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About Vertex Mappings

Sebastian Koch
Johannes Gutenberg University

Mainz, Germany1

Summary. In [6] partial graph mappings were formalized in the Mizar
system [3]. Such mappings map some vertices and edges of a graph to another
while preserving adjacency. While this general approach is appropriate for the
general form of (multidi)graphs as introduced in [7], a more specialized version for
graphs without parallel edges seems convenient. As such, partial vertex mappings
preserving adjacency between the mapped verticed are formalized here.
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0. Introduction

This article is a brief introduction to partial vertex mappings in Mizar [2].
As discussed in the introduction of [6] almost no graph theory book discusses
graph homomorphisms in a scope as general as it was done in [5] and [6]. Most
of the time, graph homomorphisms are only discussed in the form of vertex
mappings, often only in the context of simple graphs. But of course that choice
is not without reason and in many cases considering vertex mappings is enough,
which is especially useful since one does not need to think about an edge mapping
then. Given that the graph definitions change slightly between different authors,
a quick overview of the formalized notation seems in order.

A partial vertex mapping f between two graphs G1, G2 is a partial function
of their vertex sets V (G1), V (G2) with the additional property that if vertices
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v, w ∈ dom f are adjacent in G1, then their images f(v), f(w) are adjacent
in G2. The properties of f to be total (or a homomorphism), one-to-one (or
injective) and onto (or surjective) have the usual meaning for f as a partial
function. f is continuous if for any v, w ∈ dom f such that f(v) and f(w) are
adjacent, v and w are adjacent as well. f is an isomorphism if it is total, one-
to-one, onto and the cardinality of edges between to vertices v and w of G1 is
the same as the cardinality of the edges between f(v) and f(w). Corresponding
attributes for directed vertex mappings are given as well in this article.

The attribute continuous is the generalization for not necessarily simple
graphs of the continuous of [5]. The isomorphism attribute was inspired by [1].
It is shown that for graphs G1, G2 without multiple edges that a total bijective
and continuous vertex mapping f between them is already an isomorphism, just
like a graph isomorphism is usually described (cf. [4], [8], [5]). This article does
not go into depth like [6], but the inverse and composition of partial vertex
mappings are covered.

A partial graph mapping does not always induce a partial vertex mapping
(since any subset of the set of edges of G1 can be mapped) and a partial vertex
mapping can give rise to several partial graph mappings. In the second part of
this article it is shown when the induced partial vertex mapping exists and when
the induced partial graph mapping is unique. Furthermore it is formally stated
that for two graphs without parallel edges there exists a graph mapping that is
an isomorphism iff there exists a vertex mapping that is an isomorphism.

1. Vertex Mappings

Let G1, G2 be graphs.
A partial vertex mapping fromG1 toG2 is a partial function from the vertices

of G1 to the vertices of G2 defined by

(Def. 1) for every vertices v, w of G1 such that v, w ∈ dom it and v and w are
adjacent holds it/v and it/w are adjacent.

Now we state the proposition:

(1) Let us consider graphs G1, G2, and a partial function f from the vertices
of G1 to the vertices of G2. Then f is a partial vertex mapping from G1
to G2 if and only if for every objects v, w, e such that v, w ∈ dom f and
e joins v and w in G1 there exists an object ẽ such that ẽ joins f(v) and
f(w) in G2.

Let G1, G2 be graphs and f be a partial vertex mapping from G1 to G2. We
say that f is directed if and only if
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(Def. 2) for every objects v, w, e such that v, w ∈ dom f and e joins v to w in
G1 there exists an object ẽ such that ẽ joins f(v) to f(w) in G2.

We say that f is continuous if and only if

(Def. 3) for every vertices v, w of G1 such that v, w ∈ dom f and f/v and f/w
are adjacent holds v and w are adjacent.

We say that f is directed-continuous if and only if

(Def. 4) for every objects v, w, ẽ such that v, w ∈ dom f and ẽ joins f(v) to f(w)
in G2 there exists an object e such that e joins v to w in G1.

