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Klein-Beltrami model. Part IV

Roland Coghetto
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Summary. Timothy Makarios (with Isabelle/HOL1) and John Harrison
(with HOL-Light2) shown that “the Klein-Beltrami model of the hyperbolic plane
satisfy all of Tarski’s axioms except his Euclidean axiom” [2],[3],[4, 5].

With the Mizar system [1] we use some ideas taken from Tim Makarios’s
MSc thesis [10] to formalize some definitions and lemmas necessary for the veri-
fication of the independence of the parallel postulate. In this article, which is the
continuation of [8], we prove that our constructed model satisfies the axioms of
segment construction, the axiom of betweenness identity, and the axiom of Pasch
due to Tarski, as formalized in [11] and related Mizar articles.
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1. Preliminaries

Let us consider real numbers a, b. Now we state the propositions:

(1) If a 6= b, then 1− a
a−b = − b

a−b .

(2) If 0 < a · b, then 0 < ab .

Now we state the propositions:

(3) Let us consider real numbers a, b, c. Suppose 0 ¬ a ¬ 1 and 0 < b · c.
Then 0 ¬ a·c

(1−a)·b+a·c ¬ 1.

1https://www.isa-afp.org/entries/Tarskis_Geometry.html
2https://github.com/jrh13/hol-light/blob/master/100/independence.ml
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(4) Let us consider real numbers a, b, c. Suppose (1− a) · b+ a · c 6= 0. Then
1− a·c

(1−a)·b+a·c = (1−a)·b
(1−a)·b+a·c .

(5) Let us consider real numbers a, b, c, d. If b 6= 0, then
a·b
c
·d
b = a·d

c .

(6) Let us consider an element u of E3T. Then u = [u(1), u(2), u(3)].

(7) Let us consider an element P of the BK-model. Then BK-to-REAL2(P ) ∈
TarskiEuclid2Space.

Let P be a point of BK-model-Plane. The functor BKtoT2(P ) yielding a po-
int of TarskiEuclid2Space is defined by

(Def. 1) there exists an element p of the BK-model such that P = p and it =
BK-to-REAL2(p).

Let P be a point of TarskiEuclid2Space. Assume P̂ ∈ the inside of circle(0,0,1).
The functor T2toBK(P ) yielding a point of BK-model-Plane is defined by

(Def. 2) there exists a non zero element u of E3T such that it = the direction of u
and (u)3 = 1 and P̂ = [(u)1, (u)2].

Let us consider a point P of BK-model-Plane. Now we state the propositions:

(8) ˆBKtoT2(P ) ∈ the inside of circle(0,0,1).

(9) T2toBK(BKtoT2(P )) = P .

(10) Let us consider a point P of TarskiEuclid2Space. Suppose P̂ is an element
of the inside of circle(0,0,1). Then BKtoT2(T2toBK(P )) = P .

(11) Let us consider a point P of BK-model-Plane, and an element p of
the BK-model. Suppose P = p. Then

(i) BKtoT2(P ) = BK-to-REAL2(p), and

(ii) ˆBKtoT2(P ) = BK-to-REAL2(p).

(12) Let us consider points P ,Q, R of BK-model-Plane, and points P2,Q2, R2
of TarskiEuclid2Space. Suppose P2 = BKtoT2(P ) and Q2 = BKtoT2(Q)
and R2 = BKtoT2(R). Then Q lies between P and R if and only if Q2 lies
between P2 and R2. The theorem is a consequence of (11).

(13) Let us consider elements P , Q of E2T. If P 6= Q, then P (1) 6= Q(1) or
P (2) 6= Q(2).

(14) Let us consider real numbers a, b, and elements P , Q of E2T. If P 6= Q
and (1 − a) · P + a · Q = (1 − b) · P + b · Q, then a = b. The theorem is
a consequence of (13).

(15) Let us consider points P , Q of BK-model-Plane. If ˆBKtoT2(P ) =
ˆBKtoT2(Q), then P = Q. The theorem is a consequence of (11).

Let P , Q, R be points of BK-model-Plane. Assume Q lies between P and R
and P 6= R. The functor length(P,Q,R) yielding a real number is defined by
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(Def. 3) 0 ¬ it ¬ 1 and ˆBKtoT2(Q) = (1− it) · ( ˆBKtoT2(P )) + it · ( ˆBKtoT2(R)).

