Klein-Beltrami model. Part IV

Roland Coghetto
Rue de la Brasserie 5
7100 La Louvière, Belgium

Abstract

Summary. Timothy Makarios (with Isabelle/HOI ${ }^{1}$) and John Harrison (with HOL-Light ${ }^{2}$) shown that "the Klein-Beltrami model of the hyperbolic plane satisfy all of Tarski's axioms except his Euclidean axiom" [2, [3, , 4, 5.

With the Mizar system [1 we use some ideas taken from Tim Makarios's MSc thesis 10 to formalize some definitions and lemmas necessary for the verification of the independence of the parallel postulate. In this article, which is the continuation of [8], we prove that our constructed model satisfies the axioms of segment construction, the axiom of betweenness identity, and the axiom of Pasch due to Tarski, as formalized in [11 and related Mizar articles.

MSC: 51A05 51M10 68V20
Keywords: Tarski's geometry axioms; foundations of geometry; Klein-Beltrami model

MML identifier: BKMODEL4 version: 8.1.09 5.60.1371

1. Preliminaries

Let us consider real numbers a, b. Now we state the propositions:
(1) If $a \neq b$, then $1-\frac{a}{a-b}=-\frac{b}{a-b}$.
(2) If $0<a \cdot b$, then $0<\frac{a}{b}$.

Now we state the propositions:
(3) Let us consider real numbers a, b, c. Suppose $0 \leqslant a \leqslant 1$ and $0<b \cdot c$. Then $0 \leqslant \frac{a \cdot c}{(1-a) \cdot b+a \cdot c} \leqslant 1$.

[^0](4) Let us consider real numbers a, b, c. Suppose $(1-a) \cdot b+a \cdot c \neq 0$. Then $1-\frac{a \cdot c}{(1-a) \cdot b+a \cdot c}=\frac{(1-a) \cdot b}{(1-a) \cdot b+a \cdot c}$.
(5) Let us consider real numbers a, b, c, d. If $b \neq 0$, then $\frac{\frac{a \cdot b}{c} \cdot d}{b}=\frac{a \cdot d}{c}$.
(6) Let us consider an element u of $\mathcal{E}_{\mathrm{T}}^{3}$. Then $u=[u(1), u(2), u(3)]$.
(7) Let us consider an element P of the BK-model. Then BK-to-REAL2 $(P) \in$ TarskiEuclid2Space.
Let P be a point of BK-model-Plane. The functor BKtoT2 (P) yielding a point of TarskiEuclid2Space is defined by
(Def. 1) there exists an element p of the BK-model such that $P=p$ and it $=$ BK-to-REAL2(p).
Let P be a point of TarskiEuclid2Space. Assume $\hat{P} \in$ the inside of circle($0,0,1$). The functor T2toBK (P) yielding a point of BK -model-Plane is defined by
(Def. 2) there exists a non zero element u of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $i t=$ the direction of u and $(u)_{\mathbf{3}}=1$ and $\hat{P}=\left[(u)_{\mathbf{1}},(u)_{\mathbf{2}}\right]$.
Let us consider a point P of BK-model-Plane. Now we state the propositions:
(8) $\operatorname{BKto} \hat{\mathrm{T}} 2(P) \in$ the inside of circle $(0,0,1)$.
(9) T2toBK $(\mathrm{BK} t o \mathrm{~T} 2(P))=P$.
(10) Let us consider a point P of TarskiEuclid2Space. Suppose \hat{P} is an element of the inside of circle $(0,0,1)$. Then BKtoT2 $(\mathrm{T} 2 \operatorname{toBK}(P))=P$.
(11) Let us consider a point P of BK-model-Plane, and an element p of the BK-model. Suppose $P=p$. Then
(i) $\operatorname{BKtoT} 2(P)=\operatorname{BK}-$ to-REAL2 (p), and
(ii) $\operatorname{BKto} \hat{\mathrm{T}} 2(P)=\mathrm{BK}-$ to- $\operatorname{REAL} 2(p)$.
(12) Let us consider points P, Q, R of BK-model-Plane, and points P_{2}, Q_{2}, R_{2} of TarskiEuclid2Space. Suppose $P_{2}=\operatorname{BKtoT} 2(P)$ and $Q_{2}=\operatorname{BKtoT} 2(Q)$ and $R_{2}=\mathrm{BKtoT} 2(R)$. Then Q lies between P and R if and only if Q_{2} lies between P_{2} and R_{2}. The theorem is a consequence of (11).
(13) Let us consider elements P, Q of $\mathcal{E}_{\mathrm{T}}^{2}$. If $P \neq Q$, then $P(1) \neq Q(1)$ or $P(2) \neq Q(2)$.
(14) Let us consider real numbers a, b, and elements P, Q of $\mathcal{E}_{\mathrm{T}}^{2}$. If $P \neq Q$ and $(1-a) \cdot P+a \cdot Q=(1-b) \cdot P+b \cdot Q$, then $a=b$. The theorem is a consequence of (13).
(15) Let us consider points P, Q of BK-model-Plane. If BKtoT2 $2(P)=$ $\operatorname{BKto\hat {T}} 2(Q)$, then $P=Q$. The theorem is a consequence of (11).
Let P, Q, R be points of BK-model-Plane. Assume Q lies between P and R and $P \neq R$. The functor length (P, Q, R) yielding a real number is defined by
(Def. 3) $0 \leqslant i t \leqslant 1$ and $\operatorname{BKto\hat {T}} 2(Q)=(1-i t) \cdot(\operatorname{BKto\hat {T}} 2(P))+i t \cdot(\operatorname{BKto\hat {T}} 2(R))$.
Let us consider points P, Q of BK-model-Plane. Now we state the propositions:
(16) (i) P lies between P and Q, and
(ii) Q lies between P and Q.

The theorem is a consequence of (12).
(17) If $P \neq Q$, then length $(P, P, Q)=0$ and length $(P, Q, Q)=1$. The theorem is a consequence of (16).
(18) Let us consider a square matrix N over \mathbb{R}_{F} of dimension 3. Suppose $N=\langle\langle 2,0,-1\rangle,\langle 0, \sqrt{3}, 0\rangle,\langle 1,0,-2\rangle\rangle$. Then
(i) $\operatorname{Det} N=(-3) \cdot \sqrt{3}$, and
(ii) N is invertible.
(19) Let us consider elements $a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33}, b_{11}$, $b_{12}, b_{13}, b_{21}, b_{22}, b_{23}, b_{31}, b_{32}, b_{33}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}$ of \mathbb{R}_{F}, and square matrices A, B over \mathbb{R}_{F} of dimension 3 .

