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Summary. The main aim of this article is to introduce formally ternary
Boolean algebras (TBAs) in terms of an abstract ternary operation, and to show
their connection with the ordinary notion of a Boolean algebra, already present
in the Mizar Mathematical Library [2]. Essentially, the core of this Mizar [1]
formalization is based on the paper of A.A. Grau “Ternary Boolean Algebras”
[7]. The main result is the single axiom for this class of lattices [12]. This is
the continuation of the articles devoted to various equivalent axiomatizations of
Boolean algebras: following Huntington [8] in terms of the binary sum and the
complementation useful in the formalization of the Robbins problem [5], in terms
of Sheffer stroke [9]. The classical definition ([6], [3]) can be found in [15] and its
formalization is described in [4].

Similarly as in the case of recent formalizations of WA-lattices [14] and qu-
asilattices [10], some of the results were proven in the Mizar system with the
help of Prover9 [13], [11] proof assistant, so proofs are quite lengthy. They can
be subject for subsequent revisions to make them more compact.
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0. Introduction

Ternary Boolean algebras (TBA for short) were introduced in the paper by
A.A. Grau [7] in 1947. There the corresponding algebraic structure is

〈T, cmpl, trn〉,

where T is a set, trn : T 3 → T is a ternary operation on T , and cmpl : T → T

plays a role of the complementation operator.
The set of axioms: distributivity, idempotence, and absorption is given by

definitions (Def. 3) – (Def. 7) in Sect. 2. The definition of the type “Ternary
Boolean algebra” concludes this section.

Section 3 is devoted to formal correspondence between the usual definition
of a Boolean algebra and TBAs. It is enough to choose arbitrary element 0 ∈ T
and set

a t b = trn(a, 0, b);

a u b = trn(a, cmpl(0), b).

In order to have all the operations (binary, unary, and ternary) available in
the common framework, we introduced LattTBAStr. The Mizar functor conver-
ting ordinary Boolean algebras into TBAs is given in Sect. 4 (actually, BA2TBA
in (Def. 13) returns TBA structure and BA2TBAA (Def. 14) – merged TBA and
lattice structure). The ternary operation and usual binary lattice operations
satisfy the equation

trn(a, b, c) = (a u b) t (b u c) t (c u a).

We call it the rosetta operation, hence RosTrn is used in the Mizar source (see
Sect. 5). In Sect. 6 it is proven that the structure obtained in this way satisfy
classical lattice axioms and, furthermore BA2TBAA is indeed a Boolean algebra
(Sect. 7). Section 8 presents the single axiom for TBAs (Def. 15) and concluding
cluster registrations show that TBAs defined in Sect. 2 satisfy also this single
axiom.

1. Preliminaries

We consider TBA structures which extend ComplStr and are systems

〈〈a carrier, a complement operation, a ternary operation〉〉

where the carrier is a set, the complement operation is a unary operation on
the carrier, the ternary operation is a ternary operation on the carrier.
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We consider TBA lattice structures which extend TBA structures and lattice
structures and are systems

〈〈a carrier, a join operation, a meet operation, a complement operation,

a ternary operation〉〉

where the carrier is a set, the join operation and the meet operation are binary
operations on the carrier, the complement operation is a unary operation on
the carrier, the ternary operation is a ternary operation on the carrier.

The functor op3 yielding a ternary operation on {0} is defined by

(Def. 1) it(0, 0, 0) = 0.

Let us observe that there exists a TBA structure which is trivial and non
empty.

2. Axiomatization of Ternary Boolean Algebras

Let T be a non empty TBA structure and a, b, c be elements of T . The
functor T(a, b, c) yielding an element of T is defined by the term

(Def. 2) (the ternary operation of T )(a, b, c).

We say that T is ternary-distributive if and only if

(Def. 3) for every elements a, b, c, d, e of T , T(T(a, b, c), d,T(a, b, e)) =
T(a, b,T(c, d, e)).

We say that T is ternary-left-idempotent if and only if

(Def. 4) for every elements a, b of T , T(b, b, a) = b.

We say that T is ternary-right-idempotent if and only if

(Def. 5) for every elements a, b of T , T(a, b, b) = b.

We say that T is ternary-left-absorbing if and only if

(Def. 6) for every elements a, b of T , T(bc, b, a) = a.

We say that T is ternary-right-absorbing if and only if

(Def. 7) for every elements a, b of T , T(a, b, bc) = a.

One can check that every non empty TBA structure which is trivial is also
ternary-distributive, ternary-left-idempotent, ternary-right-idempotent, ternary-
left-absorbing, and ternary-right-absorbing.

A ternary Boolean algebra is a ternary-distributive, ternary-left-idempotent,
ternary-right-idempotent, ternary-left-absorbing, ternary-right-absorbing, non
empty TBA structure.



156 wojciech kuśmierowski and adam grabowski

3. Converting TBAs into Ordinary Binary Boolean Algebras

Let T be a ternary Boolean algebra and x be an element of T . The functors:
JoinTBA(T, x) and MeetTBA(T, x) yielding binary operations on the carrier of
T are defined by conditions

(Def. 8) for every elements a, b of T , JoinTBA(T, x)(a, b) = T(a, x, b),

(Def. 9) for every elements a, b of T , MeetTBA(T, x)(a, b) = T(a, xc, b),

respectively. The functor TBA2BA(T, x) yielding a non empty lattice structure
is defined by the term

(Def. 10) 〈the carrier of T, JoinTBA(T, x),MeetTBA(T, x)〉.

4. Basic Properties of Ternary Operation

From now on T denotes a ternary Boolean algebra, a, b, c, d, e denote
elements of T , and x, y, z denote elements of T . Now we state the propositions:

(1) T(a, b, a) = a.

(2) T(T(a, b, c), b, a) = T(a, b, c).

(3) T(a, b,T(c, b, d)) = T(T(a, b, c), b, d). The theorem is a consequence of
(2).

(4) T(bc, b, a) = T(a, b, bc).

(5) T(a, bc, b) = a.

(6) (ac)c = a. The theorem is a consequence of (5).

(7) T(a, b, ac) = b. The theorem is a consequence of (6).

(8) T(a, b, c) = T(a, c, b). The theorem is a consequence of (7) and (1).

(9) T(a, b, c) = T(b, c, a). The theorem is a consequence of (7).

(10) T(a, b, c) = T(c, b, a). The theorem is a consequence of (8) and (9).

(11) Let us consider an element x of T . Then T(a, b, c) = T(T(T(a, x, b), xc,T(b,
x, c)), xc,T(c, x, a)). The theorem is a consequence of (8), (10), (7), (9),
and (3).

5. The Rosetta Operation

Let L be a Boolean lattice and a, b, c be elements of L. The functor
Ros(a, b, c) yielding an element of L is defined by the term

(Def. 11) ((a u b) t (b u c)) t (c u a).

Let B be a Boolean lattice. The functor RosTrn(B) yielding a ternary ope-
ration on the carrier of B is defined by

(Def. 12) for every elements a, b, c of B, it(a, b, c) = Ros(a, b, c).
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Let B be a Boolean lattice. The functor BA2TBA(B) yielding a TBA struc-
ture is defined by the term

(Def. 13) 〈〈the carrier of B, compB,RosTrn(B)〉〉.
The functor BA2TBAA(B) yielding a TBA lattice structure is defined by

the term

(Def. 14) 〈〈the carrier ofB, the join operation ofB, the meet operation ofB, compB,
RosTrn(B)〉〉.

Let us note that BA2TBA(B) is non empty and BA2TBAA(B) is non empty.

6. Proof that TBA2BA Satisfy Lattice Axioms

In the sequel T denotes a ternary Boolean algebra.
Let us consider T . Let x be an element of T . Let us observe that JoinTBA(T, x)

is commutative and JoinTBA(T, x) is associative and MeetTBA(T, x) is com-
mutative.

From now on x denotes an element of T .
Let us consider T . Let x be an element of T . Note that MeetTBA(T, x) is

associative.
Let T be a ternary Boolean algebra and p be an element of T . One can verify

that the lattice structure of TBA2BA(T, p) is lattice-like.

7. Proof that BA2TBAA Returns Standard Example of TBA

Let B be a Boolean lattice. One can verify that BA2TBAA(B) is lattice-like.
Now we state the propositions:

(12) Let us consider a Boolean lattice B, an element x of B, and an element
xx of BA2TBA(B). If xx = x, then xc = xxc.

(13) Let us consider a Boolean lattice B, an element x of B, and an element
xx of BA2TBAA(B). If xx = x, then xc = xxc.

Let B be a Boolean lattice. One can verify that BA2TBA(B) is ternary-
left-idempotent, ternary-right-idempotent, ternary-left-absorbing, and ternary-
right-absorbing and BA2TBAA(B) is ternary-left-idempotent, ternary-right-
idempotent, ternary-left-absorbing, and ternary-right-absorbing.

In the sequel B denotes a Boolean lattice and v0, v1, v2, v3, v4, v5, v6, v103,
v100, v102, v104, v105, v101 denote elements of BA2TBAA(B).

Now we state the propositions:

(14) Suppose for every v1 and v0, T(v0, v0, v1) = v0 and for every v2, v1, and
v0, T(v0, v1, v2) = T(v2, v0, v1) and for every v2, v1, and v0, T(v0, v1, v2) =
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T(v0, v2, v1) and for every v3, v2, v1, and v0, T(T(v0, v1, v2), v1, v3) =
T(v0, v1,T(v2, v1, v3)). T(T(v1, v2, v3), v4,T(v1, v2, v5)) =
T(v1, v2,T(v3, v4, v5)).

(15) Suppose for every v2, v1, and v0, T(v0, v1, v2) = ((v0 t v1) u (v1 t v2)) u
(v0tv2) and for every v0, v2, and v1, v0t(v1uv2) = (v0tv1)u(v0tv2) and
for every v0, v2, and v1, v0 u (v1 t v2) = (v0 u v1)t (v0 u v2) and for every
v2, v1, and v0, (v0 t v1) t v2 = v0 t (v1 t v2) and for every v2, v1, and v0,
(v0uv1)uv2 = v0u(v1uv2). T(T(v1, v2, v3), v2, v4) = T(v1, v2,T(v3, v2, v4)).

(16) Let us consider a Boolean lattice B, elements v0, v1 of BA2TBAA(B),
and elements a, b of B. If a = v0 and b = v1, then v0 t v1 = a t b.

LetB be a Boolean lattice. Observe that BA2TBAA(B) is ternary-distributive.
Let T be a ternary Boolean algebra and p be an element of T . Let us note that

the lattice structure of TBA2BA(T, p) is distributive and the lattice structure
of TBA2BA(T, p) is bounded.

Let us consider a ternary Boolean algebra T and an element p of T . Now we
state the propositions:

(17) >α = p, where α is the lattice structure of TBA2BA(T, p).

(18) ⊥α = pc, where α is the lattice structure of TBA2BA(T, p).

Let T be a ternary Boolean algebra and p be an element of T . Note that
the lattice structure of TBA2BA(T, p) is complemented.

Let us consider T . Observe that the lattice structure of TBA2BA(T, p) is
Boolean.

8. Single Axiom for TBA

In the sequel T denotes a non empty TBA structure and v0, v1, v2, v3, v4,
v5, v6, u, w, v, v100, v101, v102, v103, v104 denote elements of T .

Let T be a non empty TBA structure. We say that T is satisfying TBA1 if
and only if

(Def. 15) for every elements x, y, z, u, v, v6, w of T , T(T(x, xc, y),T(T(z, u, v), w,
T(z, u, v6))c,T(u,T(v6, w, v), z)) = y.

Now we state the proposition:

(19) Suppose for every v4, v3, v2, v1, and v0, T(T(v0, v1, v2), v3,T(v0, v1, v4)) =
T(v0, v1,T(v2, v3, v4)) and for every v1 and v0, T(v0, v1, v1) = v1 and for
every v1 and v0, T(v0, v1, v1c) = v0 and for every v1 and v0, T(v0, v0, v1) =
v0. Let us consider elements x, y, z, u, v, v6, w of T . Then T(T(x, xc, y),
T(T(z, u, v), w,T(z, u, v6))c,T(u,T(v6, w, v), z)) = y.

Let T be a non empty TBA structure. We say that T is TBA-like if and only
if
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(Def. 16) T is ternary-distributive, ternary-left-idempotent, ternary-right-idempo-
tent, ternary-left-absorbing, and ternary-right-absorbing.

Note that every non empty TBA structure which is ternary-distributive,
ternary-left-idempotent, ternary-right-idempotent, ternary-left-absorbing, and
ternary-right-absorbing is also TBA-like and every non empty TBA structure
which is TBA-like is also ternary-distributive, ternary-left-idempotent, ternary-
right-idempotent, ternary-left-absorbing, and ternary-right-absorbing and every
non empty TBA structure which is TBA-like is also satisfying TBA1.
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Summary. In this article, we check with the Mizar system [1], [2], the
converse of Desargues’ theorem and the converse of Pappus’ theorem of the re-
al projective plane. It is well known that in the projective plane, the notions
of points and lines are dual [11], [9], [15], [8]. Some results (analytical, synthe-
tic, combinatorial) of projective geometry are already present in some libraries
Lean/Hott [5], Isabelle/Hol [3], Coq [13], [14], [4], Agda [6], . . . .

