices of rngF = rngFV, and

(iv) the edges of rngF = rngFE.
The theorem is a consequence of (7).

(55) F is total if and only if domF ≈ G1. The theorem is a consequence of
(54).

(56) F is onto if and only if rngF ≈ G2. The theorem is a consequence of
(54).

Let G1, G2 be graphs, H be a subgraph of G1, and F be a partial graph
mapping from G1 to G2. The functor F �H yielding a partial graph mapping
from H to G2 is defined by the term

(Def. 31) 〈〈FV�(the vertices of H), FE�(the edges of H)〉〉.
Now we state the propositions:
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(57) Let us consider graphs G1, G2, a subgraph H of G1, and a partial graph
mapping F from G1 to G2. Then

(i) if F is empty, then F �H is empty, and

(ii) if F is total, then F �H is total, and

(iii) if F is one-to-one, then F �H is one-to-one, and

(iv) if F is weak subgraph embedding, then F �H is weak subgraph em-
bedding, and

(v) if F is semi-continuous, then F �H is semi-continuous, and

(vi) if F is not onto, then F �H is not onto, and

(vii) if F is directed, then F �H is directed, and

(viii) if F is semi-directed-continuous, then F �H is semi-directed-continuous.

Proof: If F is total, then F �H is total. If F is semi-continuous, then
F �H is semi-continuous. If F �H is onto, then F is onto. If F is directed,
then F �H is directed. If F is semi-directed-continuous, then F �H is semi-
directed-continuous. �

(58) Let us consider graphs G1, G2, a set V , a subgraph H of G1 induced by
V , and a partial graph mapping F from G1 to G2. Then

(i) if F is continuous, then F �H is continuous, and

(ii) if F is strong subgraph embedding, then F �H is strong subgraph
embedding, and

(iii) if F is directed-continuous, then F �H is directed-continuous.

The theorem is a consequence of (57).

Let G1, G2 be graphs, H be a subgraph of G1, and F be an empty partial
graph mapping from G1 to G2. Let us observe that F �H is empty.

Let F be a one-to-one partial graph mapping from G1 to G2. Let us observe
that F �H is one-to-one.

Let F be a semi-continuous partial graph mapping from G1 to G2. Observe
that F �H is semi-continuous.

Let V be a set, H be a subgraph of G1 induced by V , and F be a continuous
partial graph mapping from G1 to G2. Let us observe that F �H is continuous.

Let H be a subgraph of G1 and F be a directed partial graph mapping from
G1 to G2. Note that F �H is directed.

Let F be a semi-directed-continuous partial graph mapping from G1 to G2.
One can check that F �H is semi-directed-continuous.

Let V be a set, H be a subgraph of G1 induced by V , and F be a directed-
continuous partial graph mapping from G1 to G2. Note that F �H is directed-
continuous.
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Let F be a non empty partial graph mapping from G1 to G2. One can verify
that F � domF is total.

Now we state the propositions:

(59) Let us consider graphs G1, G2, a subgraph H of G1, and a partial graph
mapping F from G1 to G2. Then

(i) dom((F �H)V) = dom(FV) ∩ (the vertices of H), and

(ii) dom((F �H)E) = dom(FE) ∩ (the edges of H).

(60) Let us consider w-graphs G1, G2, a w-subgraph H of G1, and a par-
tial graph mapping F from G1 to G2. If F preserves weight, then F �H
preserves weight. The theorem is a consequence of (59).

(61) Let us consider e-graphs G1, G2, an e-subgraph H of G1, and a partial
graph mapping F from G1 to G2. If F preserves elabel, then F �H preserves
elabel. The theorem is a consequence of (59).

(62) Let us consider v-graphs G1, G2, a v-subgraph H of G1, and a partial
graph mapping F fromG1 toG2. If F preserves vlabel, then F �H preserves
vlabel. The theorem is a consequence of (59).

Let G1, G2 be graphs, H be a subgraph of G2, and F be a partial graph
mapping from G1 to G2. The functor H�F yielding a partial graph mapping
from G1 to H is defined by the term

(Def. 32) 〈〈(the vertices of H)�FV, (the edges of H)�FE〉〉.
Now we state the proposition:

(63) Let us consider graphs G1, G2, a subgraph H of G2, and a partial graph
mapping F from G1 to G2. Then

(i) if F is empty, then H�F is empty, and

(ii) if F is one-to-one, then H�F is one-to-one, and

(iii) if F is onto, then H�F is onto, and

(iv) if F is not total, then H�F is not total, and

(v) if F is directed, then H�F is directed, and

(vi) if F is semi-continuous, then H�F is semi-continuous, and

(vii) if F is continuous, then H�F is continuous, and

(viii) if F is semi-directed-continuous, thenH�F is semi-directed-continuous,
and

(ix) if F is directed-continuous, then H�F is directed-continuous.

Proof: If F is onto, then H�F is onto. If F is directed, then H�F is
directed. If F is semi-continuous, then H�F is semi-continuous. If F is
continuous, then H�F is continuous. If F is semi-directed-continuous, then
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H�F is semi-directed-continuous. If F is directed-continuous, then H�F
is directed-continuous. �

Let G1, G2 be graphs, H be a subgraph of G2, and F be an empty partial
graph mapping from G1 to G2. One can verify that H�F is empty.

Let F be a one-to-one partial graph mapping from G1 to G2. Let us observe
that H�F is one-to-one.

Let F be a semi-continuous partial graph mapping from G1 to G2. Observe
that H�F is semi-continuous.

Let F be a continuous partial graph mapping from G1 to G2. Let us note
that H�F is continuous.

Let F be a directed partial graph mapping from G1 to G2. Note that H�F
is directed.

Let F be a semi-directed-continuous partial graph mapping from G1 to G2.
One can check that H�F is semi-directed-continuous.

Let F be a directed-continuous partial graph mapping from G1 to G2. One
can verify that H�F is directed-continuous.

Let F be a non empty partial graph mapping from G1 to G2. Observe that
rngF �F is onto.

Now we state the propositions:

(64) Let us consider graphs G1, G2, a subgraph H of G2, and a partial graph
mapping F from G1 to G2. Then

(i) rng (H�F )V = rngFV ∩ (the vertices of H), and

(ii) rng (H�F )E = rngFE ∩ (the edges of H).

(65) Let us consider w-graphs G1, G2, a w-subgraph H of G2, and a par-
tial graph mapping F from G1 to G2. If F preserves weight, then H�F
preserves weight.

(66) Let us consider e-graphs G1, G2, an e-subgraph H of G2, and a partial
graph mapping F from G1 to G2. If F preserves elabel, then H�F preserves
elabel.

(67) Let us consider v-graphs G1, G2, a v-subgraph H of G2, and a partial
graph mapping F fromG1 toG2. If F preserves vlabel, thenH�F preserves
vlabel.