Suppose $A=\left\langle\left\langle a_{11}, a_{12}, a_{13}\right\rangle,\left\langle a_{21}, a_{22}, a_{23}\right\rangle,\left\langle a_{31}, a_{32}, a_{33}\right\rangle\right\rangle$ and $B=$ $\left\langle\left\langle b_{11}, b_{12}, b_{13}\right\rangle,\left\langle b_{21}, b_{22}, b_{23}\right\rangle,\left\langle b_{31}, b_{32}, b_{33}\right\rangle\right\rangle$ and $a_{1}=a_{11} \cdot b_{11}+a_{12} \cdot b_{21}+$ $a_{13} \cdot b_{31}$ and $a_{2}=a_{11} \cdot b_{12}+a_{12} \cdot b_{22}+a_{13} \cdot b_{32}$ and $a_{3}=a_{11} \cdot b_{13}+a_{12} \cdot b_{23}+a_{13} \cdot b_{33}$ and $a_{4}=a_{21} \cdot b_{11}+a_{22} \cdot b_{21}+a_{23} \cdot b_{31}$.

Suppose $a_{5}=a_{21} \cdot b_{12}+a_{22} \cdot b_{22}+a_{23} \cdot b_{32}$ and $a_{6}=a_{21} \cdot b_{13}+a_{22} \cdot b_{23}+a_{23}$. b_{33} and $a_{7}=a_{31} \cdot b_{11}+a_{32} \cdot b_{21}+a_{33} \cdot b_{31}$ and $a_{8}=a_{31} \cdot b_{12}+a_{32} \cdot b_{22}+a_{33} \cdot b_{32}$ and $a_{9}=a_{31} \cdot b_{13}+a_{32} \cdot b_{23}+a_{33} \cdot b_{33}$.

Then $A \cdot B=\left\langle\left\langle a_{1}, a_{2}, a_{3}\right\rangle,\left\langle a_{4}, a_{5}, a_{6}\right\rangle,\left\langle a_{7}, a_{8}, a_{9}\right\rangle\right\rangle$.
Let us consider square matrices N_{1}, N_{2} over \mathbb{R}_{F} of dimension 3 . Now we state the propositions:
(20) Suppose $N_{1}=\langle\langle 2,0,-1\rangle,\langle 0, \sqrt{3}, 0\rangle,\langle 1,0,-2\rangle\rangle$ and $N_{2}=\left\langle\left\langle\frac{2}{3}, 0,-\frac{1}{3}\right\rangle,\langle 0\right.$, $\left.\left.\frac{1}{\sqrt{3}}, 0\right\rangle,\left\langle\frac{1}{3}, 0,-\frac{2}{3}\right\rangle\right\rangle$. Then $N_{1} \cdot N_{2}=\langle\langle 1,0,0\rangle,\langle 0,1,0\rangle,\langle 0,0,1\rangle\rangle$. The theorem is a consequence of (19).
(21) Suppose $N_{2}=\langle\langle 2,0,-1\rangle,\langle 0, \sqrt{3}, 0\rangle,\langle 1,0,-2\rangle\rangle$ and $N_{1}=\left\langle\left\langle\frac{2}{3}, 0,-\frac{1}{3}\right\rangle,\langle 0\right.$, $\left.\left.\frac{1}{\sqrt{3}}, 0\right\rangle,\left\langle\frac{1}{3}, 0,-\frac{2}{3}\right\rangle\right\rangle$. Then $N_{1} \cdot N_{2}=\langle\langle 1,0,0\rangle,\langle 0,1,0\rangle,\langle 0,0,1\rangle\rangle$. The theorem is a consequence of (19).
(22) Suppose $N_{1}=\langle\langle 2,0,-1\rangle,\langle 0, \sqrt{3}, 0\rangle,\langle 1,0,-2\rangle\rangle$ and $N_{2}=\left\langle\left\langle\frac{2}{3}, 0,-\frac{1}{3}\right\rangle,\langle 0\right.$, $\left.\left.\frac{1}{\sqrt{3}}, 0\right\rangle,\left\langle\frac{1}{3}, 0,-\frac{2}{3}\right\rangle\right\rangle$. Then N_{1} is inverse of N_{2}. The theorem is a consequence of (20) and (21).
Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3. Now we state the propositions:
(23) Suppose $N=\left\langle\left\langle\frac{2}{3}, 0,-\frac{1}{3}\right\rangle,\left\langle 0, \frac{1}{\sqrt{3}}, 0\right\rangle,\left\langle\frac{1}{3}, 0,-\frac{2}{3}\right\rangle\right\rangle$. Then (the homography of $N)^{\circ}($ the absolute $) \subseteq$ the absolute.
Proof: (The homography of $N)^{\circ}($ the absolute $) \subseteq$ the absolute by 7 , (89)], [9, (7)].
(24) Suppose $N=\langle\langle 2,0,-1\rangle,\langle 0, \sqrt{3}, 0\rangle,\langle 1,0,-2\rangle\rangle$. Then (the homography of $N)^{\circ}($ the absolute $)=$ the absolute.
Proof: (The homography of $N)^{\circ}($ the absolute) \subseteq the absolute.
The absolute \subseteq (the homography of $N)^{\circ}$ (the absolute) by [6, (19)], (22), (23).
(25) Let us consider real numbers a, b, r, and elements P, Q, R of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $Q \in \mathcal{L}(P, R)$ and $P, R \in$ the inside of circle (a, b, r). Then $Q \in$ the inside of circle (a, b, r).
(26) Let us consider non zero elements u, v of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose the direction of $u=$ the direction of v and $u(3) \neq 0$ and $u(3)=v(3)$. Then $u=v$.
(27) Let us consider an element R of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, elements P, Q of the BK-model, non zero elements u, v, w of $\mathcal{E}_{\mathrm{T}}^{3}$, and a real number r. Suppose $0 \leqslant r \leqslant 1$ and $P=$ the direction of u and $Q=$ the direction of v and $R=$ the direction of w and $u(3)=1$ and $v(3)=1$ and $w=$ $r \cdot u+(1-r) \cdot v$. Then R is an element of the BK-model.
Proof: Consider u_{2} being a non zero element of $\mathcal{E}_{\mathrm{T}}^{3}$ such that the direction of $u_{2}=P$ and $u_{2}(3)=1$ and BK-to-REAL2 $(P)=\left[u_{2}(1), u_{2}(2)\right] . u=u_{2}$. Reconsider $r_{4}=\left[u_{2}(1), u_{2}(2)\right]$ as an element of $\mathcal{E}_{\mathrm{T}}^{2}$. Consider v_{2} being a non zero element of $\mathcal{E}_{\mathrm{T}}^{3}$ such that the direction of $v_{2}=Q$ and $v_{2}(3)=1$ and BK-to-REAL2 $(Q)=\left[v_{2}(1), v_{2}(2)\right] . v=v_{2}$. Reconsider $r_{6}=\left[v_{2}(1), v_{2}(2)\right]$ as an element of $\mathcal{E}_{\mathrm{T}}^{2}$. Reconsider $r_{8}=[w(1), w(2)]$ as an element of $\mathcal{E}_{\mathrm{T}}^{2}$. $r_{8}=r \cdot r_{4}+(1-r) \cdot r_{6}$. Consider R_{3} being an element of \mathcal{E}_{T}^{2} such that $R_{3}=r_{8}$ and REAL2-to- $\operatorname{BK}\left(r_{8}\right)=$ the direction of $\left[\left(R_{3}\right)_{\mathbf{1}},\left(R_{3}\right)_{\mathbf{2}}, 1\right]$.
(28) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3 , elements $n_{11}, n_{12}, n_{13}, n_{21}, n_{22}, n_{23}, n_{31}, n_{32}, n_{33}$ of \mathbb{R}_{F}, points P, Q of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, and non zero elements u, v of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $N=\left\langle\left\langle n_{11}, n_{12}, n_{13}\right\rangle,\left\langle n_{21}, n_{22}, n_{23}\right\rangle,\left\langle n_{31}, n_{32}, n_{33}\right\rangle\right\rangle$ and $P=$ the direction of u and $Q=$ the direction of v and $Q=$ (the homography of $N)(P)$ and $u(3)=1$. Then there exists a non zero real number a such that
(i) $v(1)=a \cdot\left(n_{11} \cdot u(1)+n_{12} \cdot u(2)+n_{13}\right)$, and
(ii) $v(2)=a \cdot\left(n_{21} \cdot u(1)+n_{22} \cdot u(2)+n_{23}\right)$, and
(iii) $v(3)=a \cdot\left(n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33}\right)$.
(29) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3 , elements $n_{11}, n_{12}, n_{13}, n_{21}, n_{22}, n_{23}, n_{31}, n_{32}, n_{33}$ of \mathbb{R}_{F}, an element
P of the BK-model, a point Q of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, and non zero elements u, v of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $N=\left\langle\left\langle n_{11}, n_{12}, n_{13}\right\rangle,\left\langle n_{21}, n_{22}, n_{23}\right\rangle,\left\langle n_{31}\right.\right.$, $\left.n_{32}, n_{33}\right\rangle$) and $P=$ the direction of u and $Q=$ the direction of v and $Q=($ the homography of $N)(P)$ and $u(3)=1$ and $v(3)=1$. Then
(i) $n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33} \neq 0$, and
(ii) $v(1)=\frac{n_{11} \cdot u(1)+n_{12} \cdot u(2)+n_{13}}{n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33}}$, and
(iii) $v(2)=\frac{n_{21} \cdot u(1)+n_{22} \cdot u(2)+n_{23}}{n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33}}$.