Proofs of dual statements by proof assistants have already been proposed,
using an axiomatic method (for example see in [13] - the section on duality: “[...]
For every theorem we prove, we can easily derive its dual using our function swap
[...]2”).

In our formalisation, we use an analytical rather than a synthetic approach
using the definitions of Leończuk and Prażmowski of the projective plane [12].
Our motivation is to show that it is possible by developing dual definitions to
find proofs of dual theorems in a few lines of code.

In the first part, rather technical, we introduce definitions that allow us to
construct the duality between the points of the real projective plane and the
lines associated to this projective plane. In the second part, we give a natural
definition of line concurrency and prove that this definition is dual to the defi-
nition of alignment. Finally, we apply these results to find, in a few lines, the
dual properties and theorems of those defined in the article [12] (transitive,
Vebleian, at_least_3rank, Fanoian, Desarguesian, 2-dimensional).

We hope that this methodology will allow us to continued more quickly the
proof started in [7] that the Beltrami-Klein plane is a model satisfying the axioms
of the hyperbolic plane (in the sense of Tarski geometry [10]).
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prise number: 0777.779.751. Belgium.
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1. Preliminaries

Now we state the proposition:

(1) Let us consider real numbers a, b, c, d, e, f , g, h, i. Then 〈|[a, b, c], [d, e,
f ], [g, h, i]|〉 = a · e · i+ b · f · g + c · d · h− g · e · c− h · f · a− i · d · b.

Let us consider real numbers a, b, c, d, e. Now we state the propositions:

(2) 〈|[a, 1, 0], [b, 0, 1], [c, d, e]|〉 = c− a · d− e · b.
(3) 〈|[1, a, 0], [0, b, 1], [c, d, e]|〉 = b · e+ a · c− d.

(4) 〈|[1, 0, a], [0, 1, b], [c, d, e]|〉 = e− c · a− d · b.
(5) Let us consider an element u of E3T. Then u is zero if and only if |(u, u)| =

0.

Let us consider non zero elements u, v, w of E3T. Now we state the proposi-
tions:

(6) If 〈|u, v, w|〉 = 0, then there exists a non zero element p of E3T such that
|(p, u)| = 0 and |(p, v)| = 0 and |(p, w)| = 0.

(7) If |(u, v)| = 0 and w and v are proportional, then |(u,w)| = 0.

(8) Let us consider non zero elements a, u, v of E3T. Suppose u and v are
not proportional and |(a, u)| = 0 and |(a, v)| = 0. Then a and u × v are
proportional.

(9) Let us consider non zero elements u, v of E3T, and a real number r. If
r 6= 0 and u and v are proportional, then r · u and v are proportional.

2. Dual of a Point - Dual of a Line

Let P be a point of the projective space over E3T. We say that P is π1-zero
if and only if

(Def. 1) for every non zero element u of E3T such that P = the direction of u holds
u(1) = 0.

Note that there exists a point of the projective space over E3T which is π1-zero
and there exists a point of the projective space over E3T which is non π1-zero.

Now we state the proposition:

(10) Let us consider a non π1-zero point P of the projective space over E3T,
and a non zero element u of E3T. If P = the direction of u, then u(1) 6= 0.

http://zbmath.org/classification/?q=cc:51A05
http://zbmath.org/classification/?q=cc:51N15
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/anproj11.miz
http://ftp.mizar.org/
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Let P be a non π1-zero point of the projective space over E3T. The functor
π̃1(P ) yielding a non zero element of E3T is defined by

(Def. 2) the direction of it = P and it(1) = 1.

Now we state the propositions:

(11) Let us consider a non π1-zero point P of the projective space over E3T,
and a non zero element u of E3T. Suppose P = the direction of u. Then
π̃1(P ) = [1, u(2)u(1) ,

u(3)
u(1) ].

(12) Let us consider a non π1-zero point P of the projective space over E3T,
and a point Q of the projective space over E3T. Suppose Q = the direction
of π̃1(P ). Then Q is not π1-zero.

Let P be a point of the projective space over E3T. We say that P is π2-zero
if and only if

(Def. 3) for every non zero element u of E3T such that P = the direction of u holds
u(2) = 0.

One can verify that there exists a point of the projective space over E3T which
is π2-zero and there exists a point of the projective space over E3T which is non
π2-zero.

Now we state the proposition:

(13) Let us consider a non π2-zero point P of the projective space over E3T,
and a non zero element u of E3T. If P = the direction of u, then u(2) 6= 0.

Let P be a non π2-zero point of the projective space over E3T. The functor
π̃2(P ) yielding a non zero element of E3T is defined by

(Def. 4) the direction of it = P and it(2) = 1.

Now we state the propositions:

(14) Let us consider a non π2-zero point P of the projective space over E3T,
and a non zero element u of E3T. Suppose P = the direction of u. Then
π̃2(P ) = [u(1)u(2) , 1,

u(3)
u(2) ].

(15) Let us consider a non π2-zero point P of the projective space over E3T,
and a point Q of the projective space over E3T. Suppose Q = the direction
of π̃2(P ). Then Q is not π2-zero.

Let P be a point of the projective space over E3T. We say that P is π3-zero
if and only if

(Def. 5) for every non zero element u of E3T such that P = the direction of u holds
u(3) = 0.

Observe that there exists a point of the projective space over E3T which is
π3-zero and there exists a point of the projective space over E3T which is non
π3-zero.
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Now we state the proposition:

(16) Let us consider a non π3-zero point P of the projective space over E3T,
and a non zero element u of E3T. If P = the direction of u, then u(3) 6= 0.

Let P be a non π3-zero point of the projective space over E3T. The functor
π̃3(P ) yielding a non zero element of E3T is defined by

(Def. 6) the direction of it = P and it(3) = 1.

Now we state the propositions:

(17) Let us consider a non π3-zero point P of the projective space over E3T,
and a non zero element u of E3T. Suppose P = the direction of u. Then
π̃3(P ) = [u(1)u(3) ,

u(2)
u(3) , 1].

(18) Let us consider a non π3-zero point P of the projective space over E3T,
and a point Q of the projective space over E3T. Suppose Q = the direction
of π̃3(P ). Then Q is not π3-zero.

Let us observe that there exists a point of the projective space over E3T
which is non π1-zero and non π2-zero and there exists a point of the projective
space over E3T which is non π1-zero and non π3-zero and there exists a point of
the projective space over E3T which is non π2-zero and non π3-zero and there
exists a point of the projective space over E3T which is non π1-zero, non π2-zero,
and non π3-zero.

Let P be a non π1-zero point of the projective space over E3T. The functor
dir(−π̃1)2,1,0(P ) yielding a non zero element of E3T is defined by the term

(Def. 7) [−(π̃1(P ))(2), 1, 0].

The functor Pdir(−π̃1)2,1,0(P ) yielding a point of the projective space over
E3T is defined by the term

(Def. 8) the direction of dir(−π̃1)2,1,0(P ).

The functor dir(−π̃1)3,0,1(P ) yielding a non zero element of E3T is defined by
the term

(Def. 9) [−(π̃1(P ))(3), 0, 1].

The functor Pdir(−π̃1)3,0,1(P ) yielding a point of the projective space over
E3T is defined by the term

(Def. 10) the direction of dir(−π̃1)3,0,1(P ).

Let us consider a non π1-zero point P of the projective space over E3T. Now
we state the propositions:

(19) dir(−π̃1)2,1,0(P ) 6= dir(−π̃1)3,0,1(P ).

(20) The direction of dir(−π̃1)2,1,0(P ) 6= the direction of dir(−π̃1)3,0,1(P ).

(21) Let us consider a non π1-zero element P of the projective space over
E3T, a non zero element u of E3T, and an element v of E3T. Suppose u =
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π̃1(P ). Then 〈|dir(−π̃1)2,1,0(P ), dir(−π̃1)3,0,1(P ), v|〉 = |(u, v)|. The theorem
is a consequence of (11) and (2).

(22) Let us consider a non π1-zero element P of the projective space over E3T,
and a non zero element u of E3T. Suppose u = π̃1(P ). Then 〈|dir(−π̃1)2,1,0(P ),
dir(−π̃1)3,0,1(P ), π̃1(P )|〉 = 1 + u(2) · u(2) + u(3) · u(3). The theorem is
a consequence of (21).

Let P be a non π2-zero point of the projective space over E3T. The functor
dir1,(−π̃2)1,0(P ) yielding a non zero element of E3T is defined by the term

(Def. 11) [1,−(π̃2(P ))(1), 0].

The functor Pdir1,(−π̃2)1,0(P ) yielding a point of the projective space over
E3T is defined by the term

(Def. 12) the direction of dir1,(−π̃2)1,0(P ).

The functor dir0,(−π̃2)3,1(P ) yielding a non zero element of E3T is defined by
the term

(Def. 13) [0,−(π̃2(P ))(3), 1].

The functor Pdir0,(−π̃2)3,1(P ) yielding a point of the projective space over
E3T is defined by the term

(Def. 14) the direction of dir0,(−π̃2)3,1(P ).

Let us consider a non π2-zero point P of the projective space over E3T. Now
we state the propositions:

(23) dir1,(−π̃2)1,0(P ) 6= dir0,(−π̃2)3,1(P ).

(24) The direction of dir1,(−π̃2)1,0(P ) 6= the direction of dir0,(−π̃2)3,1(P ).

(25) Let us consider a non π2-zero element P of the projective space over E3T,
a non zero element u of E3T, and an element v of E3T. Suppose u = π̃2(P ).
Then 〈|dir1,(−π̃2)1,0(P ),dir0,(−π̃2)3,1(P ), v|〉 = −|(u, v)|. The theorem is
a consequence of (14) and (3).

(26) Let us consider a non π2-zero element P of the projective space over E3T,
and a non zero element u of E3T. Suppose u = π̃2(P ). Then 〈|dir1,(−π̃2)1,0(P ),
dir0,(−π̃2)3,1(P ), π̃2(P )|〉 = −(u(1) · u(1) + 1 + u(3) · u(3)). The theorem is
a consequence of (25).

Let P be a non π3-zero point of the projective space over E3T. The functor
dir1,0,(−π̃3)1(P ) yielding a non zero element of E3T is defined by the term

(Def. 15) [1, 0,−(π̃3(P ))(1)].

The functor Pdir1,0,(−π̃3)1(P ) yielding a point of the projective space over
E3T is defined by the term

(Def. 16) the direction of dir1,0,(−π̃3)1(P ).
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The functor dir1,0,(−π̃3)2(P ) yielding a non zero element of E3T is defined by
the term

(Def. 17) [0, 1,−(π̃3(P ))(2)].

The functor Pdir1,0,(−π̃3)2(P yielding a point of the projective space over E3T
is defined by the term

(Def. 18) the direction of dir1,0,(−π̃3)2(P ).

Let us consider a non π3-zero point P of the projective space over E3T. Now
we state the propositions:

(27) dir1,0,(−π̃3)1(P ) 6= dir1,0,(−π̃3)2(P ).

(28) The direction of dir1,0,(−π̃3)1(P ) 6= the direction of dir1,0,(−π̃3)2(P ).

(29) Let us consider a non π3-zero element P of the projective space over
E3T, a non zero element u of E3T, and an element v of E3T. Suppose u =
π̃3(P ). Then 〈|dir1,0,(−π̃3)1(P ), dir1,0,(−π̃3)2(P ), v|〉 = |(u, v)|. The theorem
is a consequence of (17) and (4).

(30) Let us consider a non π3-zero element P of the projective space over E3T,
and a non zero element u of E3T. Suppose u = π̃3(P ). Then 〈|dir1,0,(−π̃3)1(P ),
dir1,0,(−π̃3)2(P ), π̃3(P )|〉 = u(1) · u(1) + u(2) · u(2) + 1. The theorem is
a consequence of (29).

Let P be a non π1-zero point of the projective space over E3T. The functor
dual1(P ) yielding an element of L(the real projective plane) is defined by the
term

(Def. 19) Line(Pdir(−π̃1)2,1,0(P ),Pdir(−π̃1)3,0,1(P )).

Let P be a non π2-zero point of the projective space over E3T. The functor
dual2(P ) yielding an element of L(the real projective plane) is defined by the
term

(Def. 20) Line(Pdir1,(−π̃2)1,0(P ),Pdir0,(−π̃2)3,1(P )).

Let P be a non π3-zero point of the projective space over E3T. The functor
dual3(P ) yielding an element of L(the real projective plane) is defined by the
term

(Def. 21) Line(Pdir1,0,(−π̃3)1(P ),Pdir1,0,(−π̃3)2(P ).

Let us consider a non π1-zero, non π2-zero point P of the projective space
over E3T and a non zero element u of E3T. Now we state the propositions:

(31) Suppose P = the direction of u. Then

(i) π̃1(P ) = [1, u(2)u(1) ,
u(3)
u(1) ], and

(ii) π̃2(P ) = [u(1)u(2) , 1,
u(3)
u(2) ].