Let us consider points P , Q of BK-model-Plane. Now we state the proposi-
tions:

(16) (i) P lies between P and Q, and

(ii) Q lies between P and Q.
The theorem is a consequence of (12).

(17) If P 6= Q, then length(P, P,Q) = 0 and length(P,Q,Q) = 1. The the-
orem is a consequence of (16).

(18) Let us consider a square matrix N over RF of dimension 3. Suppose
N = 〈〈2, 0,−1〉, 〈0,

√
3, 0〉, 〈1, 0,−2〉〉. Then

(i) DetN = (−3) ·
√

3, and

(ii) N is invertible.

(19) Let us consider elements a11, a12, a13, a21, a22, a23, a31, a32, a33, b11,
b12, b13, b21, b22, b23, b31, b32, b33, a1, a2, a3, a4, a5, a6, a7, a8, a9 of RF,
and square matrices A, B over RF of dimension 3.

Suppose A = 〈〈a11, a12, a13〉, 〈a21, a22, a23〉, 〈a31, a32, a33〉〉 and B =
〈〈b11, b12, b13〉, 〈b21, b22, b23〉, 〈b31, b32, b33〉〉 and a1 = a11 · b11 + a12 · b21 +
a13·b31 and a2 = a11·b12+a12·b22+a13·b32 and a3 = a11·b13+a12·b23+a13·b33
and a4 = a21 · b11 + a22 · b21 + a23 · b31.

Suppose a5 = a21 ·b12+a22 ·b22+a23 ·b32 and a6 = a21 ·b13+a22 ·b23+a23 ·
b33 and a7 = a31 ·b11+a32 ·b21+a33 ·b31 and a8 = a31 ·b12+a32 ·b22+a33 ·b32
and a9 = a31 · b13 + a32 · b23 + a33 · b33.

Then A ·B = 〈〈a1, a2, a3〉, 〈a4, a5, a6〉, 〈a7, a8, a9〉〉.
Let us consider square matrices N1, N2 over RF of dimension 3. Now we

state the propositions:

(20) Suppose N1 = 〈〈2, 0,−1〉, 〈0,
√

3, 0〉, 〈1, 0,−2〉〉 and N2 = 〈〈23 , 0,−
1
3〉, 〈0,

1√
3
, 0〉, 〈13 , 0,−

2
3〉〉. Then N1 ·N2 = 〈〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉〉. The theorem

is a consequence of (19).

(21) Suppose N2 = 〈〈2, 0,−1〉, 〈0,
√

3, 0〉, 〈1, 0,−2〉〉 and N1 = 〈〈23 , 0,−
1
3〉, 〈0,

1√
3
, 0〉, 〈13 , 0,−

2
3〉〉. Then N1 ·N2 = 〈〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉〉. The theorem

is a consequence of (19).

(22) Suppose N1 = 〈〈2, 0,−1〉, 〈0,
√

3, 0〉, 〈1, 0,−2〉〉 and N2 = 〈〈23 , 0,−
1
3〉, 〈0,

1√
3
, 0〉, 〈13 , 0,−

2
3〉〉. Then N1 is inverse of N2. The theorem is a consequence

of (20) and (21).

Let us consider an invertible square matrix N over RF of dimension 3. Now
we state the propositions:
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(23) Suppose N = 〈〈23 , 0,−
1
3〉, 〈0,

1√
3
, 0〉, 〈13 , 0,−

2
3〉〉. Then (the homography

of N)◦(the absolute) ⊆ the absolute.
Proof: (The homography of N)◦(the absolute) ⊆ the absolute by [7,
(89)], [9, (7)]. �

(24) Suppose N = 〈〈2, 0,−1〉, 〈0,
√

3, 0〉, 〈1, 0,−2〉〉. Then (the homography
of N)◦(the absolute) = the absolute.
Proof: (The homography of N)◦(the absolute) ⊆ the absolute.
The absolute ⊆ (the homography of N)◦(the absolute) by [6, (19)], (22),
(23). �

(25) Let us consider real numbers a, b, r, and elements P , Q, R of E2T. Suppose
Q ∈ L(P,R) and P , R ∈ the inside of circle(a,b,r). Then Q ∈ the inside
of circle(a,b,r).

(26) Let us consider non zero elements u, v of E3T. Suppose the direction of
u = the direction of v and u(3) 6= 0 and u(3) = v(3). Then u = v.