(68) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, a subgraph H1 of G1, and a subgraph H2 of G2. Then (H2�F )�H1 =
H2�(F �H1).

Let G1, G2 be graphs and F be a one-to-one partial graph mapping from
G1 to G2. The functor F−1 yielding a partial graph mapping from G2 to G1 is
defined by the term
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(Def. 33) 〈〈(FV)−1, (FE)−1〉〉.
One can verify that F−1 is one-to-one and semi-continuous.
Let F be an empty, one-to-one partial graph mapping from G1 to G2. One

can verify that F−1 is empty.
Let F be a non empty, one-to-one partial graph mapping from G1 to G2.

Let us note that F−1 is non empty.
Let F be a one-to-one, semi-directed-continuous partial graph mapping from

G1 to G2. One can verify that F−1 is semi-directed-continuous.
Let us consider graphs G1, G2 and a one-to-one partial graph mapping F

from G1 to G2. Now we state the propositions:

(69) (i) F−1V = (FV)−1, and

(ii) F−1E = (FE)−1.

(70) (F−1)−1 = F .

(71) F is total if and only if F−1 is onto.

(72) F is onto if and only if F−1 is total.

(73) If F is total and continuous, then F−1 is continuous.

(74) If F is total and directed-continuous, then F−1 is directed-continuous.

(75) F is isomorphism if and only if F−1 is isomorphism.

(76) Let us consider w-graphsG1,G2, and a one-to-one partial graph mapping
F from G1 to G2. Then F preserves weight if and only if F−1 preserves
weight. The theorem is a consequence of (2) and (70).

(77) Let us consider e-graphs G1, G2, and a one-to-one partial graph mapping
F from G1 to G2. Then F preserves elabel if and only if F−1 preserves
elabel. The theorem is a consequence of (2) and (70).

(78) Let us consider v-graphs G1, G2, and a one-to-one partial graph mapping
F from G1 to G2. Then F preserves vlabel if and only if F−1 preserves
vlabel. The theorem is a consequence of (2) and (70).

(79) Let us consider graphs G1, G2, and a one-to-one partial graph mapping
F from G1 to G2. Suppose F is onto. Let us consider a vertex v of G2.
Then (F−1V)(v) is a vertex of G1.

(80) Let us consider a graph G. Then (idG)−1 = idG.

(81) Let us consider graphs G1, G2, and a non empty, one-to-one partial graph
mapping F from G1 to G2. Then

(i) domF = rngF−1, and

(ii) rngF = dom(F−1).

The theorem is a consequence of (54).
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(82) Let us consider graphs G1, G2, a one-to-one partial graph mapping F

from G1 to G2, and a subgraph H of G1. Then (F �H)−1 = H�F−1.

(83) Let us consider graphs G1, G2, a one-to-one partial graph mapping F

from G1 to G2, and a subgraph H of G2. Then (H�F )−1 = F−1�H. The
theorem is a consequence of (82) and (70).

(84) Let us consider graphs G1, G2, and a partial graph mapping F from G1
to G2. Suppose F is isomorphism. Then

(i) G1.order() = G2.order(), and

(ii) G1.size() = G2.size().

The theorem is a consequence of (45) and (75).

(85) Let us consider finite graphs G1, G2, and a partial graph mapping F

from G1 to G2. Suppose F is strong subgraph embedding. If there exists
a partial graph mapping F0 from G1 to G2 such that F0 is isomorphism,
then F is isomorphism. The theorem is a consequence of (84) and (51).

(86) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and subsets X, Y of the vertices of G1. Suppose F is isomorphism.
Then G1.edgesBetween(X,Y ) = G2.edgesBetween((FV)◦X, (FV)◦Y ). The
theorem is a consequence of (46) and (75).

(87) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and a subset X of the vertices of G1. Suppose F is isomorphism.
Then G1.edgesBetween(X) = G2.edgesBetween((FV)◦X). The theorem
is a consequence of (47) and (75).

(88) Let us consider graphs G1, G2, a directed partial graph mapping F

from G1 to G2, and subsets X, Y of the vertices of G1. Suppose F is
isomorphism. Then G1.edgesDBetween(X,Y ) =

G2.edgesDBetween((FV)◦X, (FV)◦Y ). The theorem is a consequence of
(48) and (75).

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(89) Suppose F is isomorphism. Then

(i) G1 is trivial iff G2 is trivial, and

(ii) G1 is loopless iff G2 is loopless, and

(iii) G1 is edgeless iff G2 is edgeless, and

(iv) G1 is non-multi iff G2 is non-multi, and

(v) G1 is simple iff G2 is simple, and

(vi) G1 is finite iff G2 is finite, and
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(vii) G1 is complete iff G2 is complete.

The theorem is a consequence of (75), (35), (49), and (52).

(90) Suppose F is directed-continuous and isomorphism. Then

(i) G1 is non-directed-multi iff G2 is non-directed-multi, and

(ii) G1 is directed-simple iff G2 is directed-simple.

The theorem is a consequence of (74), (75), and (50).

(91) Let us consider graphs G1, G2, and a non empty, one-to-one partial

graph mapping F from G1 to G2. Then domF .loops() = rngF .loops().
The theorem is a consequence of (81).

Let us consider graphs G1, G2 and a one-to-one partial graph mapping F

from G1 to G2. Now we state the propositions:

(92) If F is total, then G1.loops() ⊆ G2.loops(). The theorem is a consequ-
ence of (55).

(93) If F is onto, then G2.loops() ⊆ G1.loops(). The theorem is a consequ-
ence of (72) and (92).

(94) If F is isomorphism, then G1.loops() = G2.loops(). The theorem is
a consequence of (92) and (93).

(95) Let us consider a graph G1, and a G1-isomorphic graph G2. Then G1 is
G2-isomorphic. The theorem is a consequence of (75).

(96) Let us consider a graph G1, and a G1-directed-isomorphic graph G2.
Then G1 is G2-directed-isomorphic. The theorem is a consequence of (71)
and (72).

Let us consider a graph G1, a G1-isomorphic graph G2, a G2-isomorphic
graph G3, and an isomorphism F between G1 and G2. Now we state the propo-
sitions:

(97) Suppose there exists a set E such that G3 is a graph given by reversing
directions of the edges E of G1. Then F−1 is an isomorphism between G2
and G3.
Proof: Reconsider F2 = F−1 as a partial graph mapping from G2 to G3.
F2 is total. F2 is onto. �

(98) If G1 ≈ G3, then F−1 is an isomorphism between G2 and G3. The
theorem is a consequence of (97).

