

Klein-Beltrami model. Part IV

Roland Coghetto^D Rue de la Brasserie 5 7100 La Louvière, Belgium

Summary. Timothy Makarios (with Isabelle/HOL¹) and John Harrison (with HOL-Light²) shown that "the Klein-Beltrami model of the hyperbolic plane satisfy all of Tarski's axioms except his Euclidean axiom" [2],[3],[4, 5].

With the Mizar system [1] we use some ideas taken from Tim Makarios's MSc thesis [10] to formalize some definitions and lemmas necessary for the verification of the independence of the parallel postulate. In this article, which is the continuation of [8], we prove that our constructed model satisfies the axioms of segment construction, the axiom of betweenness identity, and the axiom of Pasch due to Tarski, as formalized in [11] and related Mizar articles.

MSC: 51A05 51M10 68V20

Keywords: Tarski's geometry axioms; foundations of geometry; Klein-Beltrami model

MML identifier: BKMODEL4, version: 8.1.09 5.60.1371

1. Preliminaries

Let us consider real numbers a, b. Now we state the propositions:

- (1) If $a \neq b$, then $1 \frac{a}{a-b} = -\frac{b}{a-b}$.
- (2) If $0 < a \cdot b$, then $0 < \frac{a}{b}$.

Now we state the propositions:

(3) Let us consider real numbers a, b, c. Suppose $0 \le a \le 1$ and $0 < b \cdot c$. Then $0 \le \frac{a \cdot c}{(1-a) \cdot b + a \cdot c} \le 1$.

¹https://www.isa-afp.org/entries/Tarskis_Geometry.html

²https://github.com/jrh13/hol-light/blob/master/100/independence.ml

- (4) Let us consider real numbers a, b, c. Suppose $(1-a) \cdot b + a \cdot c \neq 0$. Then $1 \frac{a \cdot c}{(1-a) \cdot b + a \cdot c} = \frac{(1-a) \cdot b}{(1-a) \cdot b + a \cdot c}$.
- (5) Let us consider real numbers a, b, c, d. If $b \neq 0$, then $\frac{\frac{a \cdot b}{c} \cdot d}{b} = \frac{a \cdot d}{c}$.
- (6) Let us consider an element u of \mathcal{E}_{T}^{3} . Then u = [u(1), u(2), u(3)].
- (7) Let us consider an element P of the BK-model. Then BK-to-REAL2 $(P) \in$ TarskiEuclid2Space.

Let P be a point of BK-model-Plane. The functor BKtoT2(P) yielding a point of TarskiEuclid2Space is defined by

(Def. 1) there exists an element p of the BK-model such that P = p and it = BK-to-REAL2(p).

Let P be a point of TarskiEuclid2Space. Assume $\hat{P} \in$ the inside of circle(0,0,1). The functor T2toBK(P) yielding a point of BK-model-Plane is defined by

(Def. 2) there exists a non zero element u of $\mathcal{E}^3_{\mathrm{T}}$ such that it = the direction of u and $(u)_{\mathbf{3}} = 1$ and $\hat{P} = [(u)_{\mathbf{1}}, (u)_{\mathbf{2}}].$

Let us consider a point P of BK-model-Plane. Now we state the propositions:

- (8) BKto $\hat{T}^2(P) \in \text{the inside of circle}(0,0,1).$
- (9) T2toBK(BKtoT2(P)) = P.
- (10) Let us consider a point P of TarskiEuclid2Space. Suppose \hat{P} is an element of the inside of circle(0,0,1). Then BKtoT2(T2toBK(P)) = P.
- (11) Let us consider a point P of BK-model-Plane, and an element p of the BK-model. Suppose P = p. Then
 - (i) BKtoT2(P) = BK-to-REAL2(p), and
 - (ii) BKtoT2(P) = BK-to-REAL2(p).
- (12) Let us consider points P, Q, R of BK-model-Plane, and points P_2, Q_2, R_2 of TarskiEuclid2Space. Suppose $P_2 = BKtoT2(P)$ and $Q_2 = BKtoT2(Q)$ and $R_2 = BKtoT2(R)$. Then Q lies between P and R if and only if Q_2 lies between P_2 and R_2 . The theorem is a consequence of (11).
- (13) Let us consider elements P, Q of $\mathcal{E}^2_{\mathrm{T}}$. If $P \neq Q$, then $P(1) \neq Q(1)$ or $P(2) \neq Q(2)$.
- (14) Let us consider real numbers a, b, and elements P, Q of \mathcal{E}_{T}^{2} . If $P \neq Q$ and $(1-a) \cdot P + a \cdot Q = (1-b) \cdot P + b \cdot Q$, then a = b. The theorem is a consequence of (13).
- (15) Let us consider points P, Q of BK-model-Plane. If BKtoT2(P) = BKtoT2(Q), then P = Q. The theorem is a consequence of (11).

Let P, Q, R be points of BK-model-Plane. Assume Q lies between P and R and $P \neq R$. The functor length(P, Q, R) yielding a real number is defined by

(Def. 3) $0 \leq it \leq 1$ and $BKtoT2(Q) = (1 - it) \cdot (BKtoT2(P)) + it \cdot (BKtoT2(R)).$

Let us consider points P, Q of BK-model-Plane. Now we state the propositions:

(16) (i) P lies between P and Q, and

(ii) Q lies between P and Q.

The theorem is a consequence of (12).

- (17) If $P \neq Q$, then length(P, P, Q) = 0 and length(P, Q, Q) = 1. The theorem is a consequence of (16).
- (18) Let us consider a square matrix N over \mathbb{R}_{F} of dimension 3. Suppose $N = \langle \langle 2, 0, -1 \rangle, \langle 0, \sqrt{3}, 0 \rangle, \langle 1, 0, -2 \rangle \rangle$. Then
 - (i) Det $N = (-3) \cdot \sqrt{3}$, and
 - (ii) N is invertible.
- (19) Let us consider elements a_{11} , a_{12} , a_{13} , a_{21} , a_{22} , a_{23} , a_{31} , a_{32} , a_{33} , b_{11} , b_{12} , b_{13} , b_{21} , b_{22} , b_{23} , b_{31} , b_{32} , b_{33} , a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 , a_9 of $\mathbb{R}_{\rm F}$, and square matrices A, B over $\mathbb{R}_{\rm F}$ of dimension 3.