(27) Let us consider an element R of the projective space over E3T, elements
P , Q of the BK-model, non zero elements u, v, w of E3T, and a real number
r. Suppose 0 ¬ r ¬ 1 and P = the direction of u and Q = the direction
of v and R = the direction of w and u(3) = 1 and v(3) = 1 and w =
r · u+ (1− r) · v. Then R is an element of the BK-model.
Proof: Consider u2 being a non zero element of E3T such that the direction
of u2 = P and u2(3) = 1 and BK-to-REAL2(P ) = [u2(1), u2(2)]. u = u2.
Reconsider r4 = [u2(1), u2(2)] as an element of E2T. Consider v2 being a non
zero element of E3T such that the direction of v2 = Q and v2(3) = 1 and
BK-to-REAL2(Q) = [v2(1), v2(2)]. v = v2. Reconsider r6 = [v2(1), v2(2)]
as an element of E2T. Reconsider r8 = [w(1), w(2)] as an element of E2T.
r8 = r · r4 + (1 − r) · r6. Consider R3 being an element of E2T such that
R3 = r8 and REAL2-to-BK(r8) = the direction of [(R3)1, (R3)2, 1]. �

(28) Let us consider an invertible square matrix N over RF of dimension 3,
elements n11, n12, n13, n21, n22, n23, n31, n32, n33 of RF, points P , Q of
the projective space over E3T, and non zero elements u, v of E3T. Suppose
N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31, n32, n33〉〉 and P = the direction
of u and Q = the direction of v and Q = (the homography of N)(P ) and
u(3) = 1. Then there exists a non zero real number a such that

(i) v(1) = a · (n11 · u(1) + n12 · u(2) + n13), and

(ii) v(2) = a · (n21 · u(1) + n22 · u(2) + n23), and

(iii) v(3) = a · (n31 · u(1) + n32 · u(2) + n33).

(29) Let us consider an invertible square matrix N over RF of dimension
3, elements n11, n12, n13, n21, n22, n23, n31, n32, n33 of RF, an element
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P of the BK-model, a point Q of the projective space over E3T, and non
zero elements u, v of E3T. Suppose N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31,
n32, n33〉〉 and P = the direction of u and Q = the direction of v and
Q = (the homography of N)(P ) and u(3) = 1 and v(3) = 1. Then

(i) n31 · u(1) + n32 · u(2) + n33 6= 0, and

(ii) v(1) = n11·u(1)+n12·u(2)+n13
n31·u(1)+n32·u(2)+n33 , and

(iii) v(2) = n21·u(1)+n22·u(2)+n23
n31·u(1)+n32·u(2)+n33 .

The theorem is a consequence of (28).

(30) Let us consider an invertible square matrix N over RF of dimension
3, an element h of the subgroup of K-isometries, elements n11, n12, n13,
n21, n22, n23, n31, n32, n33 of RF, an element P of the BK-model, and
a non zero element u of E3T. Suppose h = the homography of N and
N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31, n32, n33〉〉 and P = the direction
of u and u(3) = 1. Then n31 · u(1) + n32 · u(2) + n33 6= 0. The theorem is
a consequence of (29).

(31) Let us consider an invertible square matrix N over RF of dimension
3, elements n11, n12, n13, n21, n22, n23, n31, n32, n33 of RF, an element
P of the absolute, a point Q of the projective space over E3T, and non
zero elements u, v of E3T. Suppose N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31,
n32, n33〉〉 and P = the direction of u and Q = the direction of v and
Q = (the homography of N)(P ) and u(3) = 1 and v(3) = 1. Then

(i) n31 · u(1) + n32 · u(2) + n33 6= 0, and

(ii) v(1) = n11·u(1)+n12·u(2)+n13
n31·u(1)+n32·u(2)+n33 , and

(iii) v(2) = n21·u(1)+n22·u(2)+n23
n31·u(1)+n32·u(2)+n33 .

The theorem is a consequence of (28).

(32) Let us consider an invertible square matrix N over RF of dimension 3,
an element h of the subgroup of K-isometries, elements n11, n12, n13, n21,
n22, n23, n31, n32, n33 of RF, an element P of the absolute, and a non
zero element u of E3T. Suppose h = the homography of N and N = 〈〈n11,
n12, n13〉, 〈n21, n22, n23〉, 〈n31, n32, n33〉〉 and P = the direction of u and
u(3) = 1. Then n31·u(1)+n32·u(2)+n33 6= 0. The theorem is a consequence
of (31).