(99) Let us consider a graph G1, a G1-directed-isomorphic graph G2, a G2-
directed-isomorphic graph G3, and a directed isomorphism F of G1 and
G2. Suppose G1 ≈ G3. Then F−1 is a directed isomorphism of G2 and G3.
Proof: Reconsider F2 = F−1 as a partial graph mapping from G2 to G3.
F2 is total. F2 is onto. �
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Let G1, G2, G3 be graphs, F1 be a partial graph mapping from G1 to G2,
and F2 be a partial graph mapping from G2 to G3. The functor F2 ·F1 yielding
a partial graph mapping from G1 to G3 is defined by the term

(Def. 34) 〈〈(F2V) · (F1V), (F2E) · (F1E)〉〉.
Let us consider graphs G1, G2, G3, a partial graph mapping F1 from G1 to

G2, and a partial graph mapping F2 from G2 to G3. Now we state the proposi-
tions:

(100) (i) F2 · F1V = (F2V) · (F1V), and

(ii) F2 · F1E = (F2E) · (F1E).

(101) If F2 · F1 is onto, then F2 is onto.

(102) If F2 · F1 is total, then F1 is total.

Let G1, G2, G3 be graphs, F1 be a one-to-one partial graph mapping from
G1 to G2, and F2 be a one-to-one partial graph mapping from G2 to G3. Observe
that F2 · F1 is one-to-one.

Let F1 be a semi-continuous partial graph mapping from G1 to G2 and F2
be a semi-continuous partial graph mapping from G2 to G3. Let us observe that
F2 · F1 is semi-continuous.

Let F1 be a continuous partial graph mapping from G1 to G2 and F2 be
a continuous partial graph mapping from G2 to G3. One can check that F2 · F1
is continuous.

Let F1 be a directed partial graph mapping from G1 to G2 and F2 be a di-
rected partial graph mapping from G2 to G3. One can check that F2 · F1 is
directed.

Let F1 be a semi-directed-continuous partial graph mapping from G1 to G2
and F2 be a semi-directed-continuous partial graph mapping from G2 to G3.
Note that F2 · F1 is semi-directed-continuous.

Let F1 be a directed-continuous partial graph mapping from G1 to G2 and
F2 be a directed-continuous partial graph mapping from G2 to G3. Observe that
F2 · F1 is directed-continuous.

Let F1 be an empty partial graph mapping from G1 to G2 and F2 be a partial
graph mapping from G2 to G3. Observe that F2 · F1 is empty.

Let F1 be a partial graph mapping from G1 to G2 and F2 be an empty
partial graph mapping from G2 to G3. Let us observe that F2 · F1 is empty.

Let us consider graphs G1, G2, G3, a partial graph mapping F1 from G1 to
G2, and a partial graph mapping F2 from G2 to G3. Now we state the proposi-
tions:

(103) Suppose F1 is total and rngF1V ⊆ dom(F2V) and rngF1E ⊆ dom(F2E).
Then F2 · F1 is total.
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(104) If F1 is total and F2 is total, then F2 ·F1 is total. The theorem is a con-
sequence of (103).

(105) Suppose F2 is onto and dom(F2V) ⊆ rngF1V and dom(F2E) ⊆ rngF1E.
Then F2 · F1 is onto.

(106) If F1 is onto and F2 is onto, then F2 · F1 is onto. The theorem is a con-
sequence of (105).

(107) If F1 is weak subgraph embedding and F2 is weak subgraph embedding,
then F2 · F1 is weak subgraph embedding.

(108) If F1 is strong subgraph embedding and F2 is strong subgraph embed-
ding, then F2 · F1 is strong subgraph embedding.

(109) If F1 is isomorphism and F2 is isomorphism, then F2 ·F1 is isomorphism.

(110) If F1 is directed-isomorphism and F2 is directed-isomorphism, then F2·F1
is directed-isomorphism. The theorem is a consequence of (109).

(111) Let us consider w-graphs G1, G2, G3, a partial graph mapping F1 from
G1 to G2, and a partial graph mapping F2 from G2 to G3. Suppose F1
preserves weight and F2 preserves weight. Then F2 · F1 preserves weight.
The theorem is a consequence of (1).

(112) Let us consider e-graphs G1, G2, G3, a partial graph mapping F1 from
G1 to G2, and a partial graph mapping F2 from G2 to G3. Suppose F1
preserves elabel and F2 preserves elabel. Then F2 ·F1 preserves elabel. The
theorem is a consequence of (1).

(113) Let us consider v-graphs G1, G2, G3, a partial graph mapping F1 from
G1 to G2, and a partial graph mapping F2 from G2 to G3. Suppose F1
preserves vlabel and F2 preserves vlabel. Then F2 · F1 preserves vlabel.
The theorem is a consequence of (1).

(114) Let us consider graphs G1, G2, G3, G4, a partial graph mapping F1 from
G1 to G2, a partial graph mapping F2 from G2 to G3, and a partial graph
mapping F3 from G3 to G4. Then F3 · (F2 · F1) = (F3 · F2) · F1.

(115) Let us consider graphs G1, G2, and a one-to-one partial graph mapping
F from G1 to G2. Suppose F is isomorphism. Then

(i) F · (F−1) = idG2 , and

(ii) F−1 · F = idG1 .

(116) Let us consider graphs G1, G2, and a partial graph mapping F from G1
to G2. Then

(i) F · (idG1) = F , and

(ii) idG2 · F = F .
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(117) Let us consider graphs G1, G2, G3, a partial graph mapping F1 from G1
to G2, a partial graph mapping F2 from G2 to G3, and a subgraph H of
G1. Then F2 · (F1�H) = (F2 · F1)�H.

(118) Let us consider graphs G1, G2, G3, a partial graph mapping F1 from G1
to G2, a partial graph mapping F2 from G2 to G3, and a subgraph H of
G3. Then (H�F2) · F1 = H�(F2 · F1).

Let G1 be a graph and G2 be a G1-isomorphic graph. Let us note that every
graph which is G2-isomorphic is also G1-isomorphic.

Let G2 be a G1-directed-isomorphic graph. Note that every graph which is
G2-directed-isomorphic is also G1-directed-isomorphic.

4. Walks Induced by Graph Mappings

Let G1, G2 be graphs, F be a partial graph mapping from G1 to G2, and
W1 be a walk of G1. We say that W1 is F -defined if and only if

(Def. 35) W1.vertices() ⊆ dom(FV) and W1.edges() ⊆ dom(FE).

Let W2 be a walk of G2. We say that W2 is F-valued if and only if

(Def. 36) W2.vertices() ⊆ rngFV and W2.edges() ⊆ rngFE.

Let F be a non empty partial graph mapping from G1 to G2. Observe that
there exists a walk of G1 which is F -defined and trivial and there exists a walk
of G2 which is F-valued and trivial.

Let us consider graphs G1, G2 and an empty partial graph mapping F from
G1 to G2. Now we state the propositions:

(119) Every walk of G1 is not F -defined.