(32) Suppose P = the direction of u. Then



Duality notions in real projective plane 167

(i) π̃1(P ) = u(2)
u(1) · (π̃2(P )), and

(ii) π̃2(P ) = u(1)
u(2) · (π̃1(P )).

The theorem is a consequence of (10), (13), (11), and (14).

Let us consider a non π1-zero, non π2-zero point P of the projective space
over E3T. Now we state the propositions:

(33) dual1(P ) = dual2(P ). The theorem is a consequence of (11), (14), (2),
(10), (3), and (13).

(34) dual2(P ) = dual3(P ). The theorem is a consequence of (17), (14), (3),
(13), (16), and (4).

(35) dual1(P ) = dual3(P ). The theorem is a consequence of (11), (17), (2),
(10), (4), and (16).

(36) Let us consider a non π1-zero, non π2-zero, non π3-zero point P of
the projective space over E3T. Then

(i) dual1(P ) = dual2(P ), and

(ii) dual1(P ) = dual3(P ), and

(iii) dual2(P ) = dual3(P ).

(37) Every element of the projective space over E3T is non π1-zero or non
π2-zero or non π3-zero non π1-zero non π2-zero or non π3-zero.

Let P be a point of the projective space over E3T. The functor dualP yielding
an element of L(the real projective plane) is defined by

(Def. 22) (i) there exists a non π1-zero point P ′ of the projective space over E3T
such that P ′ = P and it = dual1(P ′), if P is not π1-zero,

(ii) there exists a non π2-zero point P ′ of the projective space over E3T
such that P ′ = P and it = dual2(P ′), if P is π1-zero and non π2-zero,

(iii) there exists a non π3-zero point P ′ of the projective space over E3T
such that P ′ = P and it = dual3(P ′), if P is π1-zero, π2-zero, and
non π3-zero.

Let P be a point of the real projective plane. The functor #P yielding
an element of the projective space over E3T is defined by the term

(Def. 23) P .

The functor dualP yielding an element of L(the real projective plane) is
defined by the term

(Def. 24) dual #P .

Let us consider an element P of the real projective plane. Now we state the
propositions:
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(38) Suppose #P is not π1-zero. Then there exists a non π1-zero point P ′ of
the projective space over E3T such that

(i) P = P ′, and

(ii) dualP = dual1(P ′).

(39) Suppose #P is not π2-zero. Then there exists a non π2-zero point P ′ of
the projective space over E3T such that

(i) P = P ′, and

(ii) dualP = dual2(P ′).

The theorem is a consequence of (33).

(40) Suppose #P is not π3-zero. Then there exists a non π3-zero point P ′ of
the projective space over E3T such that

(i) P = P ′, and

(ii) dualP = dual3(P ′).

The theorem is a consequence of (34) and (35).

Let us consider a non π1-zero element P of the projective space over E3T.
Now we state the propositions:

(41) P /∈ Line(Pdir(−π̃1)2,1,0(P ),Pdir(−π̃1)3,0,1(P )). The theorem is a consequ-
ence of (21) and (5).

(42) P /∈ Line(Pdir1,(−π̃2)1,0(P ),Pdir0,(−π̃2)3,1(P )). The theorem is a consequ-
ence of (25) and (5).

(43) P /∈ Line(Pdir1,0,(−π̃3)1(P ),Pdir1,0,(−π̃3)2(P ). The theorem is a consequ-
ence of (29) and (5).

(44) Let us consider a point P of the real projective plane. Then P /∈ dualP .
The theorem is a consequence of (37), (38), (41), (39), (42), (40), and (43).

Let l be an element of L(the real projective plane). The functor dual l yiel-
ding a point of the real projective plane is defined by

(Def. 25) there exist points P , Q of the real projective plane such that P 6= Q and
l = Line(P,Q) and it = L2P(P,Q).

Now we state the propositions:

(45) Let us consider a point P of the real projective plane. Then dual dualP =
P . The theorem is a consequence of (37), (38), (11), (10), (8), (9), (39),
(14), (13), (40), (17), and (16).

(46) Let us consider an element l of L(the real projective plane).
Then dual dual l = l. The theorem is a consequence of (37), (38), (10),
(11), (20), (2), (39), (13), (14), (24), (3), (40), (16), (17), (28), and (4).
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(47) Let us consider points P , Q of the real projective plane. Then P 6= Q if
and only if dualP 6= dualQ. The theorem is a consequence of (45).

(48) Let us consider elements l, m of L(the real projective plane). Then l 6= m

if and only if dual l 6= dualm. The theorem is a consequence of (46).

3. Two Dual Notions: Concurrency and Collinearity

Let l1, l2, l3 be elements of L(the real projective plane). We say that l1, l2,
l3 are concurrent if and only if

(Def. 26) there exists a point P of the real projective plane such that P ∈ l1 and
P ∈ l2 and P ∈ l3.

Let l be an element of L(the real projective plane). The functor # l yielding
a line of Inc-ProjSp(the real projective plane) is defined by the term

(Def. 27) l.

Let l be a line of Inc-ProjSp(the real projective plane). The functor # l

yielding an element of L(the real projective plane) is defined by the term

(Def. 28) l.

Now we state the propositions:

(49) Let us consider elements l1, l2, l3 of L(the real projective plane). Then
l1, l2, l3 are concurrent if and only if # l1, # l2, # l3 are concurrent.

(50) Let us consider lines l1, l2, l3 of Inc-ProjSp(the real projective plane).
Then l1, l2, l3 are concurrent if and only if # l1, # l2, # l3 are concurrent.
The theorem is a consequence of (49).

(51) Let us consider elements P , Q, R of the real projective plane. Suppose
P , Q and R are collinear. Then

(i) Q, R and P are collinear, and

(ii) R, P and Q are collinear, and

(iii) P , R and Q are collinear, and

(iv) R, Q and P are collinear, and

(v) Q, P and R are collinear.

(52) Let us consider elements l1, l2, l3 of L(the real projective plane). Suppose
l1, l2, l3 are concurrent. Then

(i) l2, l1, l3 are concurrent, and

(ii) l1, l3, l2 are concurrent, and

(iii) l3, l2, l1 are concurrent, and



170 roland coghetto

(iv) l3, l2, l1 are concurrent, and

(v) l2, l3, l1 are concurrent.

(53) Let us consider points P , Q of the real projective plane, and elements
P ′, Q′ of the projective space over E3T. If P = P ′ and Q = Q′, then
Line(P,Q) = Line(P ′, Q′).

Let us consider a point P of the real projective plane and an element l of
L(the real projective plane). Now we state the propositions:

(54) If P ∈ l, then dual l ∈ dualP . The theorem is a consequence of (37),
(38), (21), (7), (39), (25), (40), and (29).

(55) If dual l ∈ dualP , then P ∈ l. The theorem is a consequence of (54),
(45), and (46).

(56) Let us consider points P , Q, R of the real projective plane. Suppose P ,
Q and R are collinear. Then dualP , dualQ, dualR are concurrent. The
theorem is a consequence of (54).

(57) Let us consider an element l of L(the real projective plane), and points
P , Q, R of the real projective plane. If P , Q, R ∈ l, then P , Q and R are
collinear.

(58) Let us consider elements l1, l2, l3 of L(the real projective plane). Suppose
l1, l2, l3 are concurrent. Then dual l1, dual l2 and dual l3 are collinear. The
theorem is a consequence of (54) and (57).

(59) Let us consider points P , Q, R of the real projective plane. Then P , Q
and R are collinear if and only if dualP , dualQ, dualR are concurrent.
The theorem is a consequence of (56), (58), and (45).

(60) Let us consider elements l1, l2, l3 of L(the real projective plane). Then l1,
l2, l3 are concurrent if and only if dual l1, dual l2 and dual l3 are collinear.
The theorem is a consequence of (46) and (59).

4. Some Dual Properties of a Real Projective Plane

Now we state the propositions:

(61) The real projective plane is reflexive, transitive, Vebleian, at least 3 rank,
Fanoian, Desarguesian, Pappian, and 2-dimensional.

(62) Converse reflexive:
Let us consider elements l, m, n of L(the real projective plane). Then

(i) l, m, l are concurrent, and

(ii) l, l, m are concurrent, and

(iii) l, m, m are concurrent.
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The theorem is a consequence of (59) and (46).

(63) Converse transitive:
Let us consider elements l, m, n, n1, n2 of L(the real projective plane).
Suppose l 6= m and l, m, n are concurrent and l, m, n1 are concurrent
and l, m, n2 are concurrent. Then n, n1, n2 are concurrent. The theorem
is a consequence of (60), (48), (59), and (46).

(64) Converse Vebliean:
Let us consider elements l, l1, l2, n, n1 of L(the real projective plane).
Suppose l, l1, n are concurrent and l1, l2, n1 are concurrent. Then there
exists an element n2 of L(the real projective plane) such that

(i) l, l2, n2 are concurrent, and

(ii) n, n1, n2 are concurrent.

The theorem is a consequence of (60), (59), and (46).

(65) Converse at least 3-rank:
Let us consider elements l, m of L(the real projective plane). Then there
exists an element n of L(the real projective plane) such that

(i) l 6= n, and

(ii) m 6= n, and

(iii) l, m, n are concurrent.

The theorem is a consequence of (45), (59), and (46).

(66) Converse Fanoian:
Let us consider elements l1, n2, m, n1, m1, l, n of L(the real projective
plane). Suppose l1, n2, m are concurrent and n1, m1, m are concurrent
and l1, n1, l are concurrent and n2, m1, l are concurrent and l1, m1, n are
concurrent and n2, n1, n are concurrent and l, m, n are concurrent. Then

(i) l1, n2, m1 are concurrent, or

(ii) l1, n2, n1 are concurrent, or

(iii) l1, n1, m1 are concurrent, or

(iv) n2, n1, m1 are concurrent.

The theorem is a consequence of (60).

(67) Converse Desarguesian:
Let us consider elements k, l1, l2, l3, m1, m2, m3, n1, n2, n3 of L(the real
projective plane). Suppose k 6= m1 and l1 6= m1 and k 6= m2 and l2 6= m2
and k 6= m3 and l3 6= m3 and k, l1, l2 are not concurrent and k, l1, l3 are
not concurrent and k, l2, l3 are not concurrent and l1, l2, n3 are concurrent
and m1, m2, n3 are concurrent and l2, l3, n1 are concurrent and m2, m3, n1
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are concurrent and l1, l3, n2 are concurrent and m1, m3, n2 are concurrent
and k, l1, m1 are concurrent and k, l2, m2 are concurrent and k, l3, m3 are
concurrent. Then n1, n2, n3 are concurrent. The theorem is a consequence
of (48) and (60).

(68) Converse Pappian:
Let us consider elements k, l1, l2, l3, m1, m2, m3, n1, n2, n3 of L(the real
projective plane). Suppose k 6= l2 and k 6= l3 and l2 6= l3 and l1 6= l2
and l1 6= l3 and k 6= m2 and k 6= m3 and m2 6= m3 and m1 6= m2 and
m1 6= m3 and k, l1, m1 are not concurrent and k, l1, l2 are concurrent and
k, l1, l3 are concurrent and k, m1, m2 are concurrent and k, m1, m3 are
concurrent and l1, m2, n3 are concurrent and m1, l2, n3 are concurrent and
l1, m3, n2 are concurrent and l3, m1, n2 are concurrent and l2, m3, n1 are
concurrent and l3, m2, n1 are concurrent. Then n1, n2, n3 are concurrent.
The theorem is a consequence of (48) and (60).

(69) Converse 2-dimensional:
Let us consider elements l, l1, m, m1 of L(the real projective plane). Then
there exists an element n of L(the real projective plane) such that

(i) l, l1, n are concurrent, and

(ii) m, m1, n are concurrent.

The theorem is a consequence of (59) and (46).
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1. Bolzano-Weierstrass Theorem and its Corollary

From now on X denotes a set, n, m, k denote natural numbers, K denotes
a field, f denotes an n-element, real-valued finite sequence, and M denotes
a matrix over RF of dimension n×m. Now we state the propositions:

(1) Let us consider an element x ofRn+1, and an element y ofRn. If y = x�n,
then |y| ¬ |x|.

(2) Let us consider an element x of Rn+1, and an element w of R. If w =
x(n+ 1), then |w| ¬ |x|.

(3) Let us consider an element x ofRn+1, an element y ofRn, and an element
w of R. If y = x�n and w = x(n+ 1), then |x| ¬ |y|+ |w|.

(4) Let us consider elements x, y of Rn, and a natural number m. If m ¬ n,
then (x− y)�m = x�m− y�m.

(5) Let us consider a natural number n, and a sequence x of 〈En, ‖ · ‖〉.
Suppose there exists a real number K such that for every natural number
i, ‖x(i)‖ < K. Then there exists a subsequence x0 of x such that x0 is
convergent.
Proof: Define P[natural number] ≡ for every sequence x of 〈E$1 , ‖ · ‖〉
such that there exists a real number K such that for every natural number
i, ‖x(i)‖ < K there exists a subsequence x0 of x such that x0 is convergent.
P[0] by [4, (18)]. For every natural number n such that P[n] holds P[n+1].
For every natural number n, P[n]. �

(6) Let us consider a real normed space N , and a subset X of N . Suppose
X is compact. Then

(i) X is closed, and

(ii) there exists a real number r such that for every point y of N such
that y ∈ X holds ‖y‖ < r.