The theorem is a consequence of (28).
(30) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3 , an element h of the subgroup of K-isometries, elements n_{11}, n_{12}, n_{13}, $n_{21}, n_{22}, n_{23}, n_{31}, n_{32}, n_{33}$ of \mathbb{R}_{F}, an element P of the BK-model, and a non zero element u of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $h=$ the homography of N and $N=\left\langle\left\langle n_{11}, n_{12}, n_{13}\right\rangle,\left\langle n_{21}, n_{22}, n_{23}\right\rangle,\left\langle n_{31}, n_{32}, n_{33}\right\rangle\right\rangle$ and $P=$ the direction of u and $u(3)=1$. Then $n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33} \neq 0$. The theorem is a consequence of (29).
(31) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3 , elements $n_{11}, n_{12}, n_{13}, n_{21}, n_{22}, n_{23}, n_{31}, n_{32}, n_{33}$ of \mathbb{R}_{F}, an element P of the absolute, a point Q of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, and non zero elements u, v of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $N=\left\langle\left\langle n_{11}, n_{12}, n_{13}\right\rangle,\left\langle n_{21}, n_{22}, n_{23}\right\rangle,\left\langle n_{31}\right.\right.$, $\left.\left.n_{32}, n_{33}\right\rangle\right\rangle$ and $P=$ the direction of u and $Q=$ the direction of v and $Q=($ the homography of $N)(P)$ and $u(3)=1$ and $v(3)=1$. Then
(i) $n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33} \neq 0$, and
(ii) $v(1)=\frac{n_{11} \cdot u(1)+n_{12} \cdot u(2)+n_{13}}{n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33}}$, and
(iii) $v(2)=\frac{n_{21} \cdot u(1)+n_{22} \cdot u(2)+n_{23}}{n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33}}$.