(120) Every walk of G2 is not F-valued.

(121) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and a walk W1 of G1. If F is total, then W1 is F -defined.

(122) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and a walk W2 of G2. If F is onto, then W2 is F-valued.

Let G1, G2 be graphs and F be a one-to-one partial graph mapping from G1
to G2. Observe that every walk of G1 which is F -defined is also (F−1)-valued
and every walk of G2 which is F-valued is also (F−1)-defined.

Let F be a non empty partial graph mapping from G1 to G2 and W1 be
an F -defined walk of G1. The functor F ◦W1 yielding a walk of G2 is defined by

(Def. 37) (FV) · (W1.vertexSeq()) = it .vertexSeq() and (FE) · (W1.edgeSeq()) =
it .edgeSeq().

Note that F ◦W1 is F-valued.
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Let us observe that the functor F ◦W1 yields an F-valued walk of G2. Let F
be a non empty, one-to-one partial graph mapping from G1 to G2 and W2 be
an F-valued walk of G2. The functor F−1(W2) yielding an F -defined walk of G1
is defined by the term

(Def. 38) (F−1)◦W2.

Let us observe that the functor F−1(W2) is defined by

(Def. 39) (FV) · (it .vertexSeq()) = W2.vertexSeq() and (FE) · (it .edgeSeq()) =
W2.edgeSeq().

Now we state the propositions:

(123) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, and an F -defined walk W1 of G1. Then
F−1(F ◦W1) = W1.

(124) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, and an F-valued walk W2 of G2.
Then F ◦(F−1(W2)) = W2.

(125) Let us consider graphs G1, G2, a non empty partial graph mapping F

from G1 to G2, and an F -defined walk W1 of G1. Then

(i) W1.length() = (F ◦W1).length(), and

(ii) lenW1 = len(F ◦W1).

(126) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, and an F-valued walk W2 of G2. Then

(i) W2.length() = (F−1(W2)).length(), and

(ii) lenW2 = len(F−1(W2)).

(127) Let us consider graphs G1, G2, a non empty partial graph mapping F

from G1 to G2, and an F -defined walk W1 of G1. Then

(i) (FV)(W1.first()) = (F ◦W1).first(), and

(ii) (FV)(W1.last()) = (F ◦W1).last().

(128) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, and an F-valued walk W2 of G2. Then

(i) ((FV)−1)(W2.first()) = (F−1(W2)).first(), and

(ii) ((FV)−1)(W2.last()) = (F−1(W2)).last().

(129) Let us consider graphs G1, G2, a non empty partial graph mapping
F from G1 to G2, an F -defined walk W1 of G1, and an odd element n
of N. If n ¬ lenW1, then (FV)(W1(n)) = (F ◦W1)(n). The theorem is
a consequence of (125).
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(130) Let us consider graphs G1, G2, a non empty partial graph mapping F

from G1 to G2, an F -defined walk W1 of G1, and an even element n of N.
Suppose 1 ¬ n ¬ lenW1. Then (FE)(W1(n)) = (F ◦W1)(n). The theorem
is a consequence of (125).

Let us consider graphs G1, G2, a non empty partial graph mapping F from
G1 to G2, an F -defined walk W1 of G1, and objects v, w. Now we state the
propositions:

(131) If W1 is walk from v to w, then v, w ∈ dom(FV).

(132) If W1 is walk from v to w, then F ◦W1 is walk from (FV)(v) to (FV)(w).
The theorem is a consequence of (129) and (125).

(133) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, an F -defined walk W1 of G1, and objects v,
w. Then W1 is walk from v to w if and only if v, w ∈ dom(FV) and F ◦W1
is walk from (FV)(v) to (FV)(w). The theorem is a consequence of (131),
(132), and (123).

(134) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, and an F -defined walk W1 of G1. Suppo-
se (FV)(W1.first()) = (FV)(W1.last()). Then W1.first() = W1.last(). The
theorem is a consequence of (4).

Let us consider graphs G1, G2, a non empty partial graph mapping F from
G1 to G2, and an F -defined walk W1 of G1. Now we state the propositions:

(135) (F ◦W1).vertices() = (FV)◦(W1.vertices()).
Proof: For every object y, y ∈ rng(FV) · (W1.vertexSeq()) iff y ∈
(FV)◦(W1.vertices()). �

(136) (F ◦W1).edges() = (FE)◦(W1.edges()).
Proof: For every object y, y ∈ rng(FE) · (W1.edgeSeq()) iff y ∈
(FE)◦(W1.edges()). �

(137) (i) if W1 is trivial, then F ◦W1 is trivial, and

(ii) if W1 is closed, then F ◦W1 is closed, and

(iii) if F ◦W1 is trail-like, then W1 is trail-like, and

(iv) if F ◦W1 is path-like, then W1 is path-like.
Proof: If F ◦W1 is trail-like, then W1 is trail-like. For every odd elements
m, n of N such that m < n ¬ lenW1 holds if W1(m) = W1(n), then m = 1
and n = lenW1. �

(138) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, and an F -defined walk W1 of G1. Then

(i) W1 is trivial iff F ◦W1 is trivial, and
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(ii) W1 is closed iff F ◦W1 is closed, and

(iii) W1 is trail-like iff F ◦W1 is trail-like, and

(iv) W1 is path-like iff F ◦W1 is path-like, and

(v) W1 is circuit-like iff F ◦W1 is circuit-like, and

(vi) W1 is cycle-like iff F ◦W1 is cycle-like.

The theorem is a consequence of (123) and (137).

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(139) If F is strong subgraph embedding, then if G2 is acyclic, then G1 is
acyclic. The theorem is a consequence of (121) and (138).

(140) Suppose F is isomorphism. Then

(i) G1 is acyclic iff G2 is acyclic, and

(ii) G1 is chordal iff G2 is chordal, and

(iii) G1 is connected iff G2 is connected.

Proof: F−1 is isomorphism and semi-continuous. For every vertices u, v
of G1, there exists a walk W1 of G1 such that W1 is walk from u to v. �

5. Graph Mappings and Graph Modes

Let us consider graphs G1, G2, sets E1, E2, a graph G3 given by reversing
directions of the edges E1 of G1, a graph G4 given by reversing directions of the
edges E2 of G2, and a partial graph mapping F0 from G1 to G2. Now we state
the propositions:

(141) There exists a partial graph mapping F from G3 to G4 such that

(i) F = F0, and

(ii) if F0 is not empty, then F is not empty, and

(iii) if F0 is total, then F is total, and

(iv) if F0 is onto, then F is onto, and

(v) if F0 is one-to-one, then F is one-to-one, and

(vi) if F0 is semi-continuous, then F is semi-continuous, and

(vii) if F0 is continuous, then F is continuous.