Let us consider graphs G1, G2 and a partial vertex mapping f from G1 to
G2. Now we state the propositions:

(2) f is continuous if and only if for every objects v, w, ẽ such that v,
w ∈ dom f and ẽ joins f(v) and f(w) in G2 there exists an object e such
that e joins v and w in G1.

(3) f is continuous if and only if for every vertices v, w of G1 such that v,
w ∈ dom f holds v and w are adjacent iff f/v and f/w are adjacent.

Let G1, G2 be graphs. One can check that every partial vertex mapping from
G1 to G2 which is directed-continuous is also continuous and every partial vertex
mapping from G1 to G2 which is empty is also one-to-one, directed-continuous,
directed, and continuous and every partial vertex mapping from G1 to G2 which
is total is also non empty and every partial vertex mapping from G1 to G2 which
is onto is also non empty.

Let G1 be a simple graph and G2 be a graph. Observe that every partial
vertex mapping from G1 to G2 which is directed-continuous is also directed.

Let G1 be a graph and G2 be a simple graph. Observe that every partial
vertex mapping from G1 to G2 which is directed and continuous is also directed-
continuous.

Let G1 be a trivial graph and G2 be a graph. Let us observe that every partial
vertex mapping from G1 to G2 is directed and every partial vertex mapping from
G1 to G2 which is continuous is also directed-continuous and every partial vertex
mapping from G1 to G2 which is non empty is also total.

Let G1 be a graph and G2 be a trivial graph. One can verify that every
partial vertex mapping from G1 to G2 which is non empty is also onto.

Let G2 be a trivial, loopless graph. Let us note that every partial vertex
mapping from G1 to G2 is directed-continuous and continuous.

Let G1, G2 be graphs. Observe that there exists a partial vertex mapping
from G1 to G2 which is empty, one-to-one, directed, continuous, and directed-
continuous.

Now we state the proposition:



306 sebastian koch

(4) Let us consider graphs G1, G2, and a partial function f from the vertices
of G1 to the vertices of G2. Then f is a directed partial vertex mapping
from G1 to G2 if and only if for every objects v, w, e such that v, w ∈ dom f

and e joins v to w in G1 there exists an object ẽ such that ẽ joins f(v) to
f(w) in G2. The theorem is a consequence of (1).

Let G1 be a loopless graph and G2 be a graph. One can verify that there
exists a partial vertex mapping from G1 to G2 which is non empty, one-to-one,
and directed.

Let G1, G2 be loopless graphs. Let us observe that there exists a partial
vertex mapping from G1 to G2 which is non empty, one-to-one, directed, conti-
nuous, and directed-continuous.

Let G1, G2 be non loopless graphs. One can verify that there exists a par-
tial vertex mapping from G1 to G2 which is non empty, one-to-one, directed,
continuous, and directed-continuous.

Now we state the propositions:

(5) Let us consider a graph G. Then idα is a directed, continuous, directed-
continuous partial vertex mapping from G to G, where α is the vertices of
G. The theorem is a consequence of (1) and (2).

(6) Let us consider graphs G1, G2, and a partial vertex mapping f from G1
to G2. Suppose f is total. Then

(i) if G2 is loopless, then G1 is loopless, and

(ii) if G2 is edgeless, then G1 is edgeless.

The theorem is a consequence of (1).

(7) Let us consider graphs G1, G2, and a continuous partial vertex mapping
f from G1 to G2. Suppose f is onto. Then

(i) if G1 is loopless, then G2 is loopless, and

(ii) if G1 is edgeless, then G2 is edgeless.

The theorem is a consequence of (2).

Let G1, G2 be graphs and f be a partial vertex mapping from G1 to G2. We
say that f is isomorphism if and only if

(Def. 5) f is total, one-to-one, and onto and for every vertices v, w of G1,

G1.edgesBetween({v}, {w}) = G2.edgesBetween({f(v)}, {f(w)}).