The theorem is a consequence of (28).
(32) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3 , an element h of the subgroup of K-isometries, elements $n_{11}, n_{12}, n_{13}, n_{21}$, $n_{22}, n_{23}, n_{31}, n_{32}, n_{33}$ of \mathbb{R}_{F}, an element P of the absolute, and a non zero element u of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $h=$ the homography of N and $N=\left\langle\left\langle n_{11}\right.\right.$, $\left.\left.n_{12}, n_{13}\right\rangle,\left\langle n_{21}, n_{22}, n_{23}\right\rangle,\left\langle n_{31}, n_{32}, n_{33}\right\rangle\right\rangle$ and $P=$ the direction of u and $u(3)=1$. Then $n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33} \neq 0$. The theorem is a consequence of (31).
(33) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3 , an element h of the subgroup of K-isometries, elements n_{11}, n_{12}, n_{13}, $n_{21}, n_{22}, n_{23}, n_{31}, n_{32}, n_{33}$ of \mathbb{R}_{F}, an element P of the BK-model, and a non zero element u of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $h=$ the homography of N and $N=\left\langle\left\langle n_{11}, n_{12}, n_{13}\right\rangle,\left\langle n_{21}, n_{22}, n_{23}\right\rangle,\left\langle n_{31}, n_{32}, n_{33}\right\rangle\right\rangle$ and $P=$ the direction
of u and $u(3)=1$. Then (the homography of $N)(P)=$ the direction of $\left[\frac{n_{11} \cdot u(1)+n_{12} \cdot u(2)+n_{13}}{n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33}}, \frac{n_{21} \cdot u(1)+n_{22} \cdot u(2)+n_{23}}{n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33}}, 1\right]$. The theorem is a consequence of (29).
(34) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3 , an element h of the subgroup of K-isometries, elements n_{11}, n_{12}, n_{13}, $n_{21}, n_{22}, n_{23}, n_{31}, n_{32}, n_{33}$ of \mathbb{R}_{F}, an element P of the absolute, and a non zero element u of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $h=$ the homography of N and $N=\left\langle\left\langle n_{11}, n_{12}, n_{13}\right\rangle,\left\langle n_{21}, n_{22}, n_{23}\right\rangle,\left\langle n_{31}, n_{32}, n_{33}\right\rangle\right\rangle$ and $P=$ the direction of u and $u(3)=1$. Then (the homography of $N)(P)=$ the direction of $\left[\frac{n_{11} \cdot u(1)+n_{12} \cdot u(2)+n_{13}}{n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33}}, \frac{n_{21} \cdot u(1)+n_{22} \cdot u(2)+n_{23}}{n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33}}, 1\right]$. The theorem is a consequence of (31).
(35) Let us consider a subset A of $\mathcal{E}_{\mathrm{T}}^{3}$, a convex, non empty subset B of $\mathcal{E}_{\mathrm{T}}^{2}$, a real number r, and an element x of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $A=\{x$, where x is an element of $\mathcal{E}_{\mathrm{T}}^{3}:\left[(x)_{\mathbf{1}},(x)_{\mathbf{2}}\right] \in B$ and $\left.(x)_{\mathbf{3}}=r\right\}$. Then A is non empty and convex.
(36) Let us consider elements n_{1}, n_{2}, n_{3} of \mathbb{R}_{F}, and elements n, u of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $n=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ and $u(3)=1$. Then $|(n, u)|=n_{1} \cdot u(1)+n_{2}$. $u(2)+n_{3}$.
(37) Let us consider a convex, non empty subset A of $\mathcal{E}_{\mathrm{T}}^{3}$, and elements n, u, v of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose for every element w of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $w \in A$ holds $|(n, w)| \neq 0$ and $u, v \in A$. Then $0<|(n, u)| \cdot|(n, v)|$.
Proof: Set $x=|(n, u)|$. Set $y=|(n, v)|$. Reconsider $l=\frac{x}{x-y}$ as a non zero real number. Reconsider $w=l \cdot v+(1-l) \cdot u$ as an element of $\mathcal{E}_{\mathrm{T}}^{3} \cdot x \neq y$. $1-l=-\frac{y}{x-y} \cdot|(n, w)|=0$.
Let us consider elements n_{31}, n_{32}, n_{33} of \mathbb{R}_{F} and elements u, v of $\mathcal{E}_{\mathrm{T}}^{2}$. Now we state the propositions:
(38) Suppose $u, v \in$ the inside of circle $(0,0,1)$ and for every element w of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $w \in$ the inside of circle $(0,0,1)$ holds $n_{31} \cdot w(1)+n_{32} \cdot w(2)+n_{33} \neq 0$. Then $0<\left(n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33}\right) \cdot\left(n_{31} \cdot v(1)+n_{32} \cdot v(2)+n_{33}\right)$. The theorem is a consequence of (35), (36), and (37).
(39) Suppose $u \in$ the inside of circle $(0,0,1)$ and $v \in \operatorname{circle}(0,0,1)$ and for every element w of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $w \in$ the closed inside of $\operatorname{circle}(0,0,1)$ holds $n_{31} \cdot w(1)+n_{32} \cdot w(2)+n_{33} \neq 0$. Then $0<\left(n_{31} \cdot u(1)+n_{32} \cdot u(2)+\right.$ $\left.n_{33}\right) \cdot\left(n_{31} \cdot v(1)+n_{32} \cdot v(2)+n_{33}\right)$. The theorem is a consequence of (35), (36), and (37).
(40) Let us consider real numbers l, r, elements u, v, w of $\mathcal{E}_{\mathrm{T}}^{3}$, and real numbers $n_{11}, n_{12}, n_{13}, n_{21}, n_{22}, n_{23}, n_{31}, n_{32}, n_{33}, m_{1}, m_{2}, m_{3}, m_{4}, m_{5}, m_{6}, m_{7}$, m_{8}, m_{9}.

Suppose $m_{3} \neq 0$ and $m_{6} \neq 0$ and $m_{9} \neq 0$ and $r=\frac{l \cdot m_{6}}{(1-l) \cdot m_{3}+l \cdot m_{6}}$ and $(1-l) \cdot m_{3}+l \cdot m_{6} \neq 0$ and $w=(1-l) \cdot u+l \cdot v$ and $m_{1}=$ $n_{11} \cdot u(1)+n_{12} \cdot u(2)+n_{13}$ and $m_{2}=n_{21} \cdot u(1)+n_{22} \cdot u(2)+n_{23}$ and $m_{3}=n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33}$ and $m_{4}=n_{11} \cdot v(1)+n_{12} \cdot v(2)+n_{13}$.

Suppose $m_{5}=n_{21} \cdot v(1)+n_{22} \cdot v(2)+n_{23}$ and $m_{6}=n_{31} \cdot v(1)+n_{32} \cdot v(2)+$ n_{33} and $m_{7}=n_{11} \cdot w(1)+n_{12} \cdot w(2)+n_{13}$ and $m_{8}=n_{21} \cdot w(1)+n_{22} \cdot w(2)+n_{23}$ and $m_{9}=n_{31} \cdot w(1)+n_{32} \cdot w(2)+n_{33}$.