(7) Let us consider a subset X of 〈En, ‖ · ‖〉. Then X is compact if and only
if X is closed and there exists a real number r such that for every point y
of 〈En, ‖ · ‖〉 such that y ∈ X holds ‖y‖ < r.

2. L1-norm and Maximum Norm

Now we state the propositions:

(8) Let us consider a non empty natural number n, and an element x of Rn.
Then there exists a real number x4 such that

(i) x4 ∈ rng|x|, and

(ii) for every natural number i such that i ∈ domx holds |x|(i) ¬ x4.
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Proof: Set F = rng|x|. Set x4 = supF . For every natural number i such
that i ∈ domx holds |x|(i) ¬ x4. �

(9) Let us consider a real-valued finite sequence x. Then 0 ¬
∑
|x|.

Let n be a natural number. Assume n is not empty. The functor max-norm(n)
yielding a function from Rn into R is defined by

(Def. 1) for every element x of Rn, it(x) ∈ rng|x| and for every natural number
i such that i ∈ domx holds |x|(i) ¬ it(x).

Assume n is not empty. The functor sum-norm(n) yielding a function from
Rn into R is defined by

(Def. 2) for every element x of Rn, it(x) =
∑
|x|.

Now we state the proposition:

(10) Let us consider an element x of Rn, and a real number x4. Suppose
x4 ∈ rng|x| and for every natural number i such that i ∈ domx holds
|x|(i) ¬ x4. Then

(i)
∑
|x| ¬ n · x4, and

(ii) x4 ¬ |x| ¬
∑
|x|.

Proof: Set F = n 7→ x4. For every natural number j such that j ∈ Seg n
holds |x|(j) ¬ F (j). Consider i being an object such that i ∈ dom|x|
and x4 = |x|(i). Define P[natural number] ≡ for every element x of R$1 ,
|x|2 ¬ (

∑
|x|)2. For every natural number n such that P[n] holds P[n+1].

For every natural number n, P[n]. �

Let us consider a non empty natural number n, elements x, y of Rn, and
a real number a. Now we state the propositions:

(11) (i) 0 ¬ (max-norm(n))(x), and

(ii) (max-norm(n))(x) = 0 iff x = 〈0, . . . , 0︸ ︷︷ ︸
n

〉, and

(iii) (max-norm(n))(a · x) = |a| · (max-norm(n))(x), and

(iv) (max-norm(n))(x+ y) ¬ (max-norm(n))(x) + (max-norm(n))(y).
Proof: Set x4 = (max-norm(n))(x). Set y2 = (max-norm(n))(y). Consi-
der j0 being an object such that j0 ∈ dom|x| and x4 = |x|(j0). Consider k0
being an object such that k0 ∈ dom|y| and y2 = |y|(k0). (max-norm(n))(x)
= 0 iff x = 〈0, . . . , 0︸ ︷︷ ︸

n

〉. (max-norm(n))(a · x) = |a| · (max-norm(n))(x).

(max- norm(n))(x+ y) ¬ (max-norm(n))(x) + (max-norm(n))(y). �

(12) (i) 0 ¬ (sum-norm(n))(x), and

(ii) (sum-norm(n))(x) = 0 iff x = 〈0, . . . , 0︸ ︷︷ ︸
n

〉, and
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(iii) (sum-norm(n))(a · x) = |a| · (sum-norm(n))(x), and

(iv) (sum-norm(n))(x+ y) ¬ (sum-norm(n))(x) + (sum-norm(n))(y).
Proof: 0 ¬

∑
|x|. (sum-norm(n))(x) = 0 iff x = 〈0, . . . , 0︸ ︷︷ ︸

n

〉. For every

natural number j such that j ∈ Seg n holds |x+ y|(j) ¬ (|x|+ |y|)(j). �

(13) Let us consider a non empty natural number n, and an element x of Rn.
Then

(i) (sum-norm(n))(x) ¬ n · (max-norm(n))(x), and

(ii) (max-norm(n))(x) ¬ |x| ¬ (sum-norm(n))(x).

The theorem is a consequence of (10).

(14) The RLS structure of 〈En, ‖ · ‖〉 = RSegnR .

(15) Let us consider a real number a, elements x, y of 〈En, ‖·‖〉, and elements
x0, y0 of RSegnR . Suppose x = x0 and y = y0. Then

(i) the carrier of 〈En, ‖ · ‖〉 = the carrier of RSegnR , and

(ii) 0〈En,‖·‖〉 = 0RSegnR
, and

(iii) x+ y = x0 + y0, and

(iv) a · x = a · x0, and

(v) −x = −x0, and

(vi) x− y = x0 − y0.
The theorem is a consequence of (14).

Let X be a finite dimensional real linear space.
One can check that RLSp2RVSp(X) is finite dimensional.
Now we state the proposition:

(16) Let us consider a finite dimensional real linear space X, an ordered basis
b of RLSp2RVSp(X), and an element y of RLSp2RVSp(X). Then y → b

is an element of Rdim(X).
Let X be a finite dimensional real linear space and b be an ordered basis of

RLSp2RVSp(X). The functor max-norm(X, b) yielding a function from X into
R is defined by

(Def. 3) for every element x of X, there exists an element y of RLSp2RVSp(X)
and there exists an element z of Rdim(X) such that x = y and z = y → b

and it(x) = (max-norm(dim(X)))(z).

The functor sum-norm(X, b) yielding a function from X into R is defined by

(Def. 4) for every element x of X, there exists an element y of RLSp2RVSp(X)
and there exists an element z of Rdim(X) such that x = y and z = y → b

and it(x) = (sum-norm(dim(X)))(z).
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The functor Euclid-norm(X, b) yielding a function from X into R is defined
by

(Def. 5) for every element x of X, there exists an element y of RLSp2RVSp(X)
and there exists an element z of Rdim(X) such that x = y and z = y → b

and it(x) = |z|.
Now we state the proposition:

(17) Let us consider a natural number n, an element a of R, an element a1
of RF, elements x, y of Rn, and elements x1, y1 of (the carrier of RF)n.
Suppose a = a1 and x = x1 and y = y1. Then

(i) a · x = a1 · x1, and

(ii) x+ y = x1 + y1.

Let us consider a finite dimensional real linear space X, an ordered basis b
of RLSp2RVSp(X), elements x, y of X, and a real number a. Now we state the
propositions:

(18) Suppose dim(X) 6= 0. Then

(i) 0 ¬ (max-norm(X, b))(x), and

(ii) (max-norm(X, b))(x) = 0 iff x = 0X , and

(iii) (max-norm(X, b))(a · x) = |a| · (max-norm(X, b))(x), and

(iv) (max-norm(X, b))(x+y) ¬ (max-norm(X, b))(x)+(max-norm(X, b))
(y).

The theorem is a consequence of (11).

(19) Suppose dim(X) 6= 0. Then

(i) 0 ¬ (sum-norm(X, b))(x), and

(ii) (sum-norm(X, b))(x) = 0 iff x = 0X , and

(iii) (sum-norm(X, b))(a · x) = |a| · (sum-norm(X, b))(x), and

(iv) (sum-norm(X, b))(x+ y) ¬ (sum-norm(X, b))(x) + (sum-norm(X, b))
(y).

The theorem is a consequence of (12).

(20) (i) 0 ¬ (Euclid-norm(X, b))(x), and

(ii) (Euclid-norm(X, b))(x) = 0 iff x = 0X , and

(iii) (Euclid-norm(X, b))(a · x) = |a| · (Euclid-norm(X, b))(x), and

(iv) (Euclid-norm(X, b))(x+y) ¬ (Euclid-norm(X, b))(x)+(Euclid-norm
(X, b))(y).

(21) Let us consider a finite dimensional real linear space X, an ordered basis
b of RLSp2RVSp(X), and an element x of X. Suppose dim(X) 6= 0. Then
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(i) (sum-norm(X, b))(x) ¬ (dim(X)) · (max-norm(X, b))(x), and

(ii) (max-norm(X, b))(x) ¬ (Euclid-norm(X, b))(x) ¬ (sum-norm(X, b))

(x).

The theorem is a consequence of (13).

(22) Let us consider a finite dimensional real linear space V , and an ordered
basis b of RLSp2RVSp(V ). Suppose dim(V ) 6= 0. Then there exists a linear
operator S from V into 〈Edim(V ), ‖ · ‖〉 such that

(i) S is bijective, and

(ii) for every element x of RLSp2RVSp(V ), S(x) = x→ b.

The theorem is a consequence of (15).

(23) Let us consider a finite dimensional real normed space V . Suppose dim(V )
6= 0. Then there exists a linear operator S from V into 〈Edim(V ), ‖ · ‖〉
and there exists a finite dimensional vector space W over RF and there
exists an ordered basis b of W such that W = RLSp2RVSp(V ) and S is
bijective and for every element x of W , S(x) = x → b. The theorem is
a consequence of (15).

(24) Let us consider a real normed space V , a finite dimensional real linear
space W , and an ordered basis b of RLSp2RVSp(W ). Suppose V is finite
dimensional and dim(V ) 6= 0 and the RLS structure of V = the RLS
structure of W . Then there exist real numbers k1, k2 such that

(i) 0 < k1, and

(ii) 0 < k2, and

(iii) for every point x of V , ‖x‖ ¬ k1·(max-norm(W, b))(x) and (max-norm

(W, b))(x) ¬ k2 · ‖x‖.

Proof: Reconsider e = b as a finite sequence of elements of W . Reconsider
e1 = e as a finite sequence of elements of V . Define F(natural number) =
‖e1/$1‖(∈ R). Consider k being a finite sequence of elements of R such that
len k = len b and for every natural number i such that i ∈ dom k holds
k(i) = F(i). Set k1 =

∑
k. For every natural number i such that i ∈ dom k

holds 0 ¬ k(i). For every point x of V , ‖x‖ ¬ (k1+1)·(max-norm(W, b))(x)
by [6, (12), (15)], [8, (7)].

Consider S0 being a linear operator from W into 〈Edim(W ), ‖ · ‖〉 such
that S0 is bijective and for every element x of RLSp2RVSp(W ), S0(x) =
x→ b. Reconsider S = S0 as a function from the carrier of V into the car-
rier of 〈Edim(W ), ‖·‖〉. For every elements x, y of V , S(x+y) = S(x)+S(y).
For every real number a and for every vector x of V , S(a · x) = a · S(x).
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Consider T being a linear operator from 〈Edim(W ), ‖·‖〉 into V such that
T = S−1 and T is one-to-one and onto. For every element x of V , ‖x‖ ¬
(k1+1) · ‖S(x)‖. For every element y of 〈Edim(W ), ‖ ·‖〉, ‖T (y)‖ ¬ (k1+1) ·
‖y‖. Set C2 = {y, where y is an element of V : (max-norm(W, b))(y) = 1}.

Set C1 = {x, where x is an element of 〈Edim(W ), ‖ · ‖〉 : (max-norm(dim
(W )))(x) = 1}. For every object z such that z ∈ C2 holds z ∈ the carrier
of V . For every object z such that z ∈ C1 holds z ∈ the carrier of
〈Edim(W ), ‖ · ‖〉. Consider z5 being a point of 〈Edim(W ), ‖ · ‖〉 such that z5 6=
0〈Edim(W ),‖·‖〉. Reconsider z6 = z5 as an element ofRdim(W ). (max-norm(dim
(W )))(z6) 6= 0. 0 < (max-norm(dim(W )))(z5). For every object y, y ∈
T ◦C1 iff y ∈ C2. Reconsider g = max-norm(dim(W )) as a function from
the carrier of 〈Edim(W ), ‖ · ‖〉 into R. Set D = the carrier of 〈Edim(W ), ‖ · ‖〉.
For every point x0 of 〈Edim(W ), ‖ ·‖〉 and for every real number r such that
x0 ∈ D and 0 < r there exists a real number s such that 0 < s and for
every point x1 of 〈Edim(W ), ‖ ·‖〉 such that x1 ∈ D and ‖x1−x0‖ < s holds
|g/x1 − g/x0 | < r.

For every sequence s1 of 〈Edim(W ), ‖ · ‖〉 such that rng s1 ⊆ C1 and s1 is
convergent holds lim s1 ∈ C1. There exists a real number r such that for
every point y of 〈Edim(W ), ‖ · ‖〉 such that y ∈ C1 holds ‖y‖ < r by (13), [3,
(1)]. Reconsider f = idC2 as a partial function from V to V . Consider y0
being an element of V such that y0 ∈ dom‖f‖ and inf rng‖f‖ = ‖f‖(y0).
Set k2 = ‖f/y0‖. For every element x of V such that x ∈ C2 holds k2 ¬ ‖x‖.
k2 6= 0. For every point x of V , (max-norm(W, b))(x) ¬ 1

k2
· ‖x‖. �

(25) Let us consider real normed spaces X, Y. Suppose the RLS structure of
X = the RLS structure of Y and X is finite dimensional and dim(X) 6= 0.
Then there exist real numbers k1, k2 such that

(i) 0 < k1, and

(ii) 0 < k2, and

(iii) for every element x of X and for every element y of Y such that x = y

holds ‖x‖ ¬ k1 · ‖y‖ and ‖y‖ ¬ k2 · ‖x‖.