Proof: Reconsider F = F0 as a partial graph mapping from G3 to G4.
If F0 is semi-continuous, then F is semi-continuous. If F0 is continuous,
then F is continuous by [13, (9)]. �
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(142) There exists a partial graph mapping F from G3 to G4 such that

(i) F = F0, and

(ii) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(iii) if F0 is strong subgraph embedding, then F is strong subgraph em-
bedding, and

(iv) if F0 is isomorphism, then F is isomorphism.

The theorem is a consequence of (141).

(143) Let us consider a graph G1, a G1-isomorphic graph G2, sets E1, E2, and
a graph G3 given by reversing directions of the edges E1 of G1. Then every
graph given by reversing directions of the edges E2 of G2 is G3-isomorphic.
The theorem is a consequence of (142).

Let us consider graphs G3, G4, sets V1, V2, a supergraph G1 of G3 extended
by the vertices from V1, a supergraph G2 of G4 extended by the vertices from
V2, a partial graph mapping F0 from G3 to G4, and a one-to-one function f .
Now we state the propositions:

(144) Suppose dom f = V1 \ (the vertices of G3) and rng f = V2 \ (the vertices
of G4). Then there exists a partial graph mapping F from G1 to G2 such
that

(i) F = 〈〈F0V+·f, F0E〉〉, and

(ii) if F0 is not empty, then F is not empty, and

(iii) if F0 is total, then F is total, and

(iv) if F0 is onto, then F is onto, and

(v) if F0 is one-to-one, then F is one-to-one, and

(vi) if F0 is directed, then F is directed, and

(vii) if F0 is semi-continuous, then F is semi-continuous, and

(viii) if F0 is continuous, then F is continuous, and

(ix) if F0 is semi-directed-continuous, then F is semi-directed-continuous,
and

(x) if F0 is directed-continuous, then F is directed-continuous.

Proof: Set h = F0V+·f . Reconsider g = F0E as a partial function from
the edges of G1 to the edges of G2. Reconsider F = 〈〈h, g〉〉 as a partial
graph mapping from G1 to G2. If F0 is total, then F is total. If F0 is onto,
then F is onto. If F0 is directed, then F is directed. If F0 is semi-continuous,
then F is semi-continuous. If F0 is continuous, then F is continuous. If F0
is semi-directed-continuous, then F is semi-directed-continuous. If F0 is
directed-continuous, then F is directed-continuous. �
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(145) Suppose dom f = V1 \ (the vertices of G3) and rng f = V2 \ (the vertices
of G4). Then there exists a partial graph mapping F from G1 to G2 such
that

(i) F = 〈〈F0V+·f, F0E〉〉, and

(ii) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(iii) if F0 is strong subgraph embedding, then F is strong subgraph em-
bedding, and

(iv) if F0 is isomorphism, then F is isomorphism, and

(v) if F0 is directed-isomorphism, then F is directed-isomorphism.

The theorem is a consequence of (144).

(146) Let us consider a graph G3, a G3-isomorphic graph G4, sets V1, V2,
a supergraph G1 of G3 extended by the vertices from V1, and a supergraph
G2 of G4 extended by the vertices from V2. Suppose V1 \ α = V2 \ β . Then
G2 is G1-isomorphic, where α is the vertices of G3 and β is the vertices of
G4. The theorem is a consequence of (145).

(147) Let us consider a graph G3, a G3-directed-isomorphic graph G4, sets
V1, V2, a supergraph G1 of G3 extended by the vertices from V1, and
a supergraph G2 of G4 extended by the vertices from V2. Suppose V1 \ α =

V2 \ β . Then G2 is G1-directed-isomorphic, where α is the vertices of G3
and β is the vertices of G4. The theorem is a consequence of (145).

Let us consider graphs G3, G4, objects v1, v2, a supergraph G1 of G3 exten-
ded by v1, a supergraph G2 of G4 extended by v2, and a partial graph mapping
F0 from G3 to G4. Now we state the propositions:

(148) Suppose v1 /∈ the vertices of G3 and v2 /∈ the vertices of G4. Then there
exists a partial graph mapping F from G1 to G2 such that

(i) F = 〈〈F0V+·(v1 7−→. v2), F0E〉〉, and

(ii) if F0 is total, then F is total, and

(iii) if F0 is onto, then F is onto, and

(iv) if F0 is one-to-one, then F is one-to-one, and

(v) if F0 is directed, then F is directed, and

(vi) if F0 is semi-continuous, then F is semi-continuous, and

(vii) if F0 is continuous, then F is continuous, and

(viii) if F0 is semi-directed-continuous, then F is semi-directed-continuous,
and
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(ix) if F0 is directed-continuous, then F is directed-continuous.

The theorem is a consequence of (144).

(149) Suppose v1 /∈ the vertices of G3 and v2 /∈ the vertices of G4. Then there
exists a partial graph mapping F from G1 to G2 such that

(i) F = 〈〈F0V+·(v1 7−→. v2), F0E〉〉, and

(ii) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(iii) if F0 is strong subgraph embedding, then F is strong subgraph em-
bedding, and

(iv) if F0 is isomorphism, then F is isomorphism, and

(v) if F0 is directed-isomorphism, then F is directed-isomorphism.

The theorem is a consequence of (148).

(150) Let us consider a graph G3, a G3-isomorphic graph G4, objects v1, v2,
a supergraph G1 of G3 extended by v1, and a supergraph G2 of G4 exten-
ded by v2. Suppose v1 ∈ the vertices of G3 iff v2 ∈ the vertices of G4.
Then G2 is G1-isomorphic. The theorem is a consequence of (146).

(151) Let us consider a graph G3, a G3-directed-isomorphic graph G4, objects
v1, v2, a supergraph G1 of G3 extended by v1, and a supergraph G2 of G4
extended by v2. Suppose v1 ∈ the vertices of G3 iff v2 ∈ the vertices of
G4. Then G2 is G1-directed-isomorphic. The theorem is a consequence of
(147).

Let us consider graphs G3, G4, vertices v1, v3 of G3, vertices v2, v4 of G4,
objects e1, e2, a supergraph G1 of G3 extended by e1 between vertices v1 and v3,
a supergraph G2 of G4 extended by e2 between vertices v2 and v4, and a partial
graph mapping F0 from G3 to G4. Now we state the propositions:

(152) Suppose e1 /∈ the edges of G3 and e2 /∈ the edges of G4 and v1, v3 ∈
dom(F0V) and ((F0V)(v1) = v2 and (F0V)(v3) = v4 or (F0V)(v1) = v4 and
(F0V)(v3) = v2). Then there exists a partial graph mapping F from G1 to
G2 such that

(i) F = 〈〈F0V, F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is total, then F is total, and

(iii) if F0 is onto, then F is onto, and

(iv) if F0 is one-to-one, then F is one-to-one.

The theorem is a consequence of (5), (4), and (8).