Then $(1-r) \cdot\left[\frac{m_{1}}{m_{3}}, \frac{m_{2}}{m_{3}}, 1\right]+r \cdot\left[\frac{m_{4}}{m_{6}}, \frac{m_{5}}{m_{6}}, 1\right]=\left[\frac{m_{7}}{m_{9}}, \frac{m_{8}}{m_{9}}, 1\right]$. The theorem is a consequence of (4) and (5).
(41) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3 , an element h of the subgroup of K-isometries, elements n_{11}, n_{12}, n_{13}, $n_{21}, n_{22}, n_{23}, n_{31}, n_{32}, n_{33}$ of \mathbb{R}_{F}, and an element P of the BK-model. Suppose $h=$ the homography of N and $N=\left\langle\left\langle n_{11}, n_{12}, n_{13}\right\rangle,\left\langle n_{21}, n_{22}\right.\right.$, $\left.\left.n_{23}\right\rangle,\left\langle n_{31}, n_{32}, n_{33}\right\rangle\right\rangle$. Then (the homography of $\left.N\right)(P)=$ the direction of $\left[\frac{n_{11} \cdot(\text { BK-to-REAL2 } 2(P))_{1}+n_{12} \cdot(\text { BK-to-REAL2 } 2(P))_{2}+n_{13}}{n_{31} \cdot(\text { BK-to-REAL2 }(P))_{1}+n_{32} \cdot(\text { BK-to-REAL2 }(P))_{\mathbf{2}}+n_{33}}\right.$, $\left.\frac{n_{21} \cdot(\text { BK-to-REAL2 } 2(P))_{1}+n_{22} \cdot(\text { BK-to-REAL2 }(P))_{\mathbf{2}}+n_{23}}{n_{31} \cdot(\text { BK-to-REAL2 }(P))_{1}+n_{32} \cdot(\text { BK-to-REAL2 }(P))_{\mathbf{2}}+n_{33}}, 1\right]$. The theorem is a consequence of (33).
(42) Let us consider an element h of the subgroup of K-isometries, an invertible square matrix N over \mathbb{R}_{F} of dimension 3 , elements n_{11}, n_{12}, n_{13}, $n_{21}, n_{22}, n_{23}, n_{31}, n_{32}, n_{33}$ of \mathbb{R}_{F}, and an element u_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $h=$ the homography of N and $N=\left\langle\left\langle n_{11}, n_{12}, n_{13}\right\rangle,\left\langle n_{21}, n_{22}, n_{23}\right\rangle,\left\langle n_{31}\right.\right.$, $\left.\left.n_{32}, n_{33}\right\rangle\right\rangle$ and $u_{2} \in$ the inside of circle($\left.0,0,1\right)$. Then $n_{31} \cdot u_{2}(1)+n_{32} \cdot u_{2}(2)+$ $n_{33} \neq 0$. The theorem is a consequence of (30).
(43) Let us consider a positive real number r, and an element u of $\mathcal{E}_{\mathrm{T}}^{2}$. If $u \in \operatorname{circle}(0,0, r)$, then u is not zero.
(44) Let us consider an element h of the subgroup of K-isometries, an invertible square matrix N over \mathbb{R}_{F} of dimension 3 , elements n_{11}, n_{12}, n_{13}, $n_{21}, n_{22}, n_{23}, n_{31}, n_{32}, n_{33}$ of \mathbb{R}_{F}, and an element u_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $h=$ the homography of N and $N=\left\langle\left\langle n_{11}, n_{12}, n_{13}\right\rangle,\left\langle n_{21}, n_{22}, n_{23}\right\rangle,\left\langle n_{31}\right.\right.$, $\left.n_{32}, n_{33}\right\rangle>$ and $u_{2} \in$ the closed inside of circle $(0,0,1)$. Then $n_{31} \cdot u_{2}(1)+$ $n_{32} \cdot u_{2}(2)+n_{33} \neq 0$. The theorem is a consequence of (30), (43), and (32).
(45) Let us consider real numbers a, b, c, d, e, f, r. Suppose $(1-r) \cdot[a, b$, $1]+r \cdot[c, d, 1]=[e, f, 1]$. Then $(1-r) \cdot[a, b]+r \cdot[c, d]=[e, f]$.
(46) Let us consider points $P, Q, R, P^{\prime}, Q^{\prime}, R^{\prime}$ of BK-model-Plane, elements $p, q, r, p^{\prime}, q^{\prime}, r^{\prime}$ of the BK-model, an element h of the subgroup of K isometries, and an invertible square matrix N over \mathbb{R}_{F} of dimension 3. Suppose $h=$ the homography of N and Q lies between P and R and $P=p$ and $Q=q$ and $R=r$ and $p^{\prime}=($ the homography of $N)(p)$ and $q^{\prime}=($ the homography of $N)(q)$ and $r^{\prime}=($ the homography of $N)(r)$ and
$P^{\prime}=p^{\prime}$ and $Q^{\prime}=q^{\prime}$ and $R^{\prime}=r^{\prime}$. Then Q^{\prime} lies between P^{\prime} and R^{\prime}.
Proof: Consider $n_{11}, n_{12}, n_{13}, n_{21}, n_{22}, n_{23}, n_{31}, n_{32}, n_{33}$ being elements of \mathbb{R}_{F} such that $N=\left\langle\left\langle n_{11}, n_{12}, n_{13}\right\rangle,\left\langle n_{21}, n_{22}, n_{23}\right\rangle,\left\langle n_{31}, n_{32}, n_{33}\right\rangle\right\rangle$. Consider u being a non zero element of $\mathcal{E}_{\mathrm{T}}^{3}$ such that the direction of $u=p$ and $u(3)=1$ and BK-to-REAL2 $(p)=[u(1), u(2)]$. Consider v being a non zero element of \mathcal{E}_{T}^{3} such that the direction of $v=r$ and $v(3)=1$ and BK-to-REAL2 $(r)=[v(1), v(2)]$. Consider w being a non zero element of $\mathcal{E}_{\mathrm{T}}^{3}$ such that the direction of $w=q$ and $w(3)=1$ and BK-to-REAL2 $(q)=[w(1), w(2)]$.

Reconsider $m_{1}=n_{11} \cdot u(1)+n_{12} \cdot u(2)+n_{13}, m_{2}=n_{21} \cdot u(1)+n_{22}$. $u(2)+n_{23}, m_{3}=n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33}, m_{4}=n_{11} \cdot v(1)+n_{12} \cdot v(2)+n_{13}$, $m_{5}=n_{21} \cdot v(1)+n_{22} \cdot v(2)+n_{23}, m_{6}=n_{31} \cdot v(1)+n_{32} \cdot v(2)+n_{33}, m_{7}=$ $n_{11} \cdot w(1)+n_{12} \cdot w(2)+n_{13}, m_{8}=n_{21} \cdot w(1)+n_{22} \cdot w(2)+n_{23}, m_{9}=n_{31} \cdot w(1)+$ $n_{32} \cdot w(2)+n_{33}$ as a real number. $\operatorname{BKtoT2}(P)=\operatorname{BK}-$ to-REAL2 (p) and $\operatorname{BKto} \hat{T} 2(P)=\operatorname{BK}-\mathrm{to}-\operatorname{REAL} 2(p)$ and $\operatorname{BKtoT2}(Q)=\operatorname{BK}-\mathrm{to}-\operatorname{REAL} 2(q)$ and $\operatorname{BKtoT2} 2(Q)=\operatorname{BK}-\operatorname{to}-\operatorname{REAL} 2(q)$ and $\operatorname{BKtoT2}(R)=\operatorname{BK}-$ to-REAL2 (r) and $\operatorname{BKto} \hat{T} 2(R)=\operatorname{BK}-$ to-REAL2($r)$. Consider l being a real number such that $0 \leqslant l \leqslant 1$ and $\operatorname{BKtoT} 2(Q)=(1-l) \cdot(\operatorname{BKtoT} 2(P))+l \cdot(\operatorname{BKto} \hat{\mathrm{~T}} 2(R))$.