(33) Let us consider an invertible square matrix N over RF of dimension
3, an element h of the subgroup of K-isometries, elements n11, n12, n13,
n21, n22, n23, n31, n32, n33 of RF, an element P of the BK-model, and
a non zero element u of E3T. Suppose h = the homography of N and
N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31, n32, n33〉〉 and P = the direction
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of u and u(3) = 1. Then (the homography of N)(P ) = the direction of
[n11·u(1)+n12·u(2)+n13n31·u(1)+n32·u(2)+n33 ,

n21·u(1)+n22·u(2)+n23
n31·u(1)+n32·u(2)+n33 , 1]. The theorem is a consequence

of (29).

(34) Let us consider an invertible square matrix N over RF of dimension
3, an element h of the subgroup of K-isometries, elements n11, n12, n13,
n21, n22, n23, n31, n32, n33 of RF, an element P of the absolute, and
a non zero element u of E3T. Suppose h = the homography of N and
N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31, n32, n33〉〉 and P = the direction
of u and u(3) = 1. Then (the homography of N)(P ) = the direction of
[n11·u(1)+n12·u(2)+n13n31·u(1)+n32·u(2)+n33 ,

n21·u(1)+n22·u(2)+n23
n31·u(1)+n32·u(2)+n33 , 1]. The theorem is a consequence

of (31).

(35) Let us consider a subset A of E3T, a convex, non empty subset B of E2T,
a real number r, and an element x of E3T. Suppose A = {x, where x is
an element of E3T : [(x)1, (x)2] ∈ B and (x)3 = r}. Then A is non empty
and convex.

(36) Let us consider elements n1, n2, n3 of RF, and elements n, u of E3T.
Suppose n = 〈n1, n2, n3〉 and u(3) = 1. Then |(n, u)| = n1 · u(1) + n2 ·
u(2) + n3.

(37) Let us consider a convex, non empty subset A of E3T, and elements n,
u, v of E3T. Suppose for every element w of E3T such that w ∈ A holds
|(n,w)| 6= 0 and u, v ∈ A. Then 0 < |(n, u)| · |(n, v)|.
Proof: Set x = |(n, u)|. Set y = |(n, v)|. Reconsider l = x

x−y as a non zero
real number. Reconsider w = l · v + (1− l) · u as an element of E3T. x 6= y.
1− l = − y

x−y . |(n,w)| = 0. �

Let us consider elements n31, n32, n33 of RF and elements u, v of E2T. Now
we state the propositions:

(38) Suppose u, v ∈ the inside of circle(0,0,1) and for every element w of E2T
such that w ∈ the inside of circle(0,0,1) holds n31·w(1)+n32·w(2)+n33 6= 0.
Then 0 < (n31 · u(1) + n32 · u(2) + n33) · (n31 · v(1) + n32 · v(2) + n33). The
theorem is a consequence of (35), (36), and (37).

(39) Suppose u ∈ the inside of circle(0,0,1) and v ∈ circle(0, 0, 1) and for
every element w of E2T such that w ∈ the closed inside of circle(0,0,1)
holds n31 ·w(1) + n32 ·w(2) + n33 6= 0. Then 0 < (n31 · u(1) + n32 · u(2) +
n33) · (n31 · v(1) + n32 · v(2) + n33). The theorem is a consequence of (35),
(36), and (37).

(40) Let us consider real numbers l, r, elements u, v, w of E3T, and real numbers
n11, n12, n13, n21, n22, n23, n31, n32, n33, m1, m2, m3, m4, m5, m6, m7,
m8, m9.
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Suppose m3 6= 0 and m6 6= 0 and m9 6= 0 and r = l·m6
(1−l)·m3+l·m6

and (1 − l) · m3 + l · m6 6= 0 and w = (1 − l) · u + l · v and m1 =
n11 · u(1) + n12 · u(2) + n13 and m2 = n21 · u(1) + n22 · u(2) + n23 and
m3 = n31 · u(1) + n32 · u(2) + n33 and m4 = n11 · v(1) + n12 · v(2) + n13.

Supposem5 = n21 ·v(1)+n22 ·v(2)+n23 andm6 = n31 ·v(1)+n32 ·v(2)+
n33 andm7 = n11·w(1)+n12·w(2)+n13 andm8 = n21·w(1)+n22·w(2)+n23
and m9 = n31 · w(1) + n32 · w(2) + n33.