The theorem is a consequence of (24).

(26) Let us consider a real normed space V . Suppose V is finite dimensional
and dim(V ) 6= 0. Then there exist real numbers k1, k2 and there exists
a linear operator S from V into 〈Edim(V ), ‖ · ‖〉 such that S is bijective and
0 ¬ k1 and 0 ¬ k2 and for every element x of V , ‖S(x)‖ ¬ k1 · ‖x‖ and
‖x‖ ¬ k2 · ‖S(x)‖. The theorem is a consequence of (23), (24), and (21).
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3. Linear Isometry and its Topological Properties

Let V , W be real normed spaces and L be a linear operator from V into W .
We say that L is isometric-like if and only if

(Def. 6) there exist real numbers k1, k2 such that 0 ¬ k1 and 0 ¬ k2 and for
every element x of V , ‖L(x)‖ ¬ k1 · ‖x‖ and ‖x‖ ¬ k2 · ‖L(x)‖.

Now we state the proposition:

(27) Let us consider a finite dimensional real normed space V . Suppose dim(V )
6= 0. Then there exists a linear operator L from V into 〈Edim(V ), ‖ · ‖〉 such
that L is one-to-one, onto, and isometric-like.
The theorem is a consequence of (26).

Let us consider real normed spaces V , W and a linear operator L from V

into W . Now we state the propositions:

(28) Suppose L is one-to-one, onto, and isometric-like. Then there exists a li-
near operator K from W into V such that

(i) K = L−1, and

(ii) K is one-to-one, onto, and isometric-like.

Proof: Consider K being a linear operator from W into V such that
K = L−1 andK is one-to-one and onto. Consider k1, k2 being real numbers
such that 0 ¬ k1 and 0 ¬ k2 and for every element x of V , ‖L(x)‖ ¬ k1 ·‖x‖
and ‖x‖ ¬ k2 · ‖L(x)‖. For every element y of W , ‖K(y)‖ ¬ k2 · ‖y‖ and
‖y‖ ¬ k1 · ‖K(y)‖. �

(29) If L is one-to-one, onto, and isometric-like, then L is Lipschitzian.

(30) If L is one-to-one, onto, and isometric-like, then L is continuous on
the carrier of V .

(31) Let us consider real normed spaces S, T , a linear operator I from S into
T , and a point x of S. If I is one-to-one, onto, and isometric-like, then I

is continuous in x.
The theorem is a consequence of (29).

(32) Let us consider real normed spaces S, T , a linear operator I from S into
T , and a subset Z of S. If I is one-to-one, onto, and isometric-like, then I
is continuous on Z.
The theorem is a consequence of (31).

Let us consider real normed spaces S, T , a linear operator I from S into T ,
and a sequence s1 of S. Now we state the propositions:

(33) Suppose I is one-to-one, onto, and isometric-like and s1 is convergent.
Then



Finite dimensional real normed spaces are proper metric ... 183

(i) I · s1 is convergent, and

(ii) lim I · s1 = I(lim s1).

The theorem is a consequence of (31).

(34) If I is one-to-one, onto, and isometric-like, then s1 is convergent iff I · s1
is convergent. The theorem is a consequence of (28) and (33).

Let us consider real normed spaces S, T , a linear operator I from S into T ,
and a subset Z of S. Now we state the propositions:

(35) If I is one-to-one, onto, and isometric-like, then Z is closed iff I◦Z is
closed.
Proof: Consider J being a linear operator from T into S such that J =
I−1 and J is one-to-one, onto, and isometric-like. Z is closed iff I◦Z is
closed. �

(36) If I is one-to-one, onto, and isometric-like, then Z is open iff I◦Z is open.
The theorem is a consequence of (28) and (35).

(37) If I is one-to-one, onto, and isometric-like, then Z is compact iff I◦Z is
compact.
Proof: Consider J being a linear operator from T into S such that J =
I−1 and J is one-to-one, onto, and isometric-like. If I◦Z is compact, then
Z is compact. �

(38) Let us consider a finite dimensional real normed space V , and a subset
X of V . Suppose dim(V ) 6= 0. Then X is compact if and only if X is
closed and there exists a real number r such that for every point y of V
such that y ∈ X holds ‖y‖ < r. The theorem is a consequence of (6), (27),
(35), and (37).
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(4) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a partial function f from X to R. Suppose f is
simple function in S. Then

(i) max+(f) is simple function in S, and

(ii) max−(f) is simple function in S.

Proof: Consider F being a finite sequence of separated subsets of S such
that dom f =

⋃
rngF and for every natural number n and for every

elements x, y of X such that n ∈ domF and x, y ∈ F (n) holds f(x) =
f(y). For every natural number n and for every elements x, y of X such
that n ∈ domF and x, y ∈ F (n) holds (max+(f))(x) = (max+(f))(y).
For every natural number n and for every elements x, y of X such that
n ∈ domF and x, y ∈ F (n) holds (max−(f))(x) = (max−(f))(y). �

Let us consider real numbers a, b. Now we state the propositions:

(5) Suppose a ¬ b. Then

(i) (B-Meas)([a, b]) = b− a, and

(ii) (B-Meas)([a, b[) = b− a, and

(iii) (B-Meas)(]a, b]) = b− a, and

(iv) (B-Meas)(]a, b[) = b− a, and

(v) (L-Meas)([a, b]) = b− a, and

(vi) (L-Meas)([a, b[) = b− a, and

(vii) (L-Meas)(]a, b]) = b− a, and

(viii) (L-Meas)(]a, b[) = b− a.

(6) Suppose a > b. Then

(i) (B-Meas)([a, b]) = 0, and

(ii) (B-Meas)([a, b[) = 0, and

(iii) (B-Meas)(]a, b]) = 0, and

(iv) (B-Meas)(]a, b[) = 0, and

(v) (L-Meas)([a, b]) = 0, and

(vi) (L-Meas)([a, b[) = 0, and

(vii) (L-Meas)(]a, b]) = 0, and

(viii) (L-Meas)(]a, b[) = 0.

(7) Let us consider an element A1 of the Borel sets, an element A2 of L-Field,
and a partial function f from R to R. If A1 = A2 and f is A1-measurable,
then f is A2-measurable.
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(8) Let us consider real numbers a, b, and a non empty, closed interval subset
A of R. Suppose a < b and A = [a, b]. Let us consider a natural number
n. If n > 0, then there exists a partition D of A such that D divides into
equal n.

Let F be a finite sequence of elements of the Borel sets and n be a natural
number. One can check that the functor F (n) yields an extended real-membered
set. Now we state the proposition:

(9) Let us consider real numbers a, b, a non empty, closed interval subset A
of R, and a partition D of A. Suppose A = [a, b]. Then there exists a finite
sequence F of separated subsets of the Borel sets such that

(i) domD = domF , and

(ii)
⋃

rngF = A, and

(iii) for every natural number k such that k ∈ domF holds if lenD = 1,
then F (k) = [a, b] and if lenD 6= 1, then if k = 1, then F (k) =
[a,D(k)[ and if 1 < k < lenD, then F (k) = [D(k −′ 1), D(k)[ and if
k = lenD, then F (k) = [D(k −′ 1), D(k)].

Proof: Define P[natural number, set] ≡ if lenD = 1, then $2 = [a, b] and
if lenD 6= 1, then if $1 = 1, then $2 = [a,D($1)[ and if 1 < $1 < lenD, then
$2 = [D($1 −′ 1), D($1)[ and if $1 = lenD, then $2 = [D($1 −′ 1), D($1)].
For every natural number k such that k ∈ Seg lenD there exists an element
x of the Borel sets such that P[k, x] by [4, (5)]. Consider F being a finite
sequence of elements of the Borel sets such that domF = Seg lenD and
for every natural number k such that k ∈ Seg lenD holds P[k, F (k)]. For
every objects x, y such that x 6= y holds F (x) misses F (y). For every
natural number k such that k ∈ domF and k 6= lenD holds

⋃
rng(F �k) =

[a,D(k)[.
⋃

rngF = A. �

Let us consider real numbers a, b, a non empty, closed interval subset A of
R, a partition D of A, and a partial function f from A to R. Now we state the
propositions:

(10) Suppose A = [a, b]. Then there exists a finite sequence F of separated
subsets of the Borel sets and there exists a partial function g from R to R
such that domF = domD and

⋃
rngF = A and for every natural number

k such that k ∈ domF holds if lenD = 1, then F (k) = [a, b] and if
lenD 6= 1, then if k = 1, then F (k) = [a,D(k)[ and if 1 < k < lenD, then
F (k) = [D(k −′ 1), D(k)[ and if k = lenD, then F (k) = [D(k −′ 1), D(k)]
and g is simple function in the Borel sets and dom g = A and for every
real number x such that x ∈ dom g there exists a natural number k such
that 1 ¬ k ¬ lenF and x ∈ F (k) and g(x) = inf rng(f� divset(D, k)).
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Proof: Consider F being a finite sequence of separated subsets of the Bo-
rel sets such that domF = domD and

⋃
rngF = A and for every natural

number k such that k ∈ domF holds if lenD = 1, then F (k) = [a, b] and if
lenD 6= 1, then if k = 1, then F (k) = [a,D(k)[ and if 1 < k < lenD, then
F (k) = [D(k −′ 1), D(k)[ and if k = lenD, then F (k) = [D(k −′ 1), D(k)].

Define P[object, object] ≡ there exists a natural number k such that
1 ¬ k ¬ lenF and $1 ∈ F (k) and $2 = inf rng(f� divset(D, k)). Consider g
being a partial function from R to R such that for every object x, x ∈ dom g

iff x ∈ R and there exists an object y such that P[x, y] and for every object
x such that x ∈ dom g holds P[x, g(x)]. For every natural number k and
for every elements x, y of R such that k ∈ domF and x, y ∈ F (k) holds
g(x) = g(y). �

(11) Suppose A = [a, b]. Then there exists a finite sequence F of separated
subsets of the Borel sets and there exists a partial function g from R to R
such that domF = domD and

⋃
rngF = A and for every natural number

k such that k ∈ domF holds if lenD = 1, then F (k) = [a, b] and if
lenD 6= 1, then if k = 1, then F (k) = [a,D(k)[ and if 1 < k < lenD, then
F (k) = [D(k −′ 1), D(k)[ and if k = lenD, then F (k) = [D(k −′ 1), D(k)]
and g is simple function in the Borel sets and dom g = A and for every
real number x such that x ∈ dom g there exists a natural number k such
that 1 ¬ k ¬ lenF and x ∈ F (k) and g(x) = sup rng(f� divset(D, k)).
Proof: Consider F being a finite sequence of separated subsets of the Bo-
rel sets such that domF = domD and

⋃
rngF = A and for every natural

number k such that k ∈ domF holds if lenD = 1, then F (k) = [a, b] and if
lenD 6= 1, then if k = 1, then F (k) = [a,D(k)[ and if 1 < k < lenD, then
F (k) = [D(k −′ 1), D(k)[ and if k = lenD, then F (k) = [D(k −′ 1), D(k)].

Define P[object, object] ≡ there exists a natural number k such that
1 ¬ k ¬ lenF and $1 ∈ F (k) and $2 = sup rng(f� divset(D, k)). Consider g
being a partial function from R to R such that for every object x, x ∈ dom g

iff x ∈ R and there exists an object y such that P[x, y] and for every object
x such that x ∈ dom g holds P[x, g(x)]. For every natural number k and
for every elements x, y of R such that k ∈ domF and x, y ∈ F (k) holds
g(x) = g(y). �

(12) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, a finite sequence
F of separated subsets of S, a finite sequence a of elements of R, and
a natural number n. Suppose f is simple function in S and F and a are
representation of f and n ∈ domF . Then

(i) F (n) = ∅, or
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(ii) a(n) is a real number.

Let A be a non empty, closed interval subset of R and n be a natural number.
Assume n > 0 and vol(A) > 0. The functor EqDiv(A,n) yielding a partition of
A is defined by

(Def. 1) it divides into equal n.

Now we state the propositions:

(13) Let us consider a non empty, closed interval subset A of R, and a natural
number n. If vol(A) > 0 and len EqDiv(A, 2n) = 1, then n = 0.

(14) Let us consider real numbers a, b, and a non empty, closed interval subset
A of R. Suppose a < b and A = [a, b]. Then there exists a division sequence
D of A such that for every natural number n, D(n) divides into equal 2n.
Proof: Define P[natural number, object] ≡ there exists a partition D of
A such that D = $2 and D divides into equal 2$1 . For every element n
of N, there exists an element D of divsA such that P[n,D]. Consider D
being a function from N into divsA such that for every element n of N,
P[n,D(n)]. For every natural number n, D(n) divides into equal 2n. �

(15) Let us consider a non empty, closed interval subset A of R, a partition
D of A, and natural numbers n, k. Suppose D divides into equal n and
k ∈ domD. Then vol(divset(D, k)) = vol(A)

n .

(16) Let us consider a complex number x, and a natural number r. If x 6= 0,
then (xr)−1 = (x−1)r.