Set $r=\frac{l \cdot m_{6}}{(1-l) \cdot m_{3}+l \cdot m_{6}} \cdot(1-r) \cdot\left[\frac{m_{1}}{m_{3}}, \frac{m_{2}}{m_{3}}, 1\right]+r \cdot\left[\frac{m_{4}}{m_{6}}, \frac{m_{5}}{m_{6}}, 1\right]=\left[\frac{m_{7}}{m_{9}}\right.$, $\left.\frac{m_{8}}{m_{9}}, 1\right] .0 \leqslant r \leqslant 1 . \operatorname{BKtoT2}\left(P^{\prime}\right)=\operatorname{BK}-\operatorname{to-REAL2}\left(p^{\prime}\right)$ and $\operatorname{BKto} \hat{\mathrm{T}} 2\left(P^{\prime}\right)=$ $\operatorname{BK}-$ to- $\operatorname{REAL} 2\left(p^{\prime}\right)$ and $\operatorname{BKtoT2}\left(Q^{\prime}\right)=\operatorname{BK}-$ to- $\operatorname{REAL2}\left(q^{\prime}\right)$ and BKto $\hat{\mathrm{T}} 2\left(Q^{\prime}\right)=$ $\operatorname{BK}-\mathrm{to}-\operatorname{REAL} 2\left(q^{\prime}\right)$ and $\operatorname{BKtoT2}\left(R^{\prime}\right)=\operatorname{BK}-\operatorname{to}-\operatorname{REAL} 2\left(r^{\prime}\right)$ and $\operatorname{BKto} \hat{\mathrm{T}} 2\left(R^{\prime}\right)=$ BK-to-REAL2 $\left(r^{\prime}\right)$.
Let P be a point of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. We say that P is point at ∞ if and only if
(Def. 4) there exists a non zero element u of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $P=$ the direction of u and $(u)_{3}=0$.
Now we state the proposition:
(47) Let us consider a point P of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose there exists a non zero element u of $\mathcal{E}_{\text {T }}^{3}$ such that $P=$ the direction of u and $(u)_{\mathbf{3}} \neq 0$. Then P is not point at ∞.
Note that there exists a point of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ which is point at ∞ and there exists a point of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ which is non point at ∞.

Let P be a non point at ∞ point of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. The functor RP3toREAL2 (P) yielding an element of \mathcal{R}^{2} is defined by
(Def. 5) there exists a non zero element u of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $P=$ the direction of u and $(u)_{\mathbf{3}}=1$ and $i t=\left[(u)_{\mathbf{1}},(u)_{\mathbf{2}}\right]$.

The functor RP3toT2 (P) yielding a point of TarskiEuclid2Space is defined by the term
(Def. 6) RP3toREAL2(P).
Now we state the propositions:
(48) Let us consider non point at ∞ elements $P, Q, R, P^{\prime}, Q^{\prime}, R^{\prime}$ of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, an element h of the subgroup of K-isometries, and an invertible square matrix N over \mathbb{R}_{F} of dimension 3 .

Suppose $h=$ the homography of N and $P, Q \in$ the BK-model and $R \in$ the absolute and $P^{\prime}=($ the homography of $N)(P)$ and $Q^{\prime}=($ the homography of $N)(Q)$ and $R^{\prime}=($ the homography of $N)(R)$ and RP3toT2 (Q) lies between RP3toT2 (P) and RP3toT2 (R).

Then RP3toT2 $\left(Q^{\prime}\right)$ lies between RP3toT2 $\left(P^{\prime}\right)$ and RP3toT2 $\left(R^{\prime}\right)$.
Proof: Consider $n_{11}, n_{12}, n_{13}, n_{21}, n_{22}, n_{23}, n_{31}, n_{32}, n_{33}$ being elements of \mathbb{R}_{F} such that $N=\left\langle\left\langle n_{11}, n_{12}, n_{13}\right\rangle,\left\langle n_{21}, n_{22}, n_{23}\right\rangle,\left\langle n_{31}, n_{32}, n_{33}\right\rangle\right\rangle$. Consider u being a non zero element of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $P=$ the direction of u and $(u)_{\mathbf{3}}=1$ and RP3toREAL2 $(P)=\left[(u)_{\mathbf{1}},(u)_{\mathbf{2}}\right]$. Consider v being a non zero element of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $R=$ the direction of v and $(v)_{\mathbf{3}}=1$ and $\operatorname{RP} 3 \operatorname{toREAL} 2(R)=\left[(v)_{\mathbf{1}},(v)_{\mathbf{2}}\right]$. Consider w being a non zero element of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $Q=$ the direction of w and $(w)_{\mathbf{3}}=1$ and $\operatorname{RP3toREAL} 2(Q)=\left[(w)_{\mathbf{1}},(w)_{\mathbf{2}}\right]$.

Reconsider $m_{1}=n_{11} \cdot u(1)+n_{12} \cdot u(2)+n_{13}, m_{2}=n_{21} \cdot u(1)+n_{22} \cdot u(2)+$ $n_{23}, m_{3}=n_{31} \cdot u(1)+n_{32} \cdot u(2)+n_{33}, m_{4}=n_{11} \cdot v(1)+n_{12} \cdot v(2)+n_{13}$, $m_{5}=n_{21} \cdot v(1)+n_{22} \cdot v(2)+n_{23}, m_{6}=n_{31} \cdot v(1)+n_{32} \cdot v(2)+n_{33}$, $m_{7}=n_{11} \cdot w(1)+n_{12} \cdot w(2)+n_{13}, m_{8}=n_{21} \cdot w(1)+n_{22} \cdot w(2)+n_{23}$, $m_{9}=n_{31} \cdot w(1)+n_{32} \cdot w(2)+n_{33}$ as a real number.