Then (1− r) · [m1m3 ,
m2
m3
, 1] + r · [m4m6 ,

m5
m6
, 1] = [m7m9 ,

m8
m9
, 1]. The theorem is

a consequence of (4) and (5).

(41) Let us consider an invertible square matrix N over RF of dimension
3, an element h of the subgroup of K-isometries, elements n11, n12, n13,
n21, n22, n23, n31, n32, n33 of RF, and an element P of the BK-model.
Suppose h = the homography of N and N = 〈〈n11, n12, n13〉, 〈n21, n22,
n23〉, 〈n31, n32, n33〉〉. Then (the homography of N)(P ) = the direction of
[n11·(BK-to-REAL2(P ))1+n12·(BK-to-REAL2(P ))2+n13
n31·(BK-to-REAL2(P ))1+n32·(BK-to-REAL2(P ))2+n33 ,
n21·(BK-to-REAL2(P ))1+n22·(BK-to-REAL2(P ))2+n23
n31·(BK-to-REAL2(P ))1+n32·(BK-to-REAL2(P ))2+n33 , 1].
The theorem is a consequence of (33).

(42) Let us consider an element h of the subgroup of K-isometries, an in-
vertible square matrix N over RF of dimension 3, elements n11, n12, n13,
n21, n22, n23, n31, n32, n33 of RF, and an element u2 of E2T. Suppose
h = the homography of N and N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31,
n32, n33〉〉 and u2 ∈ the inside of circle(0,0,1). Then n31 ·u2(1)+n32 ·u2(2)+
n33 6= 0. The theorem is a consequence of (30).

(43) Let us consider a positive real number r, and an element u of E2T. If
u ∈ circle(0, 0, r), then u is not zero.

(44) Let us consider an element h of the subgroup of K-isometries, an in-
vertible square matrix N over RF of dimension 3, elements n11, n12, n13,
n21, n22, n23, n31, n32, n33 of RF, and an element u2 of E2T. Suppose
h = the homography of N and N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31,
n32, n33〉〉 and u2 ∈ the closed inside of circle(0,0,1). Then n31 · u2(1) +
n32 ·u2(2)+n33 6= 0. The theorem is a consequence of (30), (43), and (32).

(45) Let us consider real numbers a, b, c, d, e, f , r. Suppose (1 − r) · [a, b,
1] + r · [c, d, 1] = [e, f, 1]. Then (1− r) · [a, b] + r · [c, d] = [e, f ].

(46) Let us consider points P , Q, R, P ′, Q′, R′ of BK-model-Plane, elements
p, q, r, p′, q′, r′ of the BK-model, an element h of the subgroup of K-
isometries, and an invertible square matrix N over RF of dimension 3.
Suppose h = the homography of N and Q lies between P and R and
P = p and Q = q and R = r and p′ = (the homography of N)(p) and
q′ = (the homography of N)(q) and r′ = (the homography of N)(r) and
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P ′ = p′ and Q′ = q′ and R′ = r′. Then Q′ lies between P ′ and R′.
Proof: Consider n11, n12, n13, n21, n22, n23, n31, n32, n33 being ele-
ments of RF such that N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31, n32, n33〉〉.
Consider u being a non zero element of E3T such that the direction of
u = p and u(3) = 1 and BK-to-REAL2(p) = [u(1), u(2)]. Consider v
being a non zero element of E3T such that the direction of v = r and
v(3) = 1 and BK-to-REAL2(r) = [v(1), v(2)]. Consider w being a non
zero element of E3T such that the direction of w = q and w(3) = 1 and
BK-to-REAL2(q) = [w(1), w(2)].

Reconsider m1 = n11 · u(1) + n12 · u(2) + n13, m2 = n21 · u(1) + n22 ·
u(2)+n23,m3 = n31 ·u(1)+n32 ·u(2)+n33,m4 = n11 ·v(1)+n12 ·v(2)+n13,
m5 = n21 · v(1) + n22 · v(2) + n23, m6 = n31 · v(1) + n32 · v(2) + n33, m7 =
n11·w(1)+n12·w(2)+n13,m8 = n21·w(1)+n22·w(2)+n23,m9 = n31·w(1)+
n32 · w(2) + n33 as a real number. BKtoT2(P ) = BK-to-REAL2(p) and

ˆBKtoT2(P ) = BK-to-REAL2(p) and BKtoT2(Q) = BK-to-REAL2(q)
and ˆBKtoT2(Q) = BK-to-REAL2(q) and BKtoT2(R) = BK-to-REAL2(r)
and ˆBKtoT2(R) = BK-to-REAL2(r). Consider l being a real number such
that 0 ¬ l ¬ 1 and ˆBKtoT2(Q) = (1− l) · ( ˆBKtoT2(P ))+ l · ( ˆBKtoT2(R)).

