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Elementary Number Theory Problems.
Part I

Adam Naumowicz
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Summary. In this paper we demonstrate the feasibility of formalizing re-
creational mathematics in Mizar ([1], [2]) drawing examples from W. Sierpinski’s
book “250 Problems in Elementary Number Theory” [4]. The current work con-
tains proofs of initial ten problems from the chapter devoted to the divisibility
of numbers. Included are problems on several levels of difficulty.
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1. Problem 1

One can verify that there exists an integer which is positive.
Now we state the propositions:

(1) Let us consider a positive integer n. Then n + 1 | n2 + 1 if and only if
n = 1.
Proof: If n+ 1 | n2 + 1, then n = 1 by [6, (2)]. �

(2) Let us consider integers i, n. If |i| = n, then i = n or i = −n.
(3) Let us consider a natural number n. Suppose n | 24. Then

(i) n = 1, or

(ii) n = 2, or

(iii) n = 3, or
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(iv) n = 4, or

(v) n = 6, or

(vi) n = 8, or

(vii) n = 12, or

(viii) n = 24.

(4) Let us consider an integer t. Suppose t | 24. Then

(i) t = −1, or

(ii) t = 1, or

(iii) t = −2, or

(iv) t = 2, or

(v) t = −3, or

(vi) t = 3, or

(vii) t = −4, or

(viii) t = 4, or

(ix) t = −6, or

(x) t = 6, or

(xi) t = −8, or

(xii) t = 8, or

(xiii) t = −12, or

(xiv) t = 12, or

(xv) t = −24, or

(xvi) t = 24.

The theorem is a consequence of (3) and (2).

2. Problem 2

Now we state the proposition:

(5) Let us consider an integer x. Suppose x− 3 | x3 − 3. Then

(i) x = −21, or

(ii) x = −9, or

(iii) x = −5, or

(iv) x = −3, or
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(v) x = −1, or

(vi) x = 0, or

(vii) x = 1, or

(viii) x = 2, or

(ix) x = 4, or

(x) x = 5, or

(xi) x = 6, or

(xii) x = 7, or

(xiii) x = 9, or

(xiv) x = 11, or

(xv) x = 15, or

(xvi) x = 27.

The theorem is a consequence of (4).

3. Problem 3

Now we state the proposition:

(6) {n, where n is a positive integer : 5 | 4 · (n2) + 1 and 13 | 4 · (n2) + 1} is
infinite.
Proof: Set S = {n, where n is a positive integer : 5 | 4 · (n2) + 1 and
13 | 4 · (n2) + 1}. Define F(natural number) = 65 · $1 + 56. Consider f
being a many sorted set indexed by N such that for every element n of
N, f(n) = F(n). Set R = rng f . R ⊆ S. For every element m of N, there
exists an element n of N such that n  m and n ∈ R. �

4. Problem 4

Now we state the proposition:

(7) Let us consider a positive integer n. Then 169 | 33·n+3 − 26 · n− 27.
Proof: Reconsider k = n as a natural number. Define P[natural number] ≡
169 | 33·$1+3 − 26 · $1 − 27. For every natural number k such that 1 ¬ k
holds P[k]. �
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5. Problem 5

Now we state the proposition:

(8) Let us consider a natural number k. Then 19 | 226·k+2 + 3.

6. Problem 6 (due to Kraitchik)

Now we state the proposition:

(9) 13 | 270 + 370.

7. Problem 7

Now we state the propositions:

(10) 11 · 31 · 61 | 2015 − 1.

(11) Let us consider an integer a, and a natural numberm. Then a−1 | am−1.
Proof: Define P[natural number] ≡ a − 1 | a$1 − 1. For every natural
number k, P[k]. �

(12) Let us consider a natural number a, a positive integer m, and a finite
0-sequence f of Z. Suppose a > 1 and len f = m− 1 and for every natural
number i such that i ∈ dom f holds f(i) = ai+1 − 1. Then am − 1 div(a−
1) =

∑
f +m.

Proof: Define P[natural number] ≡ for every finite 0-sequence f of Z
such that len f = $1 and for every natural number i such that i ∈ dom f
holds f(i) = ai+1 − 1 holds a$1+1 − 1 div(a − 1) =

∑
f + ($1 + 1). P[0].

For every natural number k, P[k]. �

8. Problem 8

Now we state the proposition:

(13) Let us consider a positive integer m, and a natural number a. Suppose
a > 1. Then gcd(am − 1 div(a− 1), a− 1) = gcd(a− 1,m).
Proof: Reconsiderm0 = m as a natural number. Reconsiderm1 = m0−1
as a natural number. Define F(natural number) = a$1+1 − 1. Consider
f being a finite 0-sequence such that len f = m1 and for every natural
number i such that i ∈ m1 holds f(i) = F(i) from [5, Sch.2]. rng f ⊆ Z.
am − 1 div(a− 1) =

∑
f +m. �
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9. Problem 9

Now we state the propositions:

(14) Let us consider finite 0-sequences s1, s2 of N, and a natural number n.
Suppose len s1 = n+1 and for every natural number i such that i ∈ dom s1
holds s1(i) = i5 and len s2 = n + 1 and for every natural number i such
that i ∈ dom s2 holds s2(i) = i3. Then

∑
s2 | 3 · (

∑
s1).

Proof: Define F(natural number) = $1
3. Consider S2 being a sequence

of real numbers such that for every natural number i, S2(i) = F(i). Define
G(natural number) = $1

5.
Consider S1 being a sequence of real numbers such that for every

natural number i, S1(i) = G(i). �

(15) Let us consider integers a, b, and a positive natural number m. Then∑
〈
(m
0

)
a0bm, . . . ,

(m
m

)
amb0〉 = am + bm +

∑
(〈
(m
0

)
a0bm, . . . ,

(m
m

)
amb0〉�m)�1.

(16) Let us consider natural numbers n, k. If n is odd, then n | kn+(n− k)n.
The theorem is a consequence of (15).

10. Problem 10

Now we state the proposition:

(17) Let us consider a finite sequence s of elements of N, and a natural number
n. Suppose n > 1 and len s = n − 1 and for every natural number i such
that i ∈ dom s holds s(i) = in. If n is odd, then n |

∑
s.

Proof: rng(s+ Rev(s)) ⊆ N. If n is odd, then n |
∑
s by [3, (3)]. �
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