(153) Suppose e1 /∈ the edges of G3 and e2 /∈ the edges of G4 and v1, v3 ∈
dom(F0V) and ((F0V)(v1) = v2 and (F0V)(v3) = v4 or (F0V)(v1) = v4 and
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(F0V)(v3) = v2). Then there exists a partial graph mapping F from G1 to
G2 such that

(i) F = 〈〈F0V, F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(iii) if F0 is isomorphism, then F is isomorphism.

The theorem is a consequence of (152).

(154) Suppose e1 /∈ the edges of G3 and e2 /∈ the edges of G4 and v1, v3 ∈
dom(F0V) and (F0V)(v1) = v2 and (F0V)(v3) = v4. Then there exists
a partial graph mapping F from G1 to G2 such that

(i) F = 〈〈F0V, F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is directed, then F is directed, and

(iii) if F0 is directed-isomorphism, then F is directed-isomorphism.

Proof: Consider F being a partial graph mapping from G1 to G2 such
that F = 〈〈F0V, F0E+·(e1 7−→. e2)〉〉 and if F0 is total, then F is total and if
F0 is onto, then F is onto and if F0 is one-to-one, then F is one-to-one. If
F0 is directed, then F is directed by [15, (16)], [12, (71),(70),(106)]. �

Let us consider graphs G3, G4, a vertex v3 of G3, a vertex v4 of G4, objects
e1, e2, v1, v2, a supergraph G1 of G3 extended by v1, v3 and e1 between them,
a supergraph G2 of G4 extended by v2, v4 and e2 between them, and a partial
graph mapping F0 from G3 to G4. Now we state the propositions:

(155) Suppose e1 /∈ the edges of G3 and e2 /∈ the edges of G4 and v1 /∈
the vertices of G3 and v2 /∈ the vertices of G4 and v3 ∈ dom(F0V) and
(F0V)(v3) = v4. Then there exists a partial graph mapping F from G1 to
G2 such that

(i) F = 〈〈F0V+·(v1 7−→. v2), F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is total, then F is total, and

(iii) if F0 is onto, then F is onto, and

(iv) if F0 is one-to-one, then F is one-to-one, and

(v) if F0 is directed, then F is directed.

Proof: Consider G5 being a supergraph of G3 extended by v1 such that
G1 is a supergraph of G5 extended by e1 between vertices v1 and v3.
Consider G6 being a supergraph of G4 extended by v2 such that G2 is
a supergraph of G6 extended by e2 between vertices v2 and v4.

Consider F1 being a partial graph mapping from G5 to G6 such that
F1 = 〈〈F0V+·(v1 7−→. v2), F0E〉〉 and if F0 is total, then F1 is total and if F0
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is onto, then F1 is onto and if F0 is one-to-one, then F1 is one-to-one and
if F0 is directed, then F1 is directed and if F0 is semi-continuous, then F1
is semi-continuous and if F0 is continuous, then F1 is continuous and if F0
is semi-directed-continuous, then F1 is semi-directed-continuous and if F0
is directed-continuous, then F1 is directed-continuous. v1, v3 ∈ dom(F1V)
and (F1V)(v1) = v2 and (F1V)(v3) = v4.

Consider F2 being a partial graph mapping from G1 to G2 such that
F2 = 〈〈F1V, F1E+·(e1 7−→. e2)〉〉 and if F1 is total, then F2 is total and if
F1 is onto, then F2 is onto and if F1 is one-to-one, then F2 is one-to-
one. Consider F3 being a partial graph mapping from G1 to G2 such that
F3 = 〈〈F1V, F1E+·(e1 7−→. e2)〉〉 and if F1 is directed, then F3 is directed and
if F1 is directed-isomorphism, then F3 is directed-isomorphism. �

(156) Suppose e1 /∈ the edges of G3 and e2 /∈ the edges of G4 and v1 /∈
the vertices of G3 and v2 /∈ the vertices of G4 and v3 ∈ dom(F0V) and
(F0V)(v3) = v4. Then there exists a partial graph mapping F from G1 to
G2 such that

(i) F = 〈〈F0V+·(v1 7−→. v2), F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(iii) if F0 is isomorphism, then F is isomorphism, and

(iv) if F0 is directed-isomorphism, then F is directed-isomorphism.

The theorem is a consequence of (155).

Let us consider graphs G3, G4, a vertex v3 of G3, a vertex v4 of G4, objects
e1, e2, v1, v2, a supergraph G1 of G3 extended by v3, v1 and e1 between them,
a supergraph G2 of G4 extended by v4, v2 and e2 between them, and a partial
graph mapping F0 from G3 to G4. Now we state the propositions:

(157) Suppose e1 /∈ the edges of G3 and e2 /∈ the edges of G4 and v1 /∈
the vertices of G3 and v2 /∈ the vertices of G4 and v3 ∈ dom(F0V) and
(F0V)(v3) = v4. Then there exists a partial graph mapping F from G1 to
G2 such that

(i) F = 〈〈F0V+·(v1 7−→. v2), F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is total, then F is total, and

(iii) if F0 is onto, then F is onto, and

(iv) if F0 is one-to-one, then F is one-to-one, and

(v) if F0 is directed, then F is directed.

Proof: Consider G5 being a supergraph of G3 extended by v1 such that
G1 is a supergraph of G5 extended by e1 between vertices v3 and v1.
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Consider G6 being a supergraph of G4 extended by v2 such that G2 is
a supergraph of G6 extended by e2 between vertices v4 and v2.

Consider F1 being a partial graph mapping from G5 to G6 such that
F1 = 〈〈F0V+·(v1 7−→. v2), F0E〉〉 and if F0 is total, then F1 is total and if F0
is onto, then F1 is onto and if F0 is one-to-one, then F1 is one-to-one and
if F0 is directed, then F1 is directed and if F0 is semi-continuous, then F1
is semi-continuous and if F0 is continuous, then F1 is continuous and if F0
is semi-directed-continuous, then F1 is semi-directed-continuous and if F0
is directed-continuous, then F1 is directed-continuous. v1, v3 ∈ dom(F1V)
and (F1V)(v1) = v2 and (F1V)(v3) = v4.

Consider F2 being a partial graph mapping from G1 to G2 such that
F2 = 〈〈F1V, F1E+·(e1 7−→. e2)〉〉 and if F1 is total, then F2 is total and if
F1 is onto, then F2 is onto and if F1 is one-to-one, then F2 is one-to-
one. Consider F3 being a partial graph mapping from G1 to G2 such that
F3 = 〈〈F1V, F1E+·(e1 7−→. e2)〉〉 and if F1 is directed, then F3 is directed and
if F1 is directed-isomorphism, then F3 is directed-isomorphism. �

(158) Suppose e1 /∈ the edges of G3 and e2 /∈ the edges of G4 and v1 /∈
the vertices of G3 and v2 /∈ the vertices of G4 and v3 ∈ dom(F0V) and
(F0V)(v3) = v4. Then there exists a partial graph mapping F from G1 to
G2 such that

(i) F = 〈〈F0V+·(v1 7−→. v2), F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(iii) if F0 is isomorphism, then F is isomorphism, and

(iv) if F0 is directed-isomorphism, then F is directed-isomorphism.