(17) Let us consider a non empty, closed interval subset A of R, and a sequence
T of divsA. Suppose vol(A) > 0 and for every natural number n, T (n) =
EqDiv(A, 2n). Then δT is 0-convergent and non-zero.
Proof: For every natural number n, (δT )(n) = 2 · (vol(A)) · ((2−1)n+1).
Define S(natural number) = (2−1)$1+1. Consider s being a sequence of real
numbers such that for every natural number n, s(n) = S(n). For every
natural number n, (δT )(n) = 2 · (vol(A)) · s(n). �

(18) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, an element E of S, a partial function f from X to R,
a finite sequence F of separated subsets of S, and finite sequences a, x
of elements of R. Suppose f is simple function in S and E = dom f and
M(E) < +∞ and F and a are representation of f and domx = domF and
for every natural number i such that i ∈ domx holds x(i) = a(i)·(M ·F )(i).
Then

∫
f dM =

∑
x.

Proof: max+(f) is simple function in S and max−(f) is simple function
in S. Define P[natural number, extended real] ≡ for every object x such
that x ∈ F ($1) holds $2 = max(f(x), 0). For every natural number k such
that k ∈ Seg len a there exists an element y of R such that P[k, y]. Consider
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a1 being a finite sequence of elements of R such that dom a1 = Seg len a
and for every natural number k such that k ∈ Seg len a holds P[k, a1(k)].
For every natural number k such that k ∈ domF for every object x

such that x ∈ F (k) holds (max+(f))(x) = a1(k). Define Q[natural
number, extended real] ≡ $2 = a1($1) · (M · F )($1). Consider x1 being
a finite sequence of elements of R such that domx1 = Seg lenF and for
every natural number k such that k ∈ Seg lenF holds Q[k, x1(k)]. Reconsi-
der r1 = x1 as a finite sequence of elements of R.

∫ ′max+(f) dM =
∑
x1.

Define P[natural number, extended real] ≡ for every object x such that
x ∈ F ($1) holds $2 = max(−f(x), 0). For every natural number k such
that k ∈ Seg len a there exists an element y of R such that P[k, y]. Consider
a2 being a finite sequence of elements of R such that dom a2 = Seg len a
and for every natural number k such that k ∈ Seg len a holds P[k, a2(k)].
For every natural number k such that k ∈ domF for every object x

such that x ∈ F (k) holds (max−(f))(x) = a2(k). Define Q[natural
number, extended real] ≡ $2 = a2($1) · (M · F )($1). Consider x2 being
a finite sequence of elements of R such that domx2 = Seg lenF and for
every natural number k such that k ∈ Seg lenF holds Q[k, x2(k)]. Reconsi-
der r2 = x2 as a finite sequence of elements of R.

∫ ′max−(f) dM =
∑
x2.

For every object k such that k ∈ domx holds x(k) = (r1 − r2)(k). �

Let us consider a non empty, closed interval subset A of R, a partial function
f from A to R, and a partition D of A. Now we state the propositions:

(19) Suppose f is bounded and A ⊆ dom f . Then there exists a finite sequence
F of separated subsets of the Borel sets and there exists a partial function
g from R to R such that domF = domD and

⋃
rngF = A and for every

natural number k such that k ∈ domF holds if lenD = 1, then F (k) =
[inf A, supA] and if lenD 6= 1, then if k = 1, then F (k) = [inf A,D(k)[
and if 1 < k < lenD, then F (k) = [D(k−′ 1), D(k)[ and if k = lenD, then
F (k) = [D(k−′ 1), D(k)] and g is simple function in the Borel sets and for
every real number x such that x ∈ dom g there exists a natural number k
such that 1 ¬ k ¬ lenF and x ∈ F (k) and g(x) = inf rng(f� divset(D, k))
and dom g = A and

∫
g d B-Meas = lower sum(f,D) and for every real

number x such that x ∈ A holds inf rng f ¬ g(x) ¬ f(x).
Proof: Consider a, b being real numbers such that a ¬ b and A = [a, b].
Consider F being a finite sequence of separated subsets of the Borel sets,
g being a partial function from R to R such that domF = domD and⋃

rngF = A and for every natural number k such that k ∈ domF holds if
lenD = 1, then F (k) = [a, b] and if lenD 6= 1, then if k = 1, then F (k) =
[a,D(k)[ and if 1 < k < lenD, then F (k) = [D(k −′ 1), D(k)[ and if k =
lenD, then F (k) = [D(k−′ 1), D(k)] and g is simple function in the Borel
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sets and dom g = A and for every real number x such that x ∈ dom g

there exists a natural number k such that 1 ¬ k ¬ lenF and x ∈ F (k)
and g(x) = inf rng(f� divset(D, k)). Define H[natural number, extended
real] ≡ $2 = inf rng(f� divset(D, $1)) and $2 is a real number. For every
natural number k such that k ∈ Seg lenF there exists an element r of R
such that H[k, r].

Consider h being a finite sequence of elements of R such that domh =
Seg lenF and for every natural number k such that k ∈ Seg lenF holds
H[k, h(k)]. For every natural number k such that k ∈ domF for eve-
ry object x such that x ∈ F (k) holds g(x) = h(k). Define Z[natural
number, extended real] ≡ $2 = h($1) · ((B-Meas) · F )($1) and $2 is a real
number. For every natural number k such that k ∈ Seg lenF there exists
an element r of R such that Z[k, r]. Consider z being a finite sequence of
elements of R such that dom z = Seg lenF and for every natural number
k such that k ∈ Seg lenF holds Z[k, z(k)].

∫
g d B-Meas =

∑
z. For every

object p such that p ∈ dom z holds z(p) = (lower volume(f,D))(p). For
every real number x such that x ∈ A holds inf rng f ¬ g(x) ¬ f(x). �

(20) Suppose f is bounded and A ⊆ dom f . Then there exists a finite sequence
F of separated subsets of the Borel sets and there exists a partial function
g from R to R such that domF = domD and

⋃
rngF = A and for every

natural number k such that k ∈ domF holds if lenD = 1, then F (k) =
[inf A, supA] and if lenD 6= 1, then if k = 1, then F (k) = [inf A,D(k)[
and if 1 < k < lenD, then F (k) = [D(k−′ 1), D(k)[ and if k = lenD, then
F (k) = [D(k−′ 1), D(k)] and g is simple function in the Borel sets and for
every real number x such that x ∈ dom g there exists a natural number k
such that 1 ¬ k ¬ lenF and x ∈ F (k) and g(x) = sup rng(f� divset(D, k))
and dom g = A and

∫
g d B-Meas = upper sum(f,D) and for every real

number x such that x ∈ A holds sup rng f  g(x)  f(x).
Proof: Consider a, b being real numbers such that a ¬ b and A = [a, b].
Consider F being a finite sequence of separated subsets of the Borel sets,
g being a partial function from R to R such that domF = domD and⋃

rngF = A and for every natural number k such that k ∈ domF holds
if lenD = 1, then F (k) = [a, b] and if lenD 6= 1, then if k = 1, then
F (k) = [a,D(k)[ and if 1 < k < lenD, then F (k) = [D(k −′ 1), D(k)[
and if k = lenD, then F (k) = [D(k −′ 1), D(k)] and g is simple function
in the Borel sets and dom g = A and for every real number x such that
x ∈ dom g there exists a natural number k such that 1 ¬ k ¬ lenF
and x ∈ F (k) and g(x) = sup rng(f� divset(D, k)). Define H[natural
number, extended real] ≡ $2 = sup rng(f� divset(D, $1)) and $2 is a real
number. For every natural number k such that k ∈ Seg lenF there exists



192 noboru endou

an element r of R such that H[k, r].
Consider h being a finite sequence of elements of R such that domh =

Seg lenF and for every natural number k such that k ∈ Seg lenF holds
H[k, h(k)]. For every natural number k such that k ∈ domF for eve-
ry object x such that x ∈ F (k) holds g(x) = h(k). Define Z[natural
number, extended real] ≡ $2 = h($1) · (B-Meas ·F )($1) and $2 is a real
number. For every natural number k such that k ∈ Seg lenF there exists
an element r of R such that Z[k, r]. Consider z being a finite sequence of
elements of R such that dom z = Seg lenF and for every natural number
k such that k ∈ Seg lenF holds Z[k, z(k)].

∫
g d B-Meas =

∑
z. For every

object p such that p ∈ dom z holds z(p) = upper volume(f,D)(p). For
every real number x such that x ∈ A holds sup rng f  g(x)  f(x). �

Let us consider a non empty, closed interval subset A of R and a partial
function f from A to R. Now we state the propositions:

(21) Suppose f is bounded and A ⊆ dom f and vol(A) > 0. Then there exists
a sequence F of partial functions from R into R with the same dom and
there exists a sequence I of extended reals such that A = dom(F (0)) and
for every natural number n, F (n) is simple function in the Borel sets and∫
F (n) d B-Meas = lower sum(f,EqDiv(A, 2n)) and for every real number

x such that x ∈ A holds inf rng f ¬ F (n)(x) ¬ f(x) and for every natural
numbers n, m such that n ¬ m for every element x of R such that x ∈ A
holds F (n)(x) ¬ F (m)(x) and for every element x of R such that x ∈ A
holds F#x is convergent and lim(F#x) = sup(F#x) and sup(F#x) ¬
f(x) and limF is integrable on B-Meas and for every natural number n,
I(n) =

∫
F (n) d B-Meas and I is convergent and lim I =

∫
limF d B-Meas.

Proof: Define P[natural number, partial function from R to R] ≡ A =
dom $2 and $2 is simple function in the Borel sets and

∫
$2 d B-Meas =

lower sum(f,EqDiv(A, 2$1)) and for every real number x such that x ∈ A
holds inf rng f ¬ $2(x) ¬ f(x) and there exists a finite sequence K of se-
parated subsets of the Borel sets such that domK = dom(EqDiv(A, 2$1))
and

⋃
rngK = A.

For every natural number k such that k ∈ domK holds if len EqDiv(A,
2$1) = 1, then K(k) = [inf A, supA] and if len EqDiv(A, 2$1) 6= 1, then if
k = 1, thenK(k) = [inf A, (EqDiv(A, 2$1))(k)[ and if 1 < k < len EqDiv(A,
2$1), then K(k) = [(EqDiv(A, 2$1))(k−′ 1), (EqDiv(A, 2$1))(k)[ and if k =
len EqDiv(A, 2$1), thenK(k) = [(EqDiv(A, 2$1))(k−′1), (EqDiv(A, 2$1))(k)]
and for every real number x such that x ∈ dom $2 there exists a na-
tural number k such that 1 ¬ k ¬ lenK and x ∈ K(k) and $2(x) =
inf rng(f� divset(EqDiv(A, 2$1), k)). For every element n of N, there exists
an element g of R→̇R such that P[n, g].
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Consider F being a function from N into R→̇R such that for every
element n of N, P[n, F (n)]. For every natural numbers n, m, dom(F (n)) =
dom(F (m)). For every natural number n, F (n) is simple function in the Bo-
rel sets and

∫
F (n) d B-Meas = lower sum(f,EqDiv(A, 2n)) and for every

real number x such that x ∈ A holds inf rng f ¬ F (n)(x) ¬ f(x). For
every natural numbers n, m such that n ¬ m for every element x of R
such that x ∈ A holds F (n)(x) ¬ F (m)(x). For every element x of R
such that x ∈ A holds F#x is convergent and lim(F#x) = sup(F#x) and
sup(F#x) ¬ f(x). Consider a, b being real numbers such that a ¬ b and
A = [a, b]. Reconsider K = max(| inf rng f |, | sup rng f |) as a real number.
For every natural number n and for every set x such that x ∈ dom(F (0))
holds |F (n)(x)| ¬ K. �

(22) Suppose f is bounded and A ⊆ dom f and vol(A) > 0. Then there exists
a sequence F of partial functions from R into R with the same dom and
there exists a sequence I of extended reals such that A = dom(F (0)) and
for every natural number n, F (n) is simple function in the Borel sets and∫
F (n) d B-Meas = upper sum(f,EqDiv(A, 2n)) and for every real number

x such that x ∈ A holds sup rng f  F (n)(x)  f(x) and for every natural
numbers n, m such that n ¬ m for every element x of R such that x ∈ A
holds F (n)(x)  F (m)(x) and for every element x of R such that x ∈ A
holds F#x is convergent and lim(F#x) = inf(F#x) and inf(F#x) 
f(x) and limF is integrable on B-Meas and for every natural number n,
I(n) =

∫
F (n) d B-Meas and I is convergent and lim I =

∫
limF d B-Meas.

Proof: Define P[natural number, partial function from R to R] ≡ A =
dom $2 and $2 is simple function in the Borel sets and

∫
$2 d B-Meas =

upper sum(f,EqDiv(A, 2$1)) and for every real number x such that x ∈ A
holds sup rng f  $2(x)  f(x) and there exists a finite sequence K of se-
parated subsets of the Borel sets such that domK = dom(EqDiv(A, 2$1))
and

⋃
rngK = A.