Suppose $A = \langle \langle a_{11}, a_{12}, a_{13} \rangle, \langle a_{21}, a_{22}, a_{23} \rangle, \langle a_{31}, a_{32}, a_{33} \rangle \rangle$ and $B = \langle \langle b_{11}, b_{12}, b_{13} \rangle, \langle b_{21}, b_{22}, b_{23} \rangle, \langle b_{31}, b_{32}, b_{33} \rangle \rangle$ and $a_1 = a_{11} \cdot b_{11} + a_{12} \cdot b_{21} + a_{13} \cdot b_{31}$ and $a_2 = a_{11} \cdot b_{12} + a_{12} \cdot b_{22} + a_{13} \cdot b_{32}$ and $a_3 = a_{11} \cdot b_{13} + a_{12} \cdot b_{23} + a_{13} \cdot b_{33}$ and $a_4 = a_{21} \cdot b_{11} + a_{22} \cdot b_{21} + a_{23} \cdot b_{31}$.

Suppose $a_5 = a_{21} \cdot b_{12} + a_{22} \cdot b_{22} + a_{23} \cdot b_{32}$ and $a_6 = a_{21} \cdot b_{13} + a_{22} \cdot b_{23} + a_{23} \cdot b_{33}$ and $a_7 = a_{31} \cdot b_{11} + a_{32} \cdot b_{21} + a_{33} \cdot b_{31}$ and $a_8 = a_{31} \cdot b_{12} + a_{32} \cdot b_{22} + a_{33} \cdot b_{32}$ and $a_9 = a_{31} \cdot b_{13} + a_{32} \cdot b_{23} + a_{33} \cdot b_{33}$.

Then $A \cdot B = \langle \langle a_1, a_2, a_3 \rangle, \langle a_4, a_5, a_6 \rangle, \langle a_7, a_8, a_9 \rangle \rangle.$

Let us consider square matrices N_1 , N_2 over \mathbb{R}_F of dimension 3. Now we state the propositions:

- (20) Suppose $N_1 = \langle \langle 2, 0, -1 \rangle, \langle 0, \sqrt{3}, 0 \rangle, \langle 1, 0, -2 \rangle \rangle$ and $N_2 = \langle \langle \frac{2}{3}, 0, -\frac{1}{3} \rangle, \langle 0, \frac{1}{\sqrt{3}}, 0 \rangle, \langle \frac{1}{3}, 0, -\frac{2}{3} \rangle \rangle$. Then $N_1 \cdot N_2 = \langle \langle 1, 0, 0 \rangle, \langle 0, 1, 0 \rangle, \langle 0, 0, 1 \rangle \rangle$. The theorem is a consequence of (19).
- (21) Suppose $N_2 = \langle \langle 2, 0, -1 \rangle, \langle 0, \sqrt{3}, 0 \rangle, \langle 1, 0, -2 \rangle \rangle$ and $N_1 = \langle \langle \frac{2}{3}, 0, -\frac{1}{3} \rangle, \langle 0, \frac{1}{\sqrt{3}}, 0 \rangle, \langle \frac{1}{3}, 0, -\frac{2}{3} \rangle \rangle$. Then $N_1 \cdot N_2 = \langle \langle 1, 0, 0 \rangle, \langle 0, 1, 0 \rangle, \langle 0, 0, 1 \rangle \rangle$. The theorem is a consequence of (19).
- (22) Suppose $N_1 = \langle \langle 2, 0, -1 \rangle, \langle 0, \sqrt{3}, 0 \rangle, \langle 1, 0, -2 \rangle \rangle$ and $N_2 = \langle \langle \frac{2}{3}, 0, -\frac{1}{3} \rangle, \langle 0, \frac{1}{\sqrt{3}}, 0 \rangle, \langle \frac{1}{3}, 0, -\frac{2}{3} \rangle \rangle$. Then N_1 is inverse of N_2 . The theorem is a consequence of (20) and (21).

Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3. Now we state the propositions:

- (23) Suppose $N = \langle \langle \frac{2}{3}, 0, -\frac{1}{3} \rangle, \langle 0, \frac{1}{\sqrt{3}}, 0 \rangle, \langle \frac{1}{3}, 0, -\frac{2}{3} \rangle \rangle$. Then (the homography of N)°(the absolute) \subseteq the absolute. PROOF: (The homography of N)°(the absolute) \subseteq the absolute by [7, (89)], [9, (7)]. \Box
- (24) Suppose $N = \langle \langle 2, 0, -1 \rangle, \langle 0, \sqrt{3}, 0 \rangle, \langle 1, 0, -2 \rangle \rangle$. Then (the homography of N)°(the absolute) = the absolute. PROOF: (The homography of N)°(the absolute) \subseteq the absolute. The absolute \subseteq (the homography of N)°(the absolute) by [6, (19)], (22), (23). \Box
- (25) Let us consider real numbers a, b, r, and elements P, Q, R of \mathcal{E}_{T}^{2} . Suppose $Q \in \mathcal{L}(P, R)$ and $P, R \in$ the inside of circle(a, b, r). Then $Q \in$ the inside of circle(a, b, r).
- (26) Let us consider non zero elements u, v of $\mathcal{E}_{\mathrm{T}}^3$. Suppose the direction of u = the direction of v and $u(3) \neq 0$ and u(3) = v(3). Then u = v.
- (27) Let us consider an element R of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, elements P, Q of the BK-model, non zero elements u, v, w of $\mathcal{E}_{\mathrm{T}}^{3}$, and a real number r. Suppose $0 \leq r \leq 1$ and P = the direction of u and Q = the direction of v and R = the direction of w and u(3) = 1 and v(3) = 1 and $w = r \cdot u + (1 r) \cdot v$. Then R is an element of the BK-model.