Set r = l·m6
(1−l)·m3+l·m6 . (1 − r) · [m1m3 ,

m2
m3
, 1] + r · [m4m6 ,

m5
m6
, 1] = [m7m9 ,

m8
m9
, 1]. 0 ¬ r ¬ 1. BKtoT2(P ′) = BK-to-REAL2(p′) and ˆBKtoT2(P ′) =

BK-to-REAL2(p′) and BKtoT2(Q′) = BK-to-REAL2(q′) and ˆBKtoT2(Q′) =
BK-to-REAL2(q′) and BKtoT2(R′) = BK-to-REAL2(r′) and ˆBKtoT2(R′) =
BK-to-REAL2(r′). �

Let P be a point of the projective space over E3T. We say that P is point at
∞ if and only if

(Def. 4) there exists a non zero element u of E3T such that P = the direction of
u and (u)3 = 0.

Now we state the proposition:

(47) Let us consider a point P of the projective space over E3T. Suppose there
exists a non zero element u of E3T such that P = the direction of u and
(u)3 6= 0. Then P is not point at ∞.

Note that there exists a point of the projective space over E3T which is point
at∞ and there exists a point of the projective space over E3T which is non point
at ∞.

Let P be a non point at∞ point of the projective space over E3T. The functor
RP3toREAL2(P ) yielding an element of R2 is defined by

(Def. 5) there exists a non zero element u of E3T such that P = the direction of
u and (u)3 = 1 and it = [(u)1, (u)2].
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The functor RP3toT2(P ) yielding a point of TarskiEuclid2Space is defined
by the term

(Def. 6) RP3toREAL2(P ).

Now we state the propositions:

(48) Let us consider non point at ∞ elements P , Q, R, P ′, Q′, R′ of the pro-
jective space over E3T, an element h of the subgroup of K-isometries, and
an invertible square matrix N over RF of dimension 3.

Suppose h = the homography of N and P , Q ∈ the BK-model and R ∈
the absolute and P ′ = (the homography ofN)(P ) andQ′ = (the homogra-
phy of N)(Q) and R′ = (the homography of N)(R) and RP3toT2(Q) lies
between RP3toT2(P ) and RP3toT2(R).

Then RP3toT2(Q′) lies between RP3toT2(P ′) and RP3toT2(R′).
Proof: Consider n11, n12, n13, n21, n22, n23, n31, n32, n33 being elements
of RF such that N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31, n32, n33〉〉. Con-
sider u being a non zero element of E3T such that P = the direction
of u and (u)3 = 1 and RP3toREAL2(P ) = [(u)1, (u)2]. Consider v be-
ing a non zero element of E3T such that R = the direction of v and
(v)3 = 1 and RP3toREAL2(R) = [(v)1, (v)2]. Consider w being a non
zero element of E3T such that Q = the direction of w and (w)3 = 1 and
RP3toREAL2(Q) = [(w)1, (w)2].

Reconsiderm1 = n11 ·u(1)+n12 ·u(2)+n13,m2 = n21 ·u(1)+n22 ·u(2)+
n23, m3 = n31 · u(1) + n32 · u(2) + n33, m4 = n11 · v(1) + n12 · v(2) + n13,
m5 = n21 · v(1) + n22 · v(2) + n23, m6 = n31 · v(1) + n32 · v(2) + n33,
m7 = n11 · w(1) + n12 · w(2) + n13, m8 = n21 · w(1) + n22 · w(2) + n23,
m9 = n31 · w(1) + n32 · w(2) + n33 as a real number.

Consider l being a real number such that 0 ¬ l ¬ 1 and ˆRP3toT2(Q) =
(1−l)·( ˆRP3toT2(P ))+l·( ˆRP3toT2(R)). Set r = l·m6

(1−l)·m3+l·m6 . (1−r)·[m1m3 ,
m2
m3
, 1] + r · [m4m6 ,

m5
m6
, 1] = [m7m9 ,

m8
m9
, 1]. 0 ¬ r ¬ 1. �

(49) Let us consider real numbers a, b, c, and elements u, v, w of E3T. Suppose
a 6= 0 and a+ b+ c = 0 and a ·u+ b · v+ c ·w = 0E3T . Then u ∈ Line(v, w).