Consider l being a real number such that $0 \leqslant l \leqslant 1$ and $\operatorname{RP} 3$ toTT2 $(Q)=$ $(1-l) \cdot(\mathrm{RP} 3 \mathrm{toT} 2(P))+l \cdot(\mathrm{RP} 3 \hat{\mathrm{toT}} 2(R))$. Set $r=\frac{l \cdot m_{6}}{(1-l) \cdot m_{3}+l \cdot m_{6}} \cdot(1-r) \cdot\left[\frac{m_{1}}{m_{3}}\right.$, $\left.\frac{m_{2}}{m_{3}}, 1\right]+r \cdot\left[\frac{m_{4}}{m_{6}}, \frac{m_{5}}{m_{6}}, 1\right]=\left[\frac{m_{7}}{m_{9}}, \frac{m_{8}}{m_{9}}, 1\right] .0 \leqslant r \leqslant 1$.
(49) Let us consider real numbers a, b, c, and elements u, v, w of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $a \neq 0$ and $a+b+c=0$ and $a \cdot u+b \cdot v+c \cdot w=0_{\mathcal{E}_{\mathrm{T}}^{3}}$. Then $u \in \operatorname{Line}(v, w)$.
(50) Let us consider non point at ∞ points P, Q, R of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, and non zero elements u, v, w of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $P=$ the direction of u and $Q=$ the direction of v and $R=$ the direction of w and $(u)_{\mathbf{3}}=1$ and $(v)_{\mathbf{3}}=1$ and $(w)_{\mathbf{3}}=1$. Then P, Q and R are collinear if and only if u, v and w are collinear. The theorem is a consequence of (49).
(51) Let us consider elements u, v, w of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $u \in \mathcal{L}(v, w)$. Then $\left[(u)_{\mathbf{1}}\right.$, $\left.(u)_{\mathbf{2}}\right] \in \mathcal{L}\left(\left[(v)_{\mathbf{1}},(v)_{\mathbf{2}}\right],\left[(w)_{\mathbf{1}},(w)_{\mathbf{2}}\right]\right)$.
(52) Let us consider elements u, v, w of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $u \in \mathcal{L}(v, w)$. Then $\left[(u)_{\mathbf{1}}\right.$, $\left.(u)_{\mathbf{2}}, 1\right] \in \mathcal{L}\left(\left[(v)_{\mathbf{1}},(v)_{\mathbf{2}}, 1\right],\left[(w)_{\mathbf{1}},(w)_{\mathbf{2}}, 1\right]\right)$.

Proof: Consider r being a real number such that $0 \leqslant r$ and $r \leqslant 1$ and $u=(1-r) \cdot v+r \cdot w$. Reconsider $u^{\prime}=\left[(u)_{\mathbf{1}},(u)_{\mathbf{2}}, 1\right], v^{\prime}=\left[(v)_{\mathbf{1}},(v)_{\mathbf{2}}, 1\right]$, $w^{\prime}=\left[(w)_{\mathbf{1}},(w)_{\mathbf{2}}, 1\right]$ as an element of $\mathcal{E}_{\mathrm{T}}^{3} \cdot u^{\prime}=(1-r) \cdot v^{\prime}+r \cdot w^{\prime} . \square$
(53) Let us consider non point at ∞ points P, Q, R of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. Then P, Q and R are collinear if and only if $\operatorname{RP3toT} 2(P)$, RP3toT2 (Q) and RP3toT2 (R) are collinear. The theorem is a consequence of (50), (51), and (52).
(54) Let us consider elements u, v, w of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose u, v and w are collinear. Then $\left[(u)_{\mathbf{1}},(u)_{\mathbf{2}}, 1\right],\left[(v)_{\mathbf{1}},(v)_{\mathbf{2}}, 1\right]$ and $\left[(w)_{\mathbf{1}},(w)_{\mathbf{2}}, 1\right]$ are collinear. The theorem is a consequence of (52).
(55) Let us consider non point at ∞ elements P, Q, P_{1} of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $P, Q \in$ the BK-model and $P_{1} \in$ the absolute. Then RP3toT2 $\left(P_{1}\right)$ does not lie between RP3toT2 (Q) and RP3toT2 (P). The theorem is a consequence of (52) and (27).
The functor Dir001 yielding a non point at ∞ element of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ is defined by the term
(Def. 7) the direction of $[0,0,1]$.
The functor Dir101 yielding a non point at ∞ element of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ is defined by the term
(Def. 8) the direction of $[1,0,1]$.
Now we state the propositions:
(56) Let us consider non point at ∞ elements P, Q of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $P, Q \in$ the absolute. Then $\overline{\operatorname{RP} 3 \text { toT2(Dir001)RP3toT2(P) } \cong}$ RP3toT2(Dir001) RP3toT2(Q).
(57) Let us consider non point at ∞ elements P, Q, R of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, and non zero elements u, v, w of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $P, Q \in$ the absolute and $P \neq Q$ and $P=$ the direction of u and $Q=$ the direction of v and $R=$ the direction of w and $(u)_{\mathbf{3}}=1$ and $(v)_{\mathbf{3}}=1$ and $w=\left[\frac{(u)_{\mathbf{1}}+(v)_{\mathbf{1}}}{2}\right.$, $\left.\frac{(u)_{\mathbf{2}}+(v)_{\mathbf{2}}}{2}, 1\right]$. Then $R \in$ the BK-model.
Proof: Reconsider $u^{\prime}=[u(1), u(2)], v^{\prime}=[v(1), v(2)]$ as an element of $\mathcal{E}_{\mathrm{T}}^{2} \cdot u^{\prime} \neq v^{\prime}$. Reconsider $r_{8}=\left[(w)_{\mathbf{1}},(w)_{\mathbf{2}}\right]$ as an element of the inside of circle $(0,0,1)$. Consider R_{3} being an element of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $R_{3}=r_{8}$ and REAL2-to-BK $\left(r_{8}\right)=$ the direction of $\left[\left(R_{3}\right)_{\mathbf{1}},\left(R_{3}\right)_{\mathbf{2}}, 1\right]$.
(58) Let us consider points R_{1}, R_{2} of TarskiEuclid2Space. Suppose $\hat{R_{1}}, \hat{R_{2}} \in$ circle $(0,0,1)$ and $R_{1} \neq R_{2}$. Then there exists an element P of BK-modelPlane such that BKtoT2 (P) lies between R_{1} and R_{2}. The theorem is a consequence of (47), (57), and (26).
(59) Let us consider non point at ∞ elements P, Q of the projective space
over $\mathcal{E}_{\mathrm{T}}^{3}$. If RP3toT2 $(P)=\operatorname{RP} 3 \operatorname{toT} 2(Q)$, then $P=Q$.
(60) Let us consider non point at ∞ elements R_{1}, R_{2} of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $R_{1}, R_{2} \in$ the absolute and $R_{1} \neq R_{2}$. Then there exists an element P of BK-model-Plane such that BKtoT2(P) lies between $\operatorname{RP} 3$ toT2 $\left(R_{1}\right)$ and $\operatorname{RP} 3$ toT2 $\left(R_{2}\right)$. The theorem is a consequence of (59) and (58).
(61) Let us consider points P, Q, R of TarskiEuclid2Space. Suppose Q lies between P and R and $\hat{P}, \hat{R} \in$ the inside of circle $(0,0,1)$. Then $\hat{Q} \in$ the inside of circle $(0,0,1)$.
Let us consider a non point at ∞ element P of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$.
(62) If $P \in$ the absolute, then RP3toREAL2 $(P) \in \operatorname{circle}(0,0,1)$.
(63) If $P \in$ the BK-model, then RP3toREAL2 $(P) \in$ the inside of circle $(0,0,1)$. The theorem is a consequence of (26).
(64) Let us consider a non point at ∞ point P of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, and an element Q of the BK-model. If $P=Q$, then $\operatorname{RP3toREAL} 2(P)=$ BK-to-REAL2 (Q). The theorem is a consequence of (26).
(65) Let us consider non point at ∞ elements P, Q, R_{1}, R_{2} of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $P \neq Q$ and $P \in$ the BK-model and $R_{1}, R_{2} \in$ the absolute and RP3toT2 (Q) lies between RP3toT2 (P) and RP3toT2 $\left(R_{1}\right)$ and RP3toT2 (Q) lies between $\operatorname{RP} 3$ toT2 (P) and RP3toT2 $\left(R_{2}\right)$. Then $R_{1}=$ R_{2}. The theorem is a consequence of (60), (59), (62), (64), (8), and (61).
(66) Let us consider non point at ∞ elements P, Q, P_{1}, P_{2} of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $P \neq Q$ and $P, Q \in$ the BK-model and $P_{1}, P_{2} \in$ the absolute and $P_{1} \neq P_{2}$ and P, Q and P_{1} are collinear and P, Q and P_{2} are collinear. Then
(i) RP3toT2 (P) lies between RP 3 toT2 (Q) and RP 3 toT2 $\left(P_{1}\right)$, or
(ii) RP3toT2 (P) lies between RP3toT2 (Q) and RP3toT2 $\left(P_{2}\right)$.