PROOF: Consider u_2 being a non zero element of \mathcal{E}_T^3 such that the direction of $u_2 = P$ and $u_2(3) = 1$ and BK-to-REAL2 $(P) = [u_2(1), u_2(2)]$. $u = u_2$. Reconsider $r_4 = [u_2(1), u_2(2)]$ as an element of \mathcal{E}_T^2 . Consider v_2 being a non zero element of \mathcal{E}_T^3 such that the direction of $v_2 = Q$ and $v_2(3) = 1$ and BK-to-REAL2 $(Q) = [v_2(1), v_2(2)]$. $v = v_2$. Reconsider $r_6 = [v_2(1), v_2(2)]$ as an element of \mathcal{E}_T^2 . Reconsider $r_8 = [w(1), w(2)]$ as an element of \mathcal{E}_T^2 . $r_8 = r \cdot r_4 + (1 - r) \cdot r_6$. Consider R_3 being an element of \mathcal{E}_T^2 such that $R_3 = r_8$ and REAL2-to-BK (r_8) = the direction of $[(R_3)_1, (R_3)_2, 1]$. \Box

- (28) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3, elements n_{11} , n_{12} , n_{13} , n_{21} , n_{22} , n_{23} , n_{31} , n_{32} , n_{33} of \mathbb{R}_{F} , points P, Q of the projective space over $\mathcal{E}_{\mathrm{T}}^3$, and non zero elements u, v of $\mathcal{E}_{\mathrm{T}}^3$. Suppose $N = \langle \langle n_{11}, n_{12}, n_{13} \rangle, \langle n_{21}, n_{22}, n_{23} \rangle, \langle n_{31}, n_{32}, n_{33} \rangle \rangle$ and P = the direction of u and Q = the direction of v and Q = (the homography of N)(P) and u(3) = 1. Then there exists a non zero real number a such that
 - (i) $v(1) = a \cdot (n_{11} \cdot u(1) + n_{12} \cdot u(2) + n_{13})$, and
 - (ii) $v(2) = a \cdot (n_{21} \cdot u(1) + n_{22} \cdot u(2) + n_{23})$, and
 - (iii) $v(3) = a \cdot (n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33}).$
- (29) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3, elements n_{11} , n_{12} , n_{13} , n_{21} , n_{22} , n_{23} , n_{31} , n_{32} , n_{33} of \mathbb{R}_{F} , an element

P of the BK-model, a point *Q* of the projective space over $\mathcal{E}_{\mathrm{T}}^3$, and non zero elements u, v of $\mathcal{E}_{\mathrm{T}}^3$. Suppose $N = \langle \langle n_{11}, n_{12}, n_{13} \rangle, \langle n_{21}, n_{22}, n_{23} \rangle, \langle n_{31}, n_{32}, n_{33} \rangle \rangle$ and P = the direction of u and Q = the direction of v and Q = (the homography of N)(*P*) and u(3) = 1 and v(3) = 1. Then

(i)
$$n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33} \neq 0$$
, and

(ii)
$$v(1) = \frac{n_{11} \cdot u(1) + n_{12} \cdot u(2) + n_{13}}{n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33}}$$
, and

(iii)
$$u(2) - \frac{n_{21} \cdot u(1) + n_{22} \cdot u(2) + n_{23}}{n_{23}}$$

$$(11) \quad v(2) = n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33}.$$

The theorem is a consequence of (28).

- (30) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3, an element h of the subgroup of K-isometries, elements n_{11} , n_{12} , n_{13} , n_{21} , n_{22} , n_{23} , n_{31} , n_{32} , n_{33} of \mathbb{R}_{F} , an element P of the BK-model, and a non zero element u of $\mathcal{E}_{\mathrm{T}}^3$. Suppose h = the homography of N and $N = \langle \langle n_{11}, n_{12}, n_{13} \rangle, \langle n_{21}, n_{22}, n_{23} \rangle, \langle n_{31}, n_{32}, n_{33} \rangle \rangle$ and P = the direction of u and u(3) = 1. Then $n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33} \neq 0$. The theorem is a consequence of (29).
- (31) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3, elements n_{11} , n_{12} , n_{13} , n_{21} , n_{22} , n_{23} , n_{31} , n_{32} , n_{33} of \mathbb{R}_{F} , an element P of the absolute, a point Q of the projective space over $\mathcal{E}_{\mathrm{T}}^3$, and non zero elements u, v of $\mathcal{E}_{\mathrm{T}}^3$. Suppose $N = \langle \langle n_{11}, n_{12}, n_{13} \rangle, \langle n_{21}, n_{22}, n_{23} \rangle, \langle n_{31}, n_{32}, n_{33} \rangle \rangle$ and P = the direction of u and Q = the direction of v and Q = (the homography of N)(P) and u(3) = 1 and v(3) = 1. Then

(i)
$$n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33} \neq 0$$
, and

(ii)
$$v(1) = \frac{n_{11} \cdot u(1) + n_{12} \cdot u(2) + n_{13}}{n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33}}$$
, and

(iii)
$$v(2) = \frac{n_{21} \cdot u(1) + n_{22} \cdot u(2) + n_{23}}{n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33}}.$$

The theorem is a consequence of (28).

- (32) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3, an element h of the subgroup of K-isometries, elements n_{11} , n_{12} , n_{13} , n_{21} , n_{22} , n_{23} , n_{31} , n_{32} , n_{33} of \mathbb{R}_{F} , an element P of the absolute, and a non zero element u of $\mathcal{E}_{\mathrm{T}}^3$. Suppose h = the homography of N and $N = \langle \langle n_{11}, n_{12}, n_{13} \rangle, \langle n_{21}, n_{22}, n_{23} \rangle, \langle n_{31}, n_{32}, n_{33} \rangle \rangle$ and P = the direction of u and u(3) = 1. Then $n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33} \neq 0$. The theorem is a consequence of (31).
- (33) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3, an element h of the subgroup of K-isometries, elements n_{11} , n_{12} , n_{13} , n_{21} , n_{22} , n_{23} , n_{31} , n_{32} , n_{33} of \mathbb{R}_{F} , an element P of the BK-model, and a non zero element u of $\mathcal{E}_{\mathrm{T}}^3$. Suppose h = the homography of N and $N = \langle \langle n_{11}, n_{12}, n_{13} \rangle, \langle n_{21}, n_{22}, n_{23} \rangle, \langle n_{31}, n_{32}, n_{33} \rangle \rangle$ and P = the direction

of u and u(3) = 1. Then (the homography of N)(P) = the direction of $\left[\frac{n_{11} \cdot u(1) + n_{12} \cdot u(2) + n_{13}}{n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33}}, \frac{n_{21} \cdot u(1) + n_{22} \cdot u(2) + n_{23}}{n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33}}, 1\right]$. The theorem is a consequence of (29).