(50) Let us consider non point at ∞ points P , Q, R of the projective space
over E3T, and non zero elements u, v, w of E3T. Suppose P = the direction
of u and Q = the direction of v and R = the direction of w and (u)3 = 1
and (v)3 = 1 and (w)3 = 1. Then P , Q and R are collinear if and only if
u, v and w are collinear. The theorem is a consequence of (49).

(51) Let us consider elements u, v, w of E3T. Suppose u ∈ L(v, w). Then [(u)1,
(u)2] ∈ L([(v)1, (v)2], [(w)1, (w)2]).

(52) Let us consider elements u, v, w of E2T. Suppose u ∈ L(v, w). Then [(u)1,
(u)2, 1] ∈ L([(v)1, (v)2, 1], [(w)1, (w)2, 1]).
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Proof: Consider r being a real number such that 0 ¬ r and r ¬ 1 and
u = (1 − r) · v + r · w. Reconsider u′ = [(u)1, (u)2, 1], v′ = [(v)1, (v)2, 1],
w′ = [(w)1, (w)2, 1] as an element of E3T. u′ = (1− r) · v′ + r · w′. �

(53) Let us consider non point at ∞ points P , Q, R of the projective spa-
ce over E3T. Then P , Q and R are collinear if and only if RP3toT2(P ),
RP3toT2(Q) and RP3toT2(R) are collinear. The theorem is a consequen-
ce of (50), (51), and (52).

(54) Let us consider elements u, v, w of E2T. Suppose u, v and w are colline-
ar. Then [(u)1, (u)2, 1], [(v)1, (v)2, 1] and [(w)1, (w)2, 1] are collinear. The
theorem is a consequence of (52).

(55) Let us consider non point at ∞ elements P , Q, P1 of the projective
space over E3T. Suppose P , Q ∈ the BK-model and P1 ∈ the absolute.
Then RP3toT2(P1) does not lie between RP3toT2(Q) and RP3toT2(P ).
The theorem is a consequence of (52) and (27).

The functor Dir001 yielding a non point at∞ element of the projective space
over E3T is defined by the term

(Def. 7) the direction of [0, 0, 1].

The functor Dir101 yielding a non point at∞ element of the projective space
over E3T is defined by the term

(Def. 8) the direction of [1, 0, 1].

Now we state the propositions:

(56) Let us consider non point at∞ elements P ,Q of the projective space over
E3T. Suppose P , Q ∈ the absolute. Then RP3toT2(Dir001) RP3toT2(P ) ∼=
RP3toT2(Dir001) RP3toT2(Q).

(57) Let us consider non point at∞ elements P , Q, R of the projective space
over E3T, and non zero elements u, v, w of E3T. Suppose P , Q ∈ the absolute
and P 6= Q and P = the direction of u and Q = the direction of v and
R = the direction of w and (u)3 = 1 and (v)3 = 1 and w = [ (u)1+(v)12 ,
(u)2+(v)2
2 , 1]. Then R ∈ the BK-model.

Proof: Reconsider u′ = [u(1), u(2)], v′ = [v(1), v(2)] as an element of
E2T. u′ 6= v′. Reconsider r8 = [(w)1, (w)2] as an element of the inside of
circle(0,0,1). Consider R3 being an element of E2T such that R3 = r8 and
REAL2-to-BK(r8) = the direction of [(R3)1, (R3)2, 1]. �

(58) Let us consider points R1, R2 of TarskiEuclid2Space. Suppose R̂1, R̂2 ∈
circle(0, 0, 1) and R1 6= R2. Then there exists an element P of BK-model-
Plane such that BKtoT2(P ) lies between R1 and R2. The theorem is
a consequence of (47), (57), and (26).

(59) Let us consider non point at ∞ elements P , Q of the projective space
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over E3T. If RP3toT2(P ) = RP3toT2(Q), then P = Q.

(60) Let us consider non point at ∞ elements R1, R2 of the projective space
over E3T. Suppose R1, R2 ∈ the absolute and R1 6= R2. Then there exi-
sts an element P of BK-model-Plane such that BKtoT2(P ) lies between
RP3toT2(R1) and RP3toT2(R2). The theorem is a consequence of (59)
and (58).