We say that f is directed-isomorphism if and only if

(Def. 6) f is total, one-to-one, and onto and for every vertices v, w of G1,

G1.edgesDBetween({v}, {w}) = G2.edgesDBetween({f(v)}, {f(w)}) and

G1.edgesDBetween({w}, {v}) = G2.edgesDBetween({f(w)}, {f(v)}).
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Let us note that every partial vertex mapping from G1 to G2 which is iso-
morphism is also total, one-to-one, onto, and continuous and every partial vertex
mapping from G1 to G2 which is directed-isomorphism is also total, one-to-one,
onto, isomorphism, continuous, directed, and directed-continuous.

Now we state the proposition:

(8) Let us consider non-multi graphs G1, G2, and a partial vertex map-
ping f from G1 to G2. Suppose f is total, one-to-one, and continuous.
Let us consider vertices v, w of G1. Then G1.edgesBetween({v}, {w}) =

G2.edgesBetween({f(v)}, {f(w)}). The theorem is a consequence of (2)
and (1).

Let G1, G2 be non-multi graphs and f be a partial vertex mapping from
G1 to G2. Note that f is isomorphism if and only if the condition (Def. 7) is
satisfied.

(Def. 7) f is total, one-to-one, onto, and continuous.

Observe that every partial vertex mapping from G1 to G2 which is total,
one-to-one, onto, and continuous is also isomorphism.

Now we state the proposition:

(9) Let us consider non-directed-multi graphs G1, G2, and a partial vertex
mapping f from G1 to G2. Suppose f is total, one-to-one, directed, and
directed-continuous. Let us consider vertices v, w of G1. Then

(i) G1.edgesDBetween({v}, {w}) = G2.edgesDBetween({f(v)}, {f(w)}),
and

(ii) G1.edgesDBetween({w}, {v}) = G2.edgesDBetween({f(w)}, {f(v)}).

Let G1, G2 be non-directed-multi graphs and f be a partial vertex map-
ping from G1 to G2. Observe that f is directed-isomorphism if and only if the
condition (Def. 8) is satisfied.

(Def. 8) f is total, one-to-one, onto, directed, and directed-continuous.

One can check that every partial vertex mapping from G1 to G2 which
is total, one-to-one, onto, directed, and directed-continuous is also directed-
isomorphism.

Let G be a graph. Let us observe that there exists a partial vertex mapping
from G to G which is directed-isomorphism and isomorphism.

Now we state the proposition:

(10) Let us consider a graph G. Then idα is a directed-isomorphism, isomor-
phism partial vertex mapping from G to G, where α is the vertices of G.
The theorem is a consequence of (5).

Let G1, G2 be graphs and f be a partial vertex mapping from G1 to G2. We
say that f is invertible if and only if
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(Def. 9) f is one-to-one and continuous.

Note that every partial vertex mapping from G1 to G2 which is invertible
is also one-to-one and continuous and every partial vertex mapping from G1 to
G2 which is one-to-one and continuous is also invertible and every partial vertex
mapping from G1 to G2 which is isomorphism is also invertible and every partial
vertex mapping from G1 to G2 which is directed-isomorphism is also invertible
and there exists a partial vertex mapping from G1 to G2 which is empty and
invertible.

Let G1, G2 be loopless graphs. Note that there exists a partial vertex map-
ping from G1 to G2 which is non empty, directed, and invertible.

Let G1, G2 be non loopless graphs. Observe that there exists a partial vertex
mapping from G1 to G2 which is non empty, directed, and invertible.

Let G1, G2 be graphs and f be an invertible partial vertex mapping from
G1 to G2. Note that the functor f−1 yields a partial vertex mapping from G2
to G1. Observe that f−1 is one-to-one, continuous, and invertible as a partial
vertex mapping from G2 to G1.

Let G1, G2, G3 be graphs, f be a partial vertex mapping from G1 to G2, and
g be a partial vertex mapping from G2 to G3. One can check that the functor
g · f yields a partial vertex mapping from G1 to G3.