- (34) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3, an element h of the subgroup of K-isometries, elements n_{11} , n_{12} , n_{13} , n_{21} , n_{22} , n_{23} , n_{31} , n_{32} , n_{33} of \mathbb{R}_{F} , an element P of the absolute, and a non zero element u of $\mathcal{E}_{\mathrm{T}}^3$. Suppose h = the homography of N and $N = \langle \langle n_{11}, n_{12}, n_{13} \rangle, \langle n_{21}, n_{22}, n_{23} \rangle, \langle n_{31}, n_{32}, n_{33} \rangle \rangle$ and P = the direction of u and u(3) = 1. Then (the homography of N)(P) = the direction of $[\frac{n_{11} \cdot u(1) + n_{12} \cdot u(2) + n_{13}}{n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33}}, \frac{n_{21} \cdot u(1) + n_{32} \cdot u(2) + n_{33}}{n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33}}, 1]$. The theorem is a consequence of (31).
- (35) Let us consider a subset A of \mathcal{E}_{T}^{3} , a convex, non empty subset B of \mathcal{E}_{T}^{2} , a real number r, and an element x of \mathcal{E}_{T}^{3} . Suppose $A = \{x, \text{ where } x \text{ is an element of } \mathcal{E}_{T}^{3} : [(x)_{1}, (x)_{2}] \in B \text{ and } (x)_{3} = r\}$. Then A is non empty and convex.
- (36) Let us consider elements n_1 , n_2 , n_3 of \mathbb{R}_F , and elements n, u of \mathcal{E}_T^3 . Suppose $n = \langle n_1, n_2, n_3 \rangle$ and u(3) = 1. Then $|(n, u)| = n_1 \cdot u(1) + n_2 \cdot u(2) + n_3$.
- (37) Let us consider a convex, non empty subset A of $\mathcal{E}_{\mathrm{T}}^{3}$, and elements n, u, v of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose for every element w of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $w \in A$ holds $|(n,w)| \neq 0$ and $u, v \in A$. Then $0 < |(n,u)| \cdot |(n,v)|$. PROOF: Set x = |(n,u)|. Set y = |(n,v)|. Reconsider $l = \frac{x}{x-y}$ as a non zero real number. Reconsider $w = l \cdot v + (1-l) \cdot u$ as an element of $\mathcal{E}_{\mathrm{T}}^{3}$. $x \neq y$. $1 - l = -\frac{y}{x-y}$. |(n,w)| = 0. \Box

Let us consider elements n_{31} , n_{32} , n_{33} of \mathbb{R}_{F} and elements u, v of $\mathcal{E}_{\mathrm{T}}^2$. Now we state the propositions:

- (38) Suppose $u, v \in$ the inside of circle(0,0,1) and for every element w of $\mathcal{E}_{\mathrm{T}}^2$ such that $w \in$ the inside of circle(0,0,1) holds $n_{31} \cdot w(1) + n_{32} \cdot w(2) + n_{33} \neq 0$. Then $0 < (n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33}) \cdot (n_{31} \cdot v(1) + n_{32} \cdot v(2) + n_{33})$. The theorem is a consequence of (35), (36), and (37).
- (39) Suppose $u \in$ the inside of circle(0,0,1) and $v \in$ circle(0,0,1) and for every element w of $\mathcal{E}_{\mathrm{T}}^2$ such that $w \in$ the closed inside of circle(0,0,1) holds $n_{31} \cdot w(1) + n_{32} \cdot w(2) + n_{33} \neq 0$. Then $0 < (n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33}) \cdot (n_{31} \cdot v(1) + n_{32} \cdot v(2) + n_{33})$. The theorem is a consequence of (35), (36), and (37).
- (40) Let us consider real numbers l, r, elements u, v, w of $\mathcal{E}_{\mathrm{T}}^{3}$, and real numbers $n_{11}, n_{12}, n_{13}, n_{21}, n_{22}, n_{23}, n_{31}, n_{32}, n_{33}, m_1, m_2, m_3, m_4, m_5, m_6, m_7, m_8, m_9.$

Suppose $m_3 \neq 0$ and $m_6 \neq 0$ and $m_9 \neq 0$ and $r = \frac{l \cdot m_6}{(1-l) \cdot m_3 + l \cdot m_6}$ and $(1-l) \cdot m_3 + l \cdot m_6 \neq 0$ and $w = (1-l) \cdot u + l \cdot v$ and $m_1 = n_{11} \cdot u(1) + n_{12} \cdot u(2) + n_{13}$ and $m_2 = n_{21} \cdot u(1) + n_{22} \cdot u(2) + n_{23}$ and $m_3 = n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33}$ and $m_4 = n_{11} \cdot v(1) + n_{12} \cdot v(2) + n_{13}$.

Suppose $m_5 = n_{21} \cdot v(1) + n_{22} \cdot v(2) + n_{23}$ and $m_6 = n_{31} \cdot v(1) + n_{32} \cdot v(2) + n_{33}$ and $m_7 = n_{11} \cdot w(1) + n_{12} \cdot w(2) + n_{13}$ and $m_8 = n_{21} \cdot w(1) + n_{22} \cdot w(2) + n_{23}$ and $m_9 = n_{31} \cdot w(1) + n_{32} \cdot w(2) + n_{33}$.