For every natural number k such that k ∈ domK holds if len EqDiv(A,
2$1) = 1, then K(k) = [inf A, supA] and if len EqDiv(A, 2$1) 6= 1, then if
k = 1, thenK(k) = [inf A, (EqDiv(A, 2$1))(k)[ and if 1 < k < len EqDiv(A,
2$1), then K(k) = [(EqDiv(A, 2$1))(k−′ 1), (EqDiv(A, 2$1))(k)[ and if k =
len EqDiv(A, 2$1), thenK(k) = [(EqDiv(A, 2$1))(k−′1), (EqDiv(A, 2$1))(k)]
and for every real number x such that x ∈ dom $2 there exists a na-
tural number k such that 1 ¬ k ¬ lenK and x ∈ K(k) and $2(x) =
sup rng(f� divset(EqDiv(A, 2$1), k)).

For every element n of N, there exists an element g of R→̇R such
that P[n, g]. Consider F being a function from N into R→̇R such that
for every element n of N, P[n, F (n)]. For every natural numbers n, m,
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dom(F (n)) = dom(F (m)). For every natural number n, F (n) is simple
function in the Borel sets and

∫
F (n) d B-Meas = upper sum(f,EqDiv(A,

2n)) and for every real number x such that x ∈ A holds sup rng f 
F (n)(x)  f(x). For every natural numbers n, m such that n ¬ m for
every element x of R such that x ∈ A holds F (n)(x)  F (m)(x). For
every element x of R such that x ∈ A holds F#x is convergent and
lim(F#x) = inf(F#x) and inf(F#x)  f(x) by [7, (7),(36)]. Consi-
der a, b being real numbers such that a ¬ b and A = [a, b]. Set K =
max(| inf rng f |, | sup rng f |). For every natural number n and for every set
x such that x ∈ dom(F (0)) holds |F (n)(x)| ¬ K. �

2. Properties of Complete Measure Space

Now we state the propositions:

(23) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, an element E of S,
and a natural number n. Suppose E = dom f and f is non-negative and
E-measurable and

∫
f dM = 0. Then M(E ∩GTE-dom(f, 1n+1)) = 0.

(24) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and an element E
of S. Suppose E = dom f and f is non-negative and E-measurable and∫
f dM = 0. Then M(E ∩GT-dom(f, 0)) = 0.
Proof: Define P[natural number, object] ≡ $2 = E ∩GTE-dom(f, 1

$1+1
).

For every element n of N, there exists an element y of S such that P[n, y].
Consider F being a function from N into S such that for every element n
of N, P[n, F (n)]. For every element n of N, (M · F )(n) = 0. �

(25) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and an element E
of S. Suppose E = dom f and f is non-negative and E-measurable and∫
f dM = 0. Then f =M

a.e. (X 7−→ 0)�E. The theorem is a consequence of
(24).

(26) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, partial functions f , g from X to R, and an element E1
of S. Suppose M is complete and f is E1-measurable and f =M

a.e. g and
E1 = dom f . Then g is E1-measurable.
Proof: Consider E being an element of S such that M(E) = 0 and
f�Ec = g�Ec. For every real number r, E1 ∩ LE-dom(R(g), r) ∈ S. �

(27) Let us consider a set X, a σ-field S of subsets of X, and a σ-measure M
on S. Then every element of S is an element of COM(S,M).
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(28) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and partial functions f , g from X to R. If f =M

a.e. g,
then f =COM(M)a.e. g. The theorem is a consequence of (27).

(29) Let us consider partial functions f , g from R to R. Suppose f =B-Measa.e. g.
Then f =L-Measa.e. g.

(30) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, an element E1 of S, an element E2 of COM(S,M), and
a partial function f from X to R. If E1 = E2 and f is E1-measurable,
then f is E2-measurable. The theorem is a consequence of (27).

(31) Let us consider an element E1 of the Borel sets, an element E2 of L-Field,
and a partial function f from R to R. If E1 = E2 and f is E1-measurable,
then f is E2-measurable.

(32) Let us consider a set X, a σ-field S of subsets of X, and a σ-measure M
on S. Then every finite sequence of separated subsets of S is a finite sequ-
ence of separated subsets of COM(S,M). The theorem is a consequence
of (27).

(33) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a partial function f from X to R. If f is simple
function in S, then f is simple function in COM(S,M). The theorem is
a consequence of (32).

(34) Let us consider a set X, a σ-field S of subsets of X, and a σ-measure M
on S. Then ∅ is a set with measure zero w.r.t. M .

(35) Let us consider a set X, a σ-field S of subsets of X, a σ-measure M on
S, and an element E of S. Then M(E) = COM(M)(E). The theorem is
a consequence of (34).

(36) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a partial function f from X to R. Suppose f is simple

function in S and f is non-negative. Then
∫
f

M(x)dx =
∫
f

COM(M)(x)dx.

Proof: Consider F being a finite sequence of separated subsets of S, a, x
being finite sequences of elements of R such that F and a are representation
of f and a(1) = 0R and for every natural number n such that 2 ¬ n and
n ∈ dom a holds 0R < a(n) < +∞ and domx = domF and for every
natural number n such that n ∈ domx holds x(n) = a(n) · (M · F )(n)

and
∫
f

M(x)dx =
∑

x. f is simple function in COM(S,M). Reconsider

F1 = F as a finite sequence of separated subsets of COM(S,M). For every
natural number n such that n ∈ domx holds x(n) = a(n) · (COM(M) ·
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F1)(n). �

(37) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and an element E
of S. Suppose E = dom f and f is E-measurable and non-negative. Then∫+ f dM =

∫+ f dCOM(M).
Proof: Consider F being a sequence of partial functions from X into
R such that for every natural number n, F (n) is simple function in S

and dom(F (n)) = dom f and for every natural number n, F (n) is non-
negative and for every natural numbers n, m such that n ¬ m for every
element x of X such that x ∈ dom f holds F (n)(x) ¬ F (m)(x) and for
every element x of X such that x ∈ dom f holds F#x is convergent and
lim(F#x) = f(x). Reconsider g = F (0) as a partial function from X to
R. For every element x of X such that x ∈ dom g holds F#x is convergent
and g(x) ¬ lim(F#x).

Consider K being a sequence of extended reals such that for every na-
tural number n, K(n) =

∫ ′ F (n) dM and K is convergent and sup rngK =
limK and

∫ ′ g dM ¬ limK. Reconsider E1 = E as an element of COM(S,
M). f is E1-measurable. For every natural number n, F (n) is simple func-
tion in COM(S,M) and dom(F (n)) = dom f . For every natural number
n, K(n) =

∫ ′ F (n) dCOM(M). �

(38) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a partial function f from X to R. Suppose f is
integrable on M . Then

(i) f is integrable on COM(M), and

(ii)
∫
f dM =

∫
f dCOM(M).

The theorem is a consequence of (27), (37), and (30).

3. Relation Between Riemann and Lebesgue Integrals

Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure
M on S, an element E of S, and partial functions f , g from X to R. Now we
state the propositions:

(39) If (E = dom f or E = dom g) and f =M
a.e. g, then f−g =M

a.e. (X 7−→ 0)�E.
Proof: Consider A being an element of S such that M(A) = 0 and
f�Ac = g�Ac. For every element x of X such that x ∈ dom((f − g)�Ac)
holds ((f − g)�Ac)(x) = (((X 7−→ 0)�E)�Ac)(x). �

(40) If E = dom(f − g) and f − g =M
a.e. (X 7−→ 0)�E, then f�E =M

a.e. g�E.
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Proof: Consider A being an element of S such that M(A) = 0 and
(f − g)�Ac = ((X 7−→ 0)�E)�Ac. For every element x of X such that
x ∈ dom((f�E)�Ac) holds ((f�E)�Ac)(x) = ((g�E)�Ac)(x). �

(41) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, an element E of S, and a partial function f from X

to R. Suppose E = dom f and M(E) < +∞ and f is bounded and E-
measurable. Then f is integrable on M .

(42) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and partial functions f , g from X to R. Then f =M

a.e. g

if and only if max+(f) =M
a.e. max+(g) and max−(f) =M

a.e. max−(g).
Proof: Consider E1 being an element of S such that M(E1) = 0 and
max+(f)�E1c = max+(g)�E1c. Consider E2 being an element of S such
that M(E2) = 0 and max−(f)�E2c = max−(g)�E2c. Set E = E1 ∪ E2.
For every element x of X such that x ∈ dom(f�Ec) holds (f�Ec)(x) =
(g�Ec)(x). �

(43) Let us consider a non empty set X, and a partial function f from X to
R. Then

(i) max+(R(f)) = R(max+(f)), and

(ii) max−(R(f)) = R(max−(f)).

(44) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, partial functions f , g from X to R, and an element E
of S. Suppose M is complete and f is integrable on M and f =M

a.e. g and
E = dom f and E = dom g. Then

(i) g is integrable on M , and

(ii)
∫
f dM =

∫
g dM .

The theorem is a consequence of (26), (43), and (42).

(45) Let us consider a partial function f from R to R, and a real number a.
Suppose a ∈ dom f . Then there exists an element A of the Borel sets such
that

(i) A = {a}, and

(ii) f is A-measurable, and

(iii) f�A is integrable on B-Meas, and

(iv)
∫
f�Ad B-Meas = 0.

(46) Let us consider a partial function f from R to R, and a real number a.
Suppose a ∈ dom f . Then there exists an element A of the Borel sets such
that
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(i) A = {a}, and

(ii) f is A-measurable, and

(iii) f�A is integrable on B-Meas, and

(iv)
∫
f�Ad B-Meas = 0.

The theorem is a consequence of (45).

(47) Let us consider a partial function f from R to R. Suppose f is integrable
on B-Meas. Then

(i) f is integrable on L-Meas, and

(ii)
∫
f d B-Meas =

∫
f d L-Meas.

(48) Let us consider a partial function f from R to R. Suppose f is integrable
on B-Meas. Then

(i) f is integrable on L-Meas, and

(ii)
∫
f d B-Meas =

∫
f d L-Meas.

The theorem is a consequence of (38).

(49) Let us consider a non empty, closed interval subset A of R, an element
A1 of L-Field, and a partial function f from R to R. Suppose A = A1 and
A ⊆ dom f and f � A is bounded and f is integrable on A. Then

(i) f is A1-measurable, and

(ii) f�A1 is integrable on L-Meas, and

(iii) integral f � A =
∫
f�Ad L-Meas.

The theorem is a consequence of (46), (30), (48), (21), (22), (17), (3), (25),
(29), (40), (26), (41), (38), and (44).

(50) Let us consider real numbers a, b, and a partial function f from R to
R. Suppose a ¬ b and [a, b] ⊆ dom f and f � [a, b] is bounded and f is

integrable on [a, b]. Then
b∫
a

f(x)dx =
∫
f�[a, b] d L-Meas. The theorem is

a consequence of (49).
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1. Preliminaries

Now we state the proposition:

(1) Let us consider a partial function f from R to R, and real numbers a,
b, c. Suppose a ¬ b ¬ c and [a, c] ⊆ dom f and f�[a, b] is bounded and
f�[b, c] is bounded and f is integrable on [a, b] and f is integrable on [b, c].
Then

(i) f is integrable on [a, c], and

(ii)
c∫
a

f(x)dx =
b∫
a

f(x)dx+
c∫
b

f(x)dx.

Let us consider a sequence s of real numbers. Now we state the propositions:
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(2) If s is divergent to +∞, then s is not divergent to −∞ and s is not
convergent.

(3) If s is divergent to −∞, then s is not divergent to +∞ and s is not
convergent.

Let us consider a partial function f from R to R and a real number x0. Now
we state the propositions:

(4) Suppose f is left convergent in x0 or left divergent to +∞ in x0 or left
divergent to −∞ in x0. Then there exists a sequence s of real numbers
such that

(i) s is convergent, and

(ii) lim s = x0, and

(iii) rng s ⊆ dom f ∩ ]−∞, x0[.
Proof: Define F [natural number, real number] ≡ x0 − 1

$1+1
< $2 < x0

and $2 ∈ dom f . For every element n of N, there exists an element r of
R such that F [n, r]. Consider s being a sequence of real numbers such
that for every element n of N, F [n, s(n)]. For every natural number n,
x0 − 1

n+1 < s(n) < x0 and s(n) ∈ dom f . �

(5) Suppose f is right convergent in x0 or right divergent to +∞ in x0 or
right divergent to −∞ in x0. Then there exists a sequence s of real numbers
such that

(i) s is convergent, and

(ii) lim s = x0, and

(iii) rng s ⊆ dom f ∩ ]x0,+∞[.

Proof: Define F [natural number, real number] ≡ x0 < $2 < x0 + 1
$1+1

and $2 ∈ dom f . For every element n of N, there exists an element r of
R such that F [n, r]. Consider s being a sequence of real numbers such
that for every element n of N, F [n, s(n)]. For every natural number n,
x0 < s(n) < x0 + 1

n+1 and s(n) ∈ dom f . �

(6) If f is left divergent to +∞ in x0, then f is not left divergent to −∞ in
x0 and f is not left convergent in x0. The theorem is a consequence of (4)
and (2).

(7) If f is left divergent to −∞ in x0, then f is not left divergent to +∞ in
x0 and f is not left convergent in x0. The theorem is a consequence of (4)
and (3).