Let us consider graphs G1, G2, G3, a partial vertex mapping f from G1 to G2,
and a partial vertex mapping g from G2 to G3. Now we state the propositions:

(11) If f is continuous and g is continuous, then g · f is continuous. The
theorem is a consequence of (2).

(12) If f is directed and g is directed, then g · f is directed.

(13) If f is directed-continuous and g is directed-continuous, then g · f is
directed-continuous.

(14) If f is isomorphism and g is isomorphism, then g · f is isomorphism.

(15) If f is directed-isomorphism and g is directed-isomorphism, then g · f is
directed-isomorphism.

2. The Relation Between Graph Mappings and Vertex Mappings

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(16) Suppose for every vertices v, w of G1 such that v, w ∈ dom(FV) and v

and w are adjacent there exists an object e such that e ∈ dom(FE) and e

joins v and w in G1. Then FV is a partial vertex mapping from G1 to G2.

(17) If dom(FE) = the edges of G1, then FV is a partial vertex mapping from
G1 to G2. The theorem is a consequence of (16).
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(18) If F is total, then FV is a partial vertex mapping from G1 to G2. The
theorem is a consequence of (17).

Let us consider graphs G1, G2 and a directed partial graph mapping F from
G1 to G2. Now we state the propositions:

(19) Suppose for every objects v, w such that v, w ∈ dom(FV) and there
exists an object e such that e joins v to w in G1 there exists an object e
such that e ∈ dom(FE) and e joins v to w in G1. Then FV is a directed
partial vertex mapping from G1 to G2. The theorem is a consequence of
(1).

(20) Suppose dom(FE) = the edges of G1. Then FV is a directed partial vertex
mapping from G1 to G2. The theorem is a consequence of (19).

(21) If F is total, then FV is a directed partial vertex mapping from G1 to
G2. The theorem is a consequence of (20).

Let us consider graphs G1, G2 and a semi-continuous partial graph mapping
F from G1 to G2. Now we state the propositions:

(22) Suppose FV is a partial vertex mapping from G1 to G2 and for every
vertices v, w of G1 such that v, w ∈ dom(FV) and (FV)/v and (FV)/w are
adjacent there exists an object ẽ such that ẽ ∈ rngFE and ẽ joins (FV)(v)
and (FV)(w) in G2. Then FV is a continuous partial vertex mapping from
G1 to G2. The theorem is a consequence of (2).

(23) Suppose dom(FE) = the edges of G1 and rngFE = the edges of G2. Then
FV is a continuous partial vertex mapping from G1 to G2. The theorem is
a consequence of (17) and (22).

(24) If F is total and onto, then FV is a continuous partial vertex mapping
from G1 to G2. The theorem is a consequence of (23).

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(25) If F is isomorphism, then there exists a partial vertex mapping f from
G1 to G2 such that FV = f and f is isomorphism. The theorem is a con-
sequence of (18).

(26) If F is directed-isomorphism, then there exists a directed partial vertex
mapping f from G1 to G2 such that FV = f and f is directed-isomorphism.
The theorem is a consequence of (21).

(27) Let us consider graphs G1, G2, a partial vertex mapping f from G1 to
G2, a representative selection of the parallel edges E1 of G1, and a re-
presentative selection of the parallel edges E2 of G2. Then there exists
a partial graph mapping F from G1 to G2 such that

(i) FV = f , and
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(ii) dom(FE) = E1 ∩G1.edgesBetween(dom f), and

(iii) rngFE ⊆ E2 ∩G2.edgesBetween(rng f).

Proof: Define P[object, object] ≡ there exist objects v, w such that v,
w ∈ dom f and $1 ∈ E1 and $2 ∈ E2 and $1 joins v and w in G1 and
$2 joins f(v) and f(w) in G2. For every objects e1, e2, e3 such that e1 ∈
E1 ∩G1.edgesBetween(dom f) and P[e1, e2] and P[e1, e3] holds e2 = e3.