Then $(1-r) \cdot [\frac{m_1}{m_3}, \frac{m_2}{m_3}, 1] + r \cdot [\frac{m_4}{m_6}, \frac{m_5}{m_6}, 1] = [\frac{m_7}{m_9}, \frac{m_8}{m_9}, 1]$. The theorem is a consequence of (4) and (5).

- (41) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3, an element h of the subgroup of K-isometries, elements n_{11} , n_{12} , n_{13} , n_{21} , n_{22} , n_{23} , n_{31} , n_{32} , n_{33} of \mathbb{R}_{F} , and an element P of the BK-model. Suppose h = the homography of N and $N = \langle \langle n_{11}, n_{12}, n_{13} \rangle, \langle n_{21}, n_{22}, n_{23} \rangle, \langle n_{31}, n_{32}, n_{33} \rangle \rangle$. Then (the homography of N)(P) = the direction of $[\frac{n_{11} \cdot (\mathrm{BK-to-REAL2}(P))_1 + n_{12} \cdot (\mathrm{BK-to-REAL2}(P))_2 + n_{13}}{n_{31} \cdot (\mathrm{BK-to-REAL2}(P))_1 + n_{32} \cdot (\mathrm{BK-to-REAL2}(P))_2 + n_{33}}, \frac{n_{21} \cdot (\mathrm{BK-to-REAL2}(P))_1 + n_{32} \cdot (\mathrm{BK-to-REAL2}(P))_2 + n_{33}}{n_{31} \cdot (\mathrm{BK-to-REAL2}(P))_1 + n_{32} \cdot (\mathrm{BK-to-REAL2}(P))_2 + n_{33}}, 1].$ The theorem is a consequence of (33).
- (42) Let us consider an element h of the subgroup of K-isometries, an invertible square matrix N over \mathbb{R}_{F} of dimension 3, elements n_{11} , n_{12} , n_{13} , n_{21} , n_{22} , n_{23} , n_{31} , n_{32} , n_{33} of \mathbb{R}_{F} , and an element u_2 of $\mathcal{E}_{\mathrm{T}}^2$. Suppose h = the homography of N and $N = \langle \langle n_{11}, n_{12}, n_{13} \rangle, \langle n_{21}, n_{22}, n_{23} \rangle, \langle n_{31}, n_{32}, n_{33} \rangle \rangle$ and $u_2 \in$ the inside of circle(0,0,1). Then $n_{31} \cdot u_2(1) + n_{32} \cdot u_2(2) + n_{33} \neq 0$. The theorem is a consequence of (30).
- (43) Let us consider a positive real number r, and an element u of $\mathcal{E}_{\mathrm{T}}^2$. If $u \in \operatorname{circle}(0,0,r)$, then u is not zero.
- (44) Let us consider an element h of the subgroup of K-isometries, an invertible square matrix N over \mathbb{R}_{F} of dimension 3, elements n_{11} , n_{12} , n_{13} , n_{21} , n_{22} , n_{23} , n_{31} , n_{32} , n_{33} of \mathbb{R}_{F} , and an element u_2 of $\mathcal{E}_{\mathrm{T}}^2$. Suppose h = the homography of N and $N = \langle \langle n_{11}, n_{12}, n_{13} \rangle, \langle n_{21}, n_{22}, n_{23} \rangle, \langle n_{31}, n_{32}, n_{33} \rangle \rangle$ and $u_2 \in$ the closed inside of circle(0,0,1). Then $n_{31} \cdot u_2(1) + n_{32} \cdot u_2(2) + n_{33} \neq 0$. The theorem is a consequence of (30), (43), and (32).
- (45) Let us consider real numbers a, b, c, d, e, f, r. Suppose $(1 r) \cdot [a, b, 1] + r \cdot [c, d, 1] = [e, f, 1]$. Then $(1 r) \cdot [a, b] + r \cdot [c, d] = [e, f]$.
- (46) Let us consider points P, Q, R, P', Q', R' of BK-model-Plane, elements p, q, r, p', q', r' of the BK-model, an element h of the subgroup of K-isometries, and an invertible square matrix N over R_F of dimension 3. Suppose h = the homography of N and Q lies between P and R and P = p and Q = q and R = r and p' = (the homography of N)(p) and q' = (the homography of N)(q) and r' = (the homography of N)(r) and

P' = p' and Q' = q' and R' = r'. Then Q' lies between P' and R'. PROOF: Consider n_{11} , n_{12} , n_{13} , n_{21} , n_{22} , n_{23} , n_{31} , n_{32} , n_{33} being elements of \mathbb{R}_{F} such that $N = \langle \langle n_{11}, n_{12}, n_{13} \rangle, \langle n_{21}, n_{22}, n_{23} \rangle, \langle n_{31}, n_{32}, n_{33} \rangle \rangle$. Consider u being a non zero element of $\mathcal{E}_{\mathrm{T}}^3$ such that the direction of u = p and u(3) = 1 and BK-to-REAL2(p) = [u(1), u(2)]. Consider v being a non zero element of $\mathcal{E}_{\mathrm{T}}^3$ such that the direction of v = r and v(3) = 1 and BK-to-REAL2(r) = [v(1), v(2)]. Consider w being a non zero element of $\mathcal{E}_{\mathrm{T}}^3$ such that the direction of v = q and w(3) = 1 and BK-to-REAL2(r) = [v(1), v(2)].