The theorem is a consequence of (157).

(159) Let us consider graphs G3, G4, a vertex v3 of G3, a vertex v4 of G4,
objects e1, e2, v1, v2, a supergraph G1 of G3 extended by v1, v3 and e1
between them, a supergraph G2 of G4 extended by v4, v2 and e2 between
them, and a partial graph mapping F0 from G3 to G4. Suppose e1 /∈
the edges of G3 and e2 /∈ the edges of G4 and v1 /∈ the vertices of G3 and
v2 /∈ the vertices of G4 and v3 ∈ dom(F0V) and (F0V)(v3) = v4. Then
there exists a partial graph mapping F from G1 to G2 such that

(i) F = 〈〈F0V+·(v1 7−→. v2), F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is total, then F is total, and

(iii) if F0 is onto, then F is onto, and

(iv) if F0 is one-to-one, then F is one-to-one, and
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(v) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(vi) if F0 is isomorphism, then F is isomorphism.

Proof: Consider G5 being a supergraph of G3 extended by v1 such that
G1 is a supergraph of G5 extended by e1 between vertices v1 and v3.
Consider G6 being a supergraph of G4 extended by v2 such that G2 is
a supergraph of G6 extended by e2 between vertices v4 and v2.

Consider F1 being a partial graph mapping from G5 to G6 such that
F1 = 〈〈F0V+·(v1 7−→. v2), F0E〉〉 and if F0 is total, then F1 is total and if F0
is onto, then F1 is onto and if F0 is one-to-one, then F1 is one-to-one and
if F0 is directed, then F1 is directed and if F0 is semi-continuous, then F1
is semi-continuous and if F0 is continuous, then F1 is continuous and if F0
is semi-directed-continuous, then F1 is semi-directed-continuous and if F0
is directed-continuous, then F1 is directed-continuous. v1, v3 ∈ dom(F1V)
and (F1V)(v1) = v2 and (F1V)(v3) = v4.

Consider F2 being a partial graph mapping from G1 to G2 such that
F2 = 〈〈F1V, F1E+·(e1 7−→. e2)〉〉 and if F1 is total, then F2 is total and if F1
is onto, then F2 is onto and if F1 is one-to-one, then F2 is one-to-one. �

(160) Let us consider graphs G3, G4, a vertex v3 of G3, a vertex v4 of G4,
objects e1, e2, v1, v2, a supergraph G1 of G3 extended by v3, v1 and e1
between them, a supergraph G2 of G4 extended by v2, v4 and e2 between
them, and a partial graph mapping F0 from G3 to G4. Suppose e1 /∈
the edges of G3 and e2 /∈ the edges of G4 and v1 /∈ the vertices of G3 and
v2 /∈ the vertices of G4 and v3 ∈ dom(F0V) and (F0V)(v3) = v4. Then
there exists a partial graph mapping F from G1 to G2 such that

(i) F = 〈〈F0V+·(v1 7−→. v2), F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is total, then F is total, and

(iii) if F0 is onto, then F is onto, and

(iv) if F0 is one-to-one, then F is one-to-one, and

(v) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(vi) if F0 is isomorphism, then F is isomorphism.

Proof: Consider G5 being a supergraph of G3 extended by v1 such that
G1 is a supergraph of G5 extended by e1 between vertices v3 and v1.
Consider G6 being a supergraph of G4 extended by v2 such that G2 is
a supergraph of G6 extended by e2 between vertices v2 and v4.

Consider F1 being a partial graph mapping from G5 to G6 such that
F1 = 〈〈F0V+·(v1 7−→. v2), F0E〉〉 and if F0 is total, then F1 is total and if F0
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is onto, then F1 is onto and if F0 is one-to-one, then F1 is one-to-one and
if F0 is directed, then F1 is directed and if F0 is semi-continuous, then F1
is semi-continuous and if F0 is continuous, then F1 is continuous and if F0
is semi-directed-continuous, then F1 is semi-directed-continuous and if F0
is directed-continuous, then F1 is directed-continuous. v1, v3 ∈ dom(F1V)
and (F1V)(v1) = v2 and (F1V)(v3) = v4.

Consider F2 being a partial graph mapping from G1 to G2 such that
F2 = 〈〈F1V, F1E+·(e1 7−→. e2)〉〉 and if F1 is total, then F2 is total and if F1
is onto, then F2 is onto and if F1 is one-to-one, then F2 is one-to-one. �

(161) Let us consider a graph G, an object v, a set V , and supergraphs G1,
G2 of G extended by vertex v and edges between v and V of G. Then G2
is G1-isomorphic. The theorem is a consequence of (8), (53), and (143).

(162) Let us consider graphs G3, G4, objects v1, v2, sets V1, V2, a supergraph
G1 of G3 extended by vertex v1 and edges between v1 and V1 of G3,
a supergraph G2 of G4 extended by vertex v2 and edges between v2 and
V2 of G4, and a partial graph mapping F0 from G3 to G4. Suppose V1 ⊆
the vertices of G3 and V2 ⊆ the vertices of G4 and v1 /∈ the vertices of G3
and v2 /∈ the vertices of G4 and F0V�V1 is one-to-one and dom(F0V�V1) =
V1 and rng(F0V�V1) = V2. Then there exists a partial graph mapping F

from G1 to G2 such that

(i) FV = F0V+·(v1 7−→. v2), and

(ii) FE� dom(F0E) = F0E, and

(iii) if F0 is total, then F is total, and

(iv) if F0 is onto, then F is onto, and

(v) if F0 is one-to-one, then F is one-to-one, and

(vi) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(vii) if F0 is isomorphism, then F is isomorphism.

Proof: V1 ⊆ dom(F0V). Set f = F0V+·(v1 7−→. v2). Consider h1 being
a function from V1 into G1.edgesBetween(V1, {v1}) such that h1 is one-to-
one and onto and for every object w such that w ∈ V1 holds h1(w) joins w
and v1 inG1. Consider h2 being a function from V2 intoG2.edgesBetween(V2,
{v2}) such that h2 is one-to-one and onto and for every object w such that
w ∈ V2 holds h2(w) joins w and v2 in G2. Set g = F0E+·h2 · (F0V) · (h1−1).

dom(F0E) misses dom(h2 · (F0V) · (h1−1)). rngF0E misses rng h2 · (F0V) ·
(h1−1). Consider E1 being a set such that V1 = E1 and E1 misses the edges
of G3 and the edges of G1 = (the edges of G3) ∪ E1 and for every object
w1 such that w1 ∈ V1 there exists an object e1 such that e1 ∈ E1 and e1
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joins w1 and v1 in G1 and for every object ẽ such that ẽ joins w1 and v1
in G1 holds e1 = ẽ.