For every object e1 such that e1 ∈ E1 ∩G1.edgesBetween(dom f) there
exists an object e2 such that P[e1, e2]. Consider g being a function such
that dom g = E1 ∩G1.edgesBetween(dom f) and for every object e1 such
that e1 ∈ E1∩G1.edgesBetween(dom f) holds P[e1, g(e1)]. For every object
y such that y ∈ rng g holds y ∈ E2 ∩G2.edgesBetween(rng f). �

Let G1, G2 be non-multi graphs and f be a partial vertex mapping from G1
to G2. The functor PVM2PGM(f) yielding a partial graph mapping from G1
to G2 is defined by

(Def. 10) itV = f and dom(itE) = G1.edgesBetween(dom f) and rng itE ⊆
G2.edgesBetween(rng f).

Now we state the proposition:

(28) Let us consider non-multi graphs G1, G2, and a partial vertex mapping
f from G1 to G2. Then PVM2PGM(f)V = f .

Let G1, G2 be non-multi graphs and f be a partial vertex mapping from G1
to G2. Observe that PVM2PGM(f)V reduces to f .

Now we state the proposition:

(29) Let us consider graphs G1, G2, a directed partial vertex mapping f from
G1 to G2, a representative selection of the directed-parallel edges E1 of
G1, and a representative selection of the directed-parallel edges E2 of G2.
Then there exists a directed partial graph mapping F from G1 to G2 such
that

(i) FV = f , and

(ii) dom(FE) = E1 ∩G1.edgesBetween(dom f), and

(iii) rngFE ⊆ E2 ∩G2.edgesBetween(rng f).

Proof: Define P[object, object] ≡ there exist objects v, w such that v,
w ∈ dom f and $1 ∈ E1 and $2 ∈ E2 and $1 joins v to w in G1 and
$2 joins f(v) to f(w) in G2. For every objects e1, e2, e3 such that e1 ∈
E1 ∩G1.edgesBetween(dom f) and P[e1, e2] and P[e1, e3] holds e2 = e3.

For every object e1 such that e1 ∈ E1 ∩G1.edgesBetween(dom f) there
exists an object e2 such that P[e1, e2]. Consider g being a function such
that dom g = E1 ∩G1.edgesBetween(dom f) and for every object e1 such
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that e1 ∈ E1∩G1.edgesBetween(dom f) holds P[e1, g(e1)]. For every object
y such that y ∈ rng g holds y ∈ E2 ∩G2.edgesBetween(rng f). �

Let G1, G2 be non-directed-multi graphs and f be a directed partial vertex
mapping from G1 to G2. The functor DPVM2PGM(f) yielding a directed partial
graph mapping from G1 to G2 is defined by

(Def. 11) itV = f and dom(itE) = G1.edgesBetween(dom f) and rng itE ⊆
G2.edgesBetween(rng f).

Now we state the proposition:

(30) Let us consider non-directed-multi graphs G1, G2, and a directed partial
vertex mapping f from G1 to G2. Then DPVM2PGM(f)V = f .

Let G1, G2 be non-directed-multi graphs and f be a directed partial vertex
mapping from G1 to G2. One can check that DPVM2PGM(f)V reduces to f .

Now we state the propositions:

(31) Let us consider non-multi graphs G1, G2, and a directed partial vertex
mapping f from G1 to G2. Then PVM2PGM(f) = DPVM2PGM(f).

(32) Let us consider non-multi graphs G1, G2, and a partial vertex mapping
f from G1 to G2. If f is total, then PVM2PGM(f) is total.

(33) Let us consider non-directed-multi graphs G1, G2, and a directed partial
vertex mapping f from G1 to G2. If f is total, then DPVM2PGM(f) is
total.