Reconsider $m_1 = n_{11} \cdot u(1) + n_{12} \cdot u(2) + n_{13}, m_2 = n_{21} \cdot u(1) + n_{22} \cdot u(2) + n_{23}, m_3 = n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33}, m_4 = n_{11} \cdot v(1) + n_{12} \cdot v(2) + n_{13}, m_5 = n_{21} \cdot v(1) + n_{22} \cdot v(2) + n_{23}, m_6 = n_{31} \cdot v(1) + n_{32} \cdot v(2) + n_{33}, m_7 = n_{11} \cdot w(1) + n_{12} \cdot w(2) + n_{13}, m_8 = n_{21} \cdot w(1) + n_{22} \cdot w(2) + n_{23}, m_9 = n_{31} \cdot w(1) + n_{32} \cdot w(2) + n_{33}$ as a real number. BKtoT2(P) = BK-to-REAL2(p) and BKtoT2(P) = BK-to-REAL2(p) and BKtoT2(Q) = BK-to-REAL2(q) and BKtoT2(Q) = BK-to-REAL2(q) and BKtoT2(Q) = BK-to-REAL2(q) and BKtoT2(R) = BK-to-REAL2(r) and BKtoT2(R) = BK-to-REAL2(r). Consider l being a real number such that 0 ≤ l ≤ 1 and BKtoT2(Q) = (1 - l) \cdot (BKtoT2(P)) + l \cdot (BKtoT2(R)). Set r = \frac{l \cdot m_6}{(1 - l) \cdot m_3 + l \cdot m_6} \cdot (1 - r) \cdot [\frac{m_1}{m_3}, \frac{m_2}{m_3}, 1] + r \cdot [\frac{m_4}{m_6}, \frac{m_5}{m_6}, 1] = [\frac{m_7}{m_9}, \frac{m_8}{m_9}, 1]. 0 ≤ r ≤ 1. BKtoT2(P') = BK-to-REAL2(p') and BKtoT2(P') = BK-to-REAL2(p') and BKtoT2(Q') = BK-to-REAL

Let P be a point of the projective space over $\mathcal{E}^3_{\mathrm{T}}$. We say that P is point at ∞ if and only if

(Def. 4) there exists a non zero element u of $\mathcal{E}^3_{\mathrm{T}}$ such that P = the direction of u and $(u)_{\mathbf{3}} = 0$.

Now we state the proposition:

(47) Let us consider a point P of the projective space over $\mathcal{E}_{\mathrm{T}}^3$. Suppose there exists a non zero element u of $\mathcal{E}_{\mathrm{T}}^3$ such that P = the direction of u and $(u)_3 \neq 0$. Then P is not point at ∞ .

Note that there exists a point of the projective space over \mathcal{E}_T^3 which is point at ∞ and there exists a point of the projective space over \mathcal{E}_T^3 which is non point at ∞ .

Let P be a non point at ∞ point of the projective space over $\mathcal{E}_{\mathrm{T}}^3$. The functor RP3toREAL2(P) yielding an element of \mathcal{R}^2 is defined by

(Def. 5) there exists a non zero element u of $\mathcal{E}_{\mathrm{T}}^3$ such that P = the direction of u and $(u)_{\mathbf{3}} = 1$ and $it = [(u)_{\mathbf{1}}, (u)_{\mathbf{2}}]$.

The functor $\operatorname{RP3toT2}(P)$ yielding a point of TarskiEuclid2Space is defined by the term

(Def. 6) RP3toREAL2(P).

Now we state the propositions:

(48) Let us consider non point at ∞ elements P, Q, R, P', Q', R' of the projective space over $\mathcal{E}_{\mathrm{T}}^3$, an element h of the subgroup of K-isometries, and an invertible square matrix N over \mathbb{R}_{F} of dimension 3.

Suppose h = the homography of N and $P, Q \in$ the BK-model and $R \in$ the absolute and P' = (the homography of N)(P) and Q' = (the homography of N)(Q) and R' = (the homography of N)(R) and RP3toT2(Q) lies between RP3toT2(P) and RP3toT2(R).

Then RP3toT2(Q') lies between RP3toT2(P') and RP3toT2(R'). PROOF: Consider n_{11} , n_{12} , n_{13} , n_{21} , n_{22} , n_{23} , n_{31} , n_{32} , n_{33} being elements of $\mathbb{R}_{\rm F}$ such that $N = \langle \langle n_{11}, n_{12}, n_{13} \rangle, \langle n_{21}, n_{22}, n_{23} \rangle, \langle n_{31}, n_{32}, n_{33} \rangle \rangle$. Consider u being a non zero element of $\mathcal{E}_{\rm T}^3$ such that P = the direction of u and $(u)_3 = 1$ and RP3toREAL2(P) = $[(u)_1, (u)_2]$. Consider v being a non zero element of $\mathcal{E}_{\rm T}^3$ such that R = the direction of v and $(v)_3 = 1$ and RP3toREAL2(R) = $[(v)_1, (v)_2]$. Consider w being a non zero element of $\mathcal{E}_{\rm T}^3$ such that Q = the direction of w and $(w)_3 = 1$ and RP3toREAL2(Q) = $[(w)_1, (w)_2]$.

Reconsider $m_1 = n_{11} \cdot u(1) + n_{12} \cdot u(2) + n_{13}, m_2 = n_{21} \cdot u(1) + n_{22} \cdot u(2) + n_{23}, m_3 = n_{31} \cdot u(1) + n_{32} \cdot u(2) + n_{33}, m_4 = n_{11} \cdot v(1) + n_{12} \cdot v(2) + n_{13}, m_5 = n_{21} \cdot v(1) + n_{22} \cdot v(2) + n_{23}, m_6 = n_{31} \cdot v(1) + n_{32} \cdot v(2) + n_{33}, m_7 = n_{11} \cdot w(1) + n_{12} \cdot w(2) + n_{13}, m_8 = n_{21} \cdot w(1) + n_{22} \cdot w(2) + n_{23}, m_9 = n_{31} \cdot w(1) + n_{32} \cdot w(2) + n_{33}$ as a real number.