The theorem is a consequence of (55), (53), and (65).
Let us consider elements P, Q of the BK-model. Now we state the propositions:
(67) Suppose $P \neq Q$. Then there exists an element R of the absolute such that for every non point at ∞ elements p, q, r of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ such that $p=P$ and $q=Q$ and $r=R$ holds $\operatorname{RP} 3$ toT2 (p) lies between RP3toT2 (q) and RP3toT2 (r). The theorem is a consequence of (47) and (66).
(68) Suppose $P \neq Q$. Then there exists an element R of the absolute such that for every non point at ∞ elements p, q, r of the projective space over
$\mathcal{E}_{\mathrm{T}}^{3}$ such that $p=P$ and $q=Q$ and $r=R$ holds $\operatorname{RP3toT2}(q)$ lies between $\operatorname{RP} 3$ toT2 (p) and $\operatorname{RP} 3$ toT2 (r). The theorem is a consequence of (67).
(69) The direction of $[1,0,1]$ is an element of the absolute.
(70) Let us consider points a, b of BK-model-Plane. Then $\overline{a a} \cong \overline{b b}$. The theorem is a consequence of (69).
(71) Every element of the BK-model is a non point at ∞ element of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. The theorem is a consequence of (47).
(72) Every element of the absolute is a non point at ∞ element of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. The theorem is a consequence of (47).
(73) Let us consider an element P of the BK-model, and a non point at ∞ element P^{\prime} of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. If $P=P^{\prime}$, then RP3toREAL2 $\left(P^{\prime}\right)=$ BK-to-REAL2 (P). The theorem is a consequence of (26).
(74) Let us consider points a, q, b, c of BK-model-Plane. Then there exists a point x of BK-model-Plane such that
(i) a lies between q and x, and
(ii) $\overline{a x} \cong \overline{b c}$.

The theorem is a consequence of (71), (68), (72), (12), (70), (48), and (73).
(75) Let us consider points P, Q of BK-model-Plane.

If $\operatorname{BKtoT2}(P)=\operatorname{BKtoT2}(Q)$, then $P=Q$.
(76) Let us consider real numbers a, b, r, and elements P, Q, R of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P, R \in$ the inside of $\operatorname{circle}(a, b, r)$. Then $\mathcal{L}(P, R) \subseteq$ the inside of circle (a, b, r).

2. The Axiom of Segment Construction

Now we state the proposition:
(77) BK-model-Plane satisfies the axiom of segment construction.

3. The Axiom of Betweenness Identity

Now we state the proposition:
(78) BK-model-Plane satisfies the axiom of betweenness identity. The theorem is a consequence of (12) and (75).

4. The Axiom of Pasch

Now we state the proposition:
(79) BK-model-Plane satisfies the axiom of Pasch. The theorem is a consequence of (12), (8), (25), and (10).

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Eugenio Beltrami. Saggio di interpetrazione della geometria non-euclidea. Giornale di Matematiche, 6:284-322, 1868.
[3] Eugenio Beltrami. Essai d'interprétation de la qéométrie non-euclidéenne. In Annales scientifiques de l'École Normale Supérieure. Trad. par J. Hoüel, volume 6, pages 251288. Elsevier, 1869.
[4] Karol Borsuk and Wanda Szmielew. Foundations of Geometry. North Holland, 1960.
[5] Karol Borsuk and Wanda Szmielew. Podstawy geometrii. Państwowe Wydawnictwo Naukowe, Warszawa, 1955 (in Polish).
[6] Roland Coghetto. Homography in $\mathbb{R P}^{2}$. Formalized Mathematics, 24(4):239-251, 2016. doi 10.1515/forma-2016-0020.
[7] Roland Coghetto. Klein-Beltrami model. Part I. Formalized Mathematics, 26(1):21-32, 2018. doi 10.2478 /forma-2018-0003
[8] Roland Coghetto. Klein-Beltrami model. Part III. Formalized Mathematics, 28(1):1-7, 2020. doi $10.2478 /$ forma-2020-0001
[9] Kanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space, Formalized Mathematics, 11(4):381-383, 2003.
[10] Timothy James McKenzie Makarios. A mechanical verification of the independence of Tarski's Euclidean Axiom. Victoria University of Wellington, New Zealand, 2012. Master's thesis.
[11] William Richter, Adam Grabowski, and Jesse Alama. Tarski geometry axioms. Formalized Mathematics, 22(2):167-176, 2014. doi 10.2478/forma-2014-0017

Accepted December 30, 2019

[^0]: ${ }^{1}$ https://www.isa-afp.org/entries/Tarskis_Geometry.html
 2^{2} https://github.com/jrh13/hol-light/blob/master/100/independence.ml