Consider E2 being a set such that V2 = E2 and E2 misses the edges of
G4 and the edges of G2 = (the edges of G4) ∪E2 and for every object w2
such that w2 ∈ V2 there exists an object e2 such that e2 ∈ E2 and e2 joins
w2 and v2 in G2 and for every object ẽ such that ẽ joins w2 and v2 in G2
holds e2 = ẽ. Reconsider F = 〈〈f, g〉〉 as a partial graph mapping from G1
to G2. If F0 is total, then F is total. If F0 is onto, then F is onto. �

(163) Let us consider a graph G3, a G3-isomorphic graph G4, objects v1, v2,
a supergraph G1 of G3 extended by vertex v1 and edges between v1 and
the vertices of G3, and a supergraph G2 of G4 extended by vertex v2 and
edges between v2 and the vertices of G4. Suppose v1 ∈ the vertices of
G3 iff v2 ∈ the vertices of G4. Then G2 is G1-isomorphic. The theorem is
a consequence of (162) and (143).

Let us consider graphs G1, G2, a subgraph G3 of G1 with loops removed,
a subgraph G4 of G2 with loops removed, and a one-to-one partial graph map-
ping F0 from G1 to G2. Now we state the propositions:

(164) There exists a one-to-one partial graph mapping F from G3 to G4 such
that

(i) F = F0�G3, and

(ii) if F0 is total, then F is total, and

(iii) if F0 is onto, then F is onto, and

(iv) if F0 is directed, then F is directed, and

(v) if F0 is semi-directed-continuous, then F is semi-directed-continuous.

Proof: Reconsider F = G4�(F0�G3) as a one-to-one partial graph map-
ping from G3 to G4. If F0 is total, then F is total. If F0 is onto, then F is
onto. �

(165) There exists a one-to-one partial graph mapping F from G3 to G4 such
that

(i) F = F0�G3, and

(ii) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(iii) if F0 is isomorphism, then F is isomorphism, and

(iv) if F0 is directed-isomorphism, then F is directed-isomorphism.

The theorem is a consequence of (164).
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(166) Let us consider a graph G1, a G1-isomorphic graph G2, and a subgraph
G3 of G1 with loops removed. Then every subgraph of G2 with loops
removed is G3-isomorphic. The theorem is a consequence of (165).

(167) Let us consider a graph G1, a G1-directed-isomorphic graph G2, and
a subgraph G3 of G1 with loops removed. Then every subgraph of G2 with
loops removed is G3-directed-isomorphic. The theorem is a consequence
of (165).

(168) Let us consider a graph G1, a G1-isomorphic graph G2, and a subgraph
G3 of G1 with parallel edges removed. Then every subgraph of G2 with
parallel edges removed is G3-isomorphic.
Proof: Consider G being a partial graph mapping from G1 to G2 such
that G is isomorphism. Consider E1 being a representative selection of
the parallel edges of G1 such that G3 is a subgraph of G1 induced by
the vertices of G1 and E1.

Consider E2 being a representative selection of the parallel edges of G2
such that G4 is a subgraph of G2 induced by the vertices of G2 and E2.
Define P[object, object] ≡ $2 ∈ E2 and 〈〈$1, $2〉〉 ∈ EdgeParEqRel(G2). For
every objects x, y1, y2 such that x ∈ the edges of G2 and P[x, y1] and
P[x, y2] holds y1 = y2. For every object x such that x ∈ the edges of G2
there exists an object y such that P[x, y].

Consider h being a function such that domh = the edges of G2 and for
every object x such that x ∈ the edges of G2 holds P[x, h(x)]. �

(169) Let us consider a graph G1, and subgraphs G2, G3 of G1 with parallel
edges removed. Then G3 is G2-isomorphic. The theorem is a consequence
of (53) and (168).

(170) Let us consider a graph G1, a G1-directed-isomorphic graph G2, and
a subgraph G3 of G1 with directed-parallel edges removed. Then eve-
ry subgraph of G2 with directed-parallel edges removed is G3-directed-
isomorphic.
Proof: Consider G being a partial graph mapping from G1 to G2 such
that G is directed-isomorphism. Consider E1 being a representative selec-
tion of the directed-parallel edges of G1 such that G3 is a subgraph of G1
induced by the vertices of G1 and E1.

Consider E2 being a representative selection of the directed-parallel
edges of G2 such that G4 is a subgraph of G2 induced by the verti-
ces of G2 and E2. Define P[object, object] ≡ $2 ∈ E2 and 〈〈$1, $2〉〉 ∈
DEdgeParEqRel(G2). For every objects x, y1, y2 such that x ∈ the edges
of G2 and P[x, y1] and P[x, y2] holds y1 = y2. For every object x such that
x ∈ the edges of G2 there exists an object y such that P[x, y].
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Consider h being a function such that domh = the edges of G2 and for
every object x such that x ∈ the edges of G2 holds P[x, h(x)]. �

(171) Let us consider a graph G1, and subgraphs G2, G3 of G1 with directed-
parallel edges removed. Then G3 is G2-directed-isomorphic. The theorem
is a consequence of (53) and (170).

(172) Let us consider a graph G1, a G1-isomorphic graph G2, and a simple
graph G3 of G1. Then every simple graph of G2 is G3-isomorphic. The
theorem is a consequence of (166) and (168).

(173) Let us consider a graph G1, and simple graphs G2, G3 of G1. Then G3
is G2-isomorphic. The theorem is a consequence of (53) and (172).

(174) Let us consider a graph G1, a G1-directed-isomorphic graph G2, and
a directed-simple graph G3 of G1. Then every directed-simple graph of
G2 is G3-directed-isomorphic. The theorem is a consequence of (167) and
(170).

(175) Let us consider a graph G1, and directed-simple graphs G2, G3 of G1.
Then G3 is G2-directed-isomorphic. The theorem is a consequence of (53)
and (174).

(176) Let us consider trivial, loopless graphs G1, G2, and a non empty partial
graph mapping F from G1 to G2. Then

(i) F is directed-isomorphism, and

(ii) F = 〈〈the vertex of G1 7−→. the vertex of G2, ∅〉〉.

(177) Let us consider trivial graphs G1, G2. Suppose G1.size() = G2.size().
Then there exists a partial graph mapping F from G1 to G2 such that F
is directed-isomorphism. The theorem is a consequence of (31).

(178) Let us consider trivial, loopless graphs G1, G2. Then G2 is G1-directed-
isomorphic and G1-isomorphic.
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