Consider *l* being a real number such that $0 \le l \le 1$ and RP3toT2(*Q*) = $(1-l) \cdot (\text{RP3toT2}(P)) + l \cdot (\text{RP3toT2}(R))$. Set $r = \frac{l \cdot m_6}{(1-l) \cdot m_3 + l \cdot m_6} \cdot (1-r) \cdot [\frac{m_1}{m_3}, \frac{m_2}{m_3}, 1] + r \cdot [\frac{m_4}{m_6}, \frac{m_5}{m_6}, 1] = [\frac{m_7}{m_9}, \frac{m_8}{m_9}, 1]$. $0 \le r \le 1$. \Box

- (49) Let us consider real numbers a, b, c, and elements u, v, w of $\mathcal{E}_{\mathrm{T}}^3$. Suppose $a \neq 0$ and a + b + c = 0 and $a \cdot u + b \cdot v + c \cdot w = 0_{\mathcal{E}_{\mathrm{T}}^3}$. Then $u \in \mathrm{Line}(v, w)$.
- (50) Let us consider non point at ∞ points P, Q, R of the projective space over $\mathcal{E}_{\mathrm{T}}^3$, and non zero elements u, v, w of $\mathcal{E}_{\mathrm{T}}^3$. Suppose P = the direction of u and Q = the direction of v and R = the direction of w and $(u)_3 = 1$ and $(v)_3 = 1$ and $(w)_3 = 1$. Then P, Q and R are collinear if and only if u, v and w are collinear. The theorem is a consequence of (49).
- (51) Let us consider elements u, v, w of $\mathcal{E}^3_{\mathrm{T}}$. Suppose $u \in \mathcal{L}(v, w)$. Then $[(u)_1, (u)_2] \in \mathcal{L}([(v)_1, (v)_2], [(w)_1, (w)_2])$.
- (52) Let us consider elements u, v, w of \mathcal{E}_{T}^{2} . Suppose $u \in \mathcal{L}(v, w)$. Then $[(u)_{1}, (u)_{2}, 1] \in \mathcal{L}([(v)_{1}, (v)_{2}, 1], [(w)_{1}, (w)_{2}, 1]).$

PROOF: Consider r being a real number such that $0 \leq r$ and $r \leq 1$ and $u = (1 - r) \cdot v + r \cdot w$. Reconsider $u' = [(u)_1, (u)_2, 1], v' = [(v)_1, (v)_2, 1], w' = [(w)_1, (w)_2, 1]$ as an element of $\mathcal{E}_{\mathrm{T}}^3$. $u' = (1 - r) \cdot v' + r \cdot w'$. \Box

- (53) Let us consider non point at ∞ points P, Q, R of the projective space over $\mathcal{E}_{\mathrm{T}}^3$. Then P, Q and R are collinear if and only if RP3toT2(P), RP3toT2(Q) and RP3toT2(R) are collinear. The theorem is a consequence of (50), (51), and (52).
- (54) Let us consider elements u, v, w of \mathcal{E}_{T}^{2} . Suppose u, v and w are collinear. Then $[(u)_{1}, (u)_{2}, 1], [(v)_{1}, (v)_{2}, 1]$ and $[(w)_{1}, (w)_{2}, 1]$ are collinear. The theorem is a consequence of (52).
- (55) Let us consider non point at ∞ elements P, Q, P_1 of the projective space over $\mathcal{E}_{\mathrm{T}}^3$. Suppose P, $Q \in$ the BK-model and $P_1 \in$ the absolute. Then RP3toT2(P_1) does not lie between RP3toT2(Q) and RP3toT2(P). The theorem is a consequence of (52) and (27).

The functor Dir001 yielding a non point at ∞ element of the projective space over \mathcal{E}_T^3 is defined by the term

(Def. 7) the direction of [0, 0, 1].

The functor Dir101 yielding a non point at ∞ element of the projective space over \mathcal{E}_T^3 is defined by the term

(Def. 8) the direction of [1, 0, 1].

Now we state the propositions:

- (56) Let us consider non point at ∞ elements P, Q of the projective space over $\frac{\mathcal{E}_{\mathrm{T}}^{3}}{\mathrm{RP3toT2}(\mathrm{Dir001}) \mathrm{RP3toT2}(Q)} \cong \frac{\mathrm{RP3toT2}(\mathrm{Dir001}) \mathrm{RP3toT2}(P)}{\mathrm{RP3toT2}(\mathrm{Dir001}) \mathrm{RP3toT2}(Q)}$.
- (57) Let us consider non point at ∞ elements P, Q, R of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, and non zero elements u, v, w of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $P, Q \in$ the absolute and $P \neq Q$ and P = the direction of u and Q = the direction of v and R = the direction of w and $(u)_{3} = 1$ and $(v)_{3} = 1$ and $w = \left[\frac{(u)_{1}+(v)_{1}}{2}, \frac{(u)_{2}+(v)_{2}}{2}, 1\right]$. Then $R \in$ the BK-model.

PROOF: Reconsider u' = [u(1), u(2)], v' = [v(1), v(2)] as an element of $\mathcal{E}_{\mathrm{T}}^2$. $u' \neq v'$. Reconsider $r_8 = [(w)_1, (w)_2]$ as an element of the inside of circle(0,0,1). Consider R_3 being an element of $\mathcal{E}_{\mathrm{T}}^2$ such that $R_3 = r_8$ and REAL2-to-BK(r_8) = the direction of $[(R_3)_1, (R_3)_2, 1]$. \Box

- (58) Let us consider points R_1 , R_2 of TarskiEuclid2Space. Suppose \hat{R}_1 , $\hat{R}_2 \in \text{circle}(0,0,1)$ and $R_1 \neq R_2$. Then there exists an element P of BK-model-Plane such that BKtoT2(P) lies between R_1 and R_2 . The theorem is a consequence of (47), (57), and (26).
- (59) Let us consider non point at ∞ elements P, Q of the projective space

over \mathcal{E}_{T}^{3} . If RP3toT2(P) = RP3toT2(Q), then P = Q.

- (60) Let us consider non point at ∞ elements R_1 , R_2 of the projective space over $\mathcal{E}^3_{\mathrm{T}}$. Suppose R_1 , $R_2 \in$ the absolute and $R_1 \neq R_2$. Then there exists an element P of BK-model-Plane such that $\mathrm{BKtoT2}(P)$ lies between $\mathrm{RP3toT2}(R_1)$ and $\mathrm{RP3toT2}(R_2)$. The theorem is a consequence of (59) and (58).
- (61) Let us consider points P, Q, R of TarskiEuclid2Space. Suppose Q lies between P and R and $\hat{P}, \hat{R} \in$ the inside of circle(0,0,1). Then $\hat{Q} \in$ the inside of circle(0,0,1).