(61) Let us consider points P , Q, R of TarskiEuclid2Space. Suppose Q lies be-
tween P and R and P̂ , R̂ ∈ the inside of circle(0,0,1). Then Q̂ ∈ the inside
of circle(0,0,1).

Let us consider a non point at ∞ element P of the projective space over E3T.

(62) If P ∈ the absolute, then RP3toREAL2(P ) ∈ circle(0, 0, 1).

(63) If P ∈ the BK-model, then RP3toREAL2(P ) ∈ the inside of circle(0,0,1).
The theorem is a consequence of (26).

(64) Let us consider a non point at∞ point P of the projective space over E3T,
and an element Q of the BK-model. If P = Q, then RP3toREAL2(P ) =
BK-to-REAL2(Q). The theorem is a consequence of (26).

(65) Let us consider non point at ∞ elements P , Q, R1, R2 of the projecti-
ve space over E3T. Suppose P 6= Q and P ∈ the BK-model and R1, R2 ∈
the absolute and RP3toT2(Q) lies between RP3toT2(P ) and RP3toT2(R1)
and RP3toT2(Q) lies between RP3toT2(P ) and RP3toT2(R2). Then R1 =
R2. The theorem is a consequence of (60), (59), (62), (64), (8), and (61).

(66) Let us consider non point at ∞ elements P , Q, P1, P2 of the projective
space over E3T. Suppose P 6= Q and P , Q ∈ the BK-model and P1, P2 ∈
the absolute and P1 6= P2 and P , Q and P1 are collinear and P , Q and P2
are collinear. Then

(i) RP3toT2(P ) lies between RP3toT2(Q) and RP3toT2(P1), or

(ii) RP3toT2(P ) lies between RP3toT2(Q) and RP3toT2(P2).

The theorem is a consequence of (55), (53), and (65).

Let us consider elements P , Q of the BK-model. Now we state the proposi-
tions:

(67) Suppose P 6= Q. Then there exists an element R of the absolute such
that for every non point at∞ elements p, q, r of the projective space over
E3T such that p = P and q = Q and r = R holds RP3toT2(p) lies between
RP3toT2(q) and RP3toT2(r). The theorem is a consequence of (47) and
(66).

(68) Suppose P 6= Q. Then there exists an element R of the absolute such
that for every non point at∞ elements p, q, r of the projective space over
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E3T such that p = P and q = Q and r = R holds RP3toT2(q) lies between
RP3toT2(p) and RP3toT2(r). The theorem is a consequence of (67).

(69) The direction of [1, 0, 1] is an element of the absolute.

(70) Let us consider points a, b of BK-model-Plane. Then aa ∼= bb. The
theorem is a consequence of (69).

(71) Every element of the BK-model is a non point at ∞ element of the pro-
jective space over E3T. The theorem is a consequence of (47).

(72) Every element of the absolute is a non point at ∞ element of the pro-
jective space over E3T. The theorem is a consequence of (47).

(73) Let us consider an element P of the BK-model, and a non point at∞ ele-
ment P ′ of the projective space over E3T. If P = P ′, then RP3toREAL2(P ′) =
BK-to-REAL2(P ). The theorem is a consequence of (26).

(74) Let us consider points a, q, b, c of BK-model-Plane. Then there exists
a point x of BK-model-Plane such that

(i) a lies between q and x, and

(ii) ax ∼= bc.

The theorem is a consequence of (71), (68), (72), (12), (70), (48), and (73).

(75) Let us consider points P , Q of BK-model-Plane.
If BKtoT2(P ) = BKtoT2(Q), then P = Q.

(76) Let us consider real numbers a, b, r, and elements P , Q, R of E2T. Sup-
pose P , R ∈ the inside of circle(a,b,r). Then L(P,R) ⊆ the inside of
circle(a,b,r).

2. The Axiom of Segment Construction

Now we state the proposition:

(77) BK-model-Plane satisfies the axiom of segment construction.

3. The Axiom of Betweenness Identity

Now we state the proposition:

(78) BK-model-Plane satisfies the axiom of betweenness identity. The the-
orem is a consequence of (12) and (75).
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4. The Axiom of Pasch

Now we state the proposition:

(79) BK-model-Plane satisfies the axiom of Pasch. The theorem is a conse-
quence of (12), (8), (25), and (10).
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