(8) If f is right divergent to +∞ in x0, then f is not right divergent to −∞
in x0 and f is not right convergent in x0. The theorem is a consequence
of (5) and (2).
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(9) If f is right divergent to −∞ in x0, then f is not right divergent to +∞
in x0 and f is not right convergent in x0. The theorem is a consequence
of (5) and (3).

(10) Suppose f is right convergent in x0. Then

(i) there exists a real number r such that 0 < r and f�]x0, x0 + r[ is
lower bounded, and

(ii) there exists a real number r such that 0 < r and f�]x0, x0 + r[ is
upper bounded.

Proof: Consider g being a real number such that for every real number
g1 such that 0 < g1 there exists a real number r such that x0 < r and for
every real number r1 such that r1 < r and x0 < r1 and r1 ∈ dom f holds
|f(r1) − g| < g1. Consider r being a real number such that x0 < r and
for every real number r1 such that r1 < r and x0 < r1 and r1 ∈ dom f

holds |f(r1) − g| < 1. Set R = r − x0. For every object r1 such that
r1 ∈ dom(f�]x0, x0 + R[) holds −1 + g < (f�]x0, x0 + R[)(r1). Consider
r being a real number such that x0 < r and for every real number r1
such that r1 < r and x0 < r1 and r1 ∈ dom f holds |f(r1) − g| < 1. Set
R = r − x0. For every object r1 such that r1 ∈ dom(f�]x0, x0 +R[) holds
(f�]x0, x0 +R[)(r1) < g + 1. �

(11) Suppose f is left convergent in x0. Then

(i) there exists a real number r such that 0 < r and f�]x0−r, x0[ is lower
bounded, and

(ii) there exists a real number r such that 0 < r and f�]x0 − r, x0[ is
upper bounded.

Proof: Consider g being a real number such that for every real number g1
such that 0 < g1 there exists a real number r such that r < x0 and for every
real number r1 such that r < r1 < x0 and r1 ∈ dom f holds |f(r1)−g| < g1.
Consider r being a real number such that r < x0 and for every real number
r1 such that r < r1 < x0 and r1 ∈ dom f holds |f(r1) − g| < 1. Set
R = x0 − r. For every object r1 such that r1 ∈ dom(f�]x0 −R, x0[) holds
−1 + g < (f�]x0 − R, x0[)(r1). Consider r being a real number such that
r < x0 and for every real number r1 such that r < r1 < x0 and r1 ∈ dom f

holds |f(r1) − g| < 1. Set R = x0 − r. For every object r1 such that
r1 ∈ dom(f�]x0 −R, x0[) holds (f�]x0 −R, x0[)(r1) < g + 1. �

(12) Suppose f is right divergent to +∞ in x0. Then there exists a real number
r such that

(i) 0 < r, and

(ii) f�]x0, x0 + r[ is lower bounded.
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Proof: Consider r being a real number such that x0 < r and for every real
number r1 such that r1 < r and x0 < r1 and r1 ∈ dom f holds 1 < f(r1).
Set R = r − x0. For every object r1 such that r1 ∈ dom(f�]x0, x0 + R[)
holds 1 < (f�]x0, x0 +R[)(r1). �

(13) Suppose f is right divergent to−∞ in x0. Then there exists a real number
r such that

(i) 0 < r, and

(ii) f�]x0, x0 + r[ is upper bounded.

Proof: Consider r being a real number such that x0 < r and for every real
number r1 such that r1 < r and x0 < r1 and r1 ∈ dom f holds f(r1) < 1.
Set R = r − x0. For every object r1 such that r1 ∈ dom(f�]x0, x0 + R[)
holds (f�]x0, x0 +R[)(r1) < 1. �

(14) Suppose f is left divergent to +∞ in x0. Then there exists a real number
r such that

(i) 0 < r, and

(ii) f�]x0 − r, x0[ is lower bounded.

Proof: Consider r being a real number such that r < x0 and for every
real number r1 such that r < r1 < x0 and r1 ∈ dom f holds 1 < f(r1). Set
R = x0 − r. For every object r1 such that r1 ∈ dom(f�]x0 −R, x0[) holds
1 < (f�]x0 −R, x0[)(r1). �

(15) Suppose f is left divergent to −∞ in x0. Then there exists a real number
r such that

(i) 0 < r, and

(ii) f�]x0 − r, x0[ is upper bounded.

Proof: Consider r being a real number such that r < x0 and for every
real number r1 such that r < r1 < x0 and r1 ∈ dom f holds f(r1) < 1. Set
R = x0 − r. For every object r1 such that r1 ∈ dom(f�]x0 −R, x0[) holds
(f�]x0 −R, x0[)(r1) < 1. �

Let us consider partial functions f1, f2 from R to R and a real number x0.

(16) Suppose f1 is right divergent to −∞ in x0 and for every real number r
such that x0 < r there exists a real number g such that g < r and x0 < g

and g ∈ dom(f1 + f2) and there exists a real number r such that 0 < r

and f2�]x0, x0 + r[ is upper bounded. Then f1 + f2 is right divergent to
−∞ in x0.

(17) Suppose f1 is left divergent to −∞ in x0 and for every real number r
such that r < x0 there exists a real number g such that r < g < x0 and
g ∈ dom(f1 + f2) and there exists a real number r such that 0 < r and
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f2�]x0 − r, x0[ is upper bounded. Then f1 + f2 is left divergent to −∞ in
x0.

2. Properties of Extended Riemann Integral

Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:

(18) Suppose a < b and [a, b] ⊆ dom f and f is integrable on [a, b] and f�[a, b]
is bounded. Then

(i) f is left extended Riemann integrable on a, b, and

(ii) (R<)
b∫
a

f(x)dx =
b∫
a

f(x)dx.

Proof: ReconsiderA = ]a, b] as a non empty subset of R. Define F(element

of A) = (
b∫
$1

f(x)dx)(∈ R). Consider I1 being a function from A into R such

that for every element x of A, I1(x) = F(x). Consider M0 being a real
number such that for every object x such that x ∈ [a, b] ∩ dom f holds
|f(x)| ¬ M0. Reconsider M = M0 + 1 as a real number. For every real
number x such that x ∈ [a, b] holds |f(x)| < M . For every real number
g1 such that 0 < g1 there exists a real number r such that a < r and for
every real number r1 such that r1 < r and a < r1 and r1 ∈ dom I1 holds

|I1(r1) −
b∫
a

f(x)dx| < g1. For every real number x such that x ∈ dom I1

holds I1(x) =
b∫
x

f(x)dx. For every real number r such that a < r there

exists a real number g such that g < r and a < g and g ∈ dom I1. �

(19) Suppose a < b and [a, b] ⊆ dom f and f is integrable on [a, b] and f�[a, b]
is bounded. Then

(i) f is right extended Riemann integrable on a, b, and

(ii) (R>)
b∫
a

f(x)dx =
b∫
a

f(x)dx.

Proof: ReconsiderA = [a, b[ as a non empty subset of R. Define F(element

of A) = (

$1∫
a

f(x)dx)(∈ R). Consider I1 being a function from A into R such
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that for every element x of A, I1(x) = F(x). Consider M0 being a real
number such that for every object x such that x ∈ [a, b] ∩ dom f holds
|f(x)| ¬ M0. Reconsider M = M0 + 1 as a real number. For every real
number x such that x ∈ [a, b] holds |f(x)| < M . For every real number
g1 such that 0 < g1 there exists a real number r such that r < b and
for every real number r1 such that r < r1 < b and r1 ∈ dom I1 holds

|I1(r1) −
b∫
a

f(x)dx| < g1. For every real number x such that x ∈ dom I1

holds I1(x) =
x∫
a

f(x)dx. For every real number r such that r < b there

exists a real number g such that r < g < b and g ∈ dom I1. �

Let us consider a partial function f from R to R and real numbers a, b, c.

(20) Suppose a < b ¬ c and ]a, c] ⊆ dom f and f�[b, c] is bounded and f is
integrable on [b, c] and f is left extended Riemann integrable on a, b. Then

(i) f is left extended Riemann integrable on a, c, and

(ii) (R<)
c∫
a

f(x)dx = (R<)
b∫
a

f(x)dx+
c∫
b

f(x)dx.

Proof: For every real number e such that a < e ¬ c holds f is integrable
on [e, c] and f�[e, c] is bounded. Consider I being a partial function from
R to R such that dom I = ]a, b] and for every real number x such that

x ∈ dom I holds I(x) =
b∫
x

f(x)dx and I is right convergent in a. Recon-

sider A = ]a, c] as a non empty subset of R. Define F(element of A) =

(
c∫
$1

f(x)dx)(∈ R). Consider I1 being a function from A into R such that

for every element x of A, I1(x) = F(x). For every real number x such that

x ∈ dom I1 holds I1(x) =
c∫
x

f(x)dx.

For every real number r such that a < r there exists a real number g
such that g < r and a < g and g ∈ dom I1. Consider G being a real number
such that for every real number g1 such that 0 < g1 there exists a real
number r such that a < r and for every real number r1 such that r1 < r

and a < r1 and r1 ∈ dom I holds |I(r1)−G| < g1. Set G1 = G+
c∫
b

f(x)dx.

For every real number g1 such that 0 < g1 there exists a real number r
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such that a < r and for every real number r1 such that r1 < r and a < r1
and r1 ∈ dom I1 holds |I1(r1) − G1| < g1. For every real number g1 such
that 0 < g1 there exists a real number r such that a < r and for every
real number r1 such that r1 < r and a < r1 and r1 ∈ dom I1 holds

|I1(r1)− ((R<)
b∫
a

f(x)dx+
c∫
b

f(x)dx)| < g1. �

(21) Suppose a ¬ b < c and [a, c[ ⊆ dom f and f�[a, b] is bounded and f is
integrable on [a, b] and f is right extended Riemann integrable on b, c.
Then

(i) f is right extended Riemann integrable on a, c, and

(ii) (R>)
c∫
a

f(x)dx =
b∫
a

f(x)dx+ (R>)
c∫
b

f(x)dx.

Proof: For every real number e such that a ¬ e < c holds f is integrable
on [a, e] and f�[a, e] is bounded. Consider I being a partial function from
R to R such that dom I = [b, c[ and for every real number x such that x ∈

dom I holds I(x) =
x∫
b

f(x)dx and I is left convergent in c. Reconsider A =

[a, c[ as a non empty subset of R. Define F(element of A) = (

$1∫
a

f(x)dx)(∈

R). Consider I1 being a function from A into R such that for every element
x of A, I1(x) = F(x). For every real number x such that x ∈ dom I1 holds

I1(x) =
x∫
a

f(x)dx. For every real number r such that r < c there exists

a real number g such that r < g < c and g ∈ dom I1.
Consider G being a real number such that for every real number g1

such that 0 < g1 there exists a real number r such that r < c and for every
real number r1 such that r < r1 < c and r1 ∈ dom I holds |I(r1)−G| < g1.

Set G1 = G+
b∫
a

f(x)dx. For every real number g1 such that 0 < g1 there

exists a real number r such that r < c and for every real number r1 such
that r < r1 < c and r1 ∈ dom I1 holds |I1(r1) − G1| < g1. For every real
number g1 such that 0 < g1 there exists a real number r such that r < c

and for every real number r1 such that r < r1 < c and r1 ∈ dom I1 holds

|I1(r1)− (
b∫
a

f(x)dx+ (R>)
c∫
b

f(x)dx)| < g1. �
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(22) Let us consider a partial function f from R to R, and real numbers a, b.
Suppose ]a, b] ⊆ dom f and f is left extended Riemann integrable on a, b.
Let us consider a real number d. Suppose a < d ¬ b. Then

(i) f is left extended Riemann integrable on a, d, and

(ii) (R<)
b∫
a

f(x)dx = (R<)
d∫
a

f(x)dx+
b∫
d

f(x)dx.

The theorem is a consequence of (20).

Let us consider a partial function f from R to R, real numbers a, b, and real
numbers c, d. Now we state the propositions:

(23) Suppose ]a, b] ⊆ dom f and f is left extended Riemann integrable on a,
b. Then suppose a ¬ c < d ¬ b. Then

(i) f is left extended Riemann integrable on c, d, and

(ii) if a < c, then (R<)
d∫
c

f(x)dx =
d∫
c

f(x)dx.

The theorem is a consequence of (22).

(24) Suppose ]a, b] ⊆ dom f and f is left extended Riemann integrable on a,
b. Then if a < c < d ¬ b, then f is right extended Riemann integrable

on c, d and (R>)
d∫
c

f(x)dx =
d∫
c

f(x)dx. The theorem is a consequence of

(19).

(25) Let us consider a partial function f from R to R, and real numbers a, b.
Suppose [a, b[ ⊆ dom f and f is right extended Riemann integrable on a,
b. Let us consider a real number c. Suppose a ¬ c < b. Then

(i) f is right extended Riemann integrable on c, b, and

(ii) (R>)
b∫
a

f(x)dx =
c∫
a

f(x)dx+ (R>)
b∫
c

f(x)dx.

The theorem is a consequence of (21).

Let us consider a partial function f from R to R, real numbers a, b, and real
numbers c, d. Now we state the propositions:

(26) Suppose [a, b[ ⊆ dom f