Let us consider a non point at ∞ element P of the projective space over \mathcal{E}_{T}^{3} .

- (62) If $P \in$ the absolute, then RP3toREAL2(P) \in circle(0, 0, 1).
- (63) If $P \in$ the BK-model, then RP3toREAL2(P) \in the inside of circle(0,0,1). The theorem is a consequence of (26).
- (64) Let us consider a non point at ∞ point P of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, and an element Q of the BK-model. If P = Q, then RP3toREAL2(P) =BK-to-REAL2(Q). The theorem is a consequence of (26).
- (65) Let us consider non point at ∞ elements P, Q, R_1 , R_2 of the projective space over $\mathcal{E}^3_{\mathrm{T}}$. Suppose $P \neq Q$ and $P \in$ the BK-model and R_1 , $R_2 \in$ the absolute and RP3toT2(Q) lies between RP3toT2(P) and RP3toT2(R_2). Then $R_1 = R_2$. The theorem is a consequence of (60), (59), (62), (64), (8), and (61).
- (66) Let us consider non point at ∞ elements P, Q, P_1, P_2 of the projective space over \mathcal{E}_T^3 . Suppose $P \neq Q$ and $P, Q \in$ the BK-model and $P_1, P_2 \in$ the absolute and $P_1 \neq P_2$ and P, Q and P_1 are collinear and P, Q and P_2 are collinear. Then
 - (i) RP3toT2(P) lies between RP3toT2(Q) and RP3toT2(P₁), or
 - (ii) RP3toT2(P) lies between RP3toT2(Q) and RP3toT2(P_2).

The theorem is a consequence of (55), (53), and (65).

Let us consider elements $P,\,Q$ of the BK-model. Now we state the propositions:

- (67) Suppose $P \neq Q$. Then there exists an element R of the absolute such that for every non point at ∞ elements p, q, r of the projective space over $\mathcal{E}^3_{\mathrm{T}}$ such that p = P and q = Q and r = R holds RP3toT2(p) lies between RP3toT2(q) and RP3toT2(r). The theorem is a consequence of (47) and (66).
- (68) Suppose $P \neq Q$. Then there exists an element R of the absolute such that for every non point at ∞ elements p, q, r of the projective space over

 $\mathcal{E}_{\mathrm{T}}^3$ such that p = P and q = Q and r = R holds RP3toT2(q) lies between RP3toT2(p) and RP3toT2(r). The theorem is a consequence of (67).

- (69) The direction of [1, 0, 1] is an element of the absolute.
- (70) Let us consider points a, b of BK-model-Plane. Then $\overline{aa} \cong \overline{bb}$. The theorem is a consequence of (69).
- (71) Every element of the BK-model is a non point at ∞ element of the projective space over \mathcal{E}_{T}^{3} . The theorem is a consequence of (47).
- (72) Every element of the absolute is a non point at ∞ element of the projective space over \mathcal{E}_{T}^{3} . The theorem is a consequence of (47).
- (73) Let us consider an element P of the BK-model, and a non point at ∞ element P' of the projective space over $\mathcal{E}^3_{\mathrm{T}}$. If P = P', then RP3toREAL2(P') = BK-to-REAL2(P). The theorem is a consequence of (26).
- (74) Let us consider points a, q, b, c of BK-model-Plane. Then there exists a point x of BK-model-Plane such that
 - (i) a lies between q and x, and
 - (ii) $\overline{ax} \cong \overline{bc}$.

The theorem is a consequence of (71), (68), (72), (12), (70), (48), and (73).

- (75) Let us consider points P, Q of BK-model-Plane. If BKtoT2(P) = BKtoT2(Q), then P = Q.
- (76) Let us consider real numbers a, b, r, and elements P, Q, R of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $P, R \in$ the inside of circle(a,b,r). Then $\mathcal{L}(P,R) \subseteq$ the inside of circle(a,b,r).

2. The Axiom of Segment Construction

Now we state the proposition:

(77) BK-model-Plane satisfies the axiom of segment construction.

3. The Axiom of Betweenness Identity

Now we state the proposition:

(78) BK-model-Plane satisfies the axiom of betweenness identity. The theorem is a consequence of (12) and (75).

4. The Axiom of Pasch

Now we state the proposition:

(79) BK-model-Plane satisfies the axiom of Pasch. The theorem is a consequence of (12), (8), (25), and (10).

References

- Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Eugenio Beltrami. Saggio di interpetrazione della geometria non-euclidea. Giornale di Matematiche, 6:284–322, 1868.
- [3] Eugenio Beltrami. Essai d'interprétation de la géométrie non-euclidéenne. In Annales scientifiques de l'École Normale Supérieure. Trad. par J. Hoüel, volume 6, pages 251– 288. Elsevier, 1869.
- [4] Karol Borsuk and Wanda Szmielew. Foundations of Geometry. North Holland, 1960.
- [5] Karol Borsuk and Wanda Szmielew. Podstawy geometrii. Państwowe Wydawnictwo Naukowe, Warszawa, 1955 (in Polish).
- [6] Roland Coghetto. Homography in ℝP². Formalized Mathematics, 24(4):239–251, 2016. doi:10.1515/forma-2016-0020.
- [7] Roland Coghetto. Klein-Beltrami model. Part I. Formalized Mathematics, 26(1):21–32, 2018. doi:10.2478/forma-2018-0003.
- [8] Roland Coghetto. Klein-Beltrami model. Part III. Formalized Mathematics, 28(1):1–7, 2020. doi:10.2478/forma-2020-0001.
- Kanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space. *Formalized Mathematics*, 11(4):381–383, 2003.
- [10] Timothy James McKenzie Makarios. A mechanical verification of the independence of Tarski's Euclidean Axiom. Victoria University of Wellington, New Zealand, 2012. Master's thesis.
- William Richter, Adam Grabowski, and Jesse Alama. Tarski geometry axioms. Formalized Mathematics, 22(2):167–176, 2014. doi:10.2478/forma-2014-0017.

Accepted December 30, 2019