(34) Let us consider non-multi graphs G1, G2, and a partial vertex mapping
f from G1 to G2. If f is one-to-one, then PVM2PGM(f) is one-to-one.
Proof: Set g = PVM2PGM(f)E. For every objects x1, x2 such that x1,
x2 ∈ dom g and g(x1) = g(x2) holds x1 = x2. �

(35) Let us consider non-directed-multi graphs G1, G2, and a directed partial
vertex mapping f from G1 to G2. If f is one-to-one, then DPVM2PGM(f)
is one-to-one.
Proof: Set g = DPVM2PGM(f)E. For every objects x1, x2 such that x1,
x2 ∈ dom g and g(x1) = g(x2) holds x1 = x2. �

(36) Let us consider non-multi graphs G1, G2, and a partial vertex mapping
f from G1 to G2. If f is onto and continuous, then PVM2PGM(f) is onto.
Proof: Set g = PVM2PGM(f)E. For every object e such that e ∈
the edges of G2 holds e ∈ rng g. �

(37) Let us consider non-directed-multi graphs G1, G2, and a directed partial
vertex mapping f from G1 to G2. If f is onto and directed-continuous,
then DPVM2PGM(f) is onto.
Proof: Set g = DPVM2PGM(f)E. For every object e such that e ∈
the edges of G2 holds e ∈ rng g. �
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Let us consider non-multi graphs G1, G2 and a partial vertex mapping f

from G1 to G2. Now we state the propositions:

(38) If f is continuous and one-to-one, then PVM2PGM(f) is semi-continuous.
The theorem is a consequence of (2) and (34).

(39) If f is continuous, then PVM2PGM(f) is continuous. The theorem is
a consequence of (2).

Let us consider non-directed-multi graphs G1, G2 and a directed partial
vertex mapping f from G1 to G2. Now we state the propositions:

(40) If f is one-to-one, then DPVM2PGM(f) is semi-directed-continuous and
semi-continuous. The theorem is a consequence of (35).

(41) If f is directed-continuous, then DPVM2PGM(f) is directed-continuous.

(42) Let us consider non-multi graphs G1, G2, and a partial vertex mapping
f from G1 to G2. If f is one-to-one, then PVM2PGM(f) is one-to-one.

(43) Let us consider non-directed-multi graphs G1, G2, and a directed partial
vertex mapping f from G1 to G2. If f is one-to-one, then DPVM2PGM(f)
is one-to-one.

(44) Let us consider non-multi graphs G1, G2, and a partial vertex mapping
f from G1 to G2. Suppose f is total and one-to-one. Then PVM2PGM(f)
is weak subgraph embedding. The theorem is a consequence of (32) and
(34).

(45) Let us consider non-directed-multi graphs G1, G2, and a directed partial
vertex mapping f from G1 to G2. Suppose f is total and one-to-one. Then
DPVM2PGM(f) is weak subgraph embedding. The theorem is a consequ-
ence of (33) and (35).

Let us consider non-multi graphs G1, G2 and a partial vertex mapping f

from G1 to G2. Now we state the propositions:

(46) If f is total, one-to-one, and continuous, then PVM2PGM(f) is strong
subgraph embedding. The theorem is a consequence of (32), (34), and (39).

(47) If f is isomorphism, then PVM2PGM(f) is isomorphism. The theorem
is a consequence of (32), (34), and (36).

(48) Let us consider non-directed-multi graphs G1, G2, and a directed partial
vertex mapping f fromG1 toG2. Suppose f is directed-isomorphism. Then
DPVM2PGM(f) is directed-isomorphism. The theorem is a consequence
of (33), (35), (37), and (41).

(49) Let us consider non-multi graphs G1, G2. Then G2 is G1-isomorphic if
and only if there exists a partial vertex mapping f from G1 to G2 such
that f is isomorphism. The theorem is a consequence of (25) and (47).
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(50) Let us consider non-directed-multi graphsG1,G2. ThenG2 isG1-directed-
isomorphic if and only if there exists a directed partial vertex mapping f
from G1 to G2 such that f is directed-isomorphism. The theorem is a con-
sequence of (26) and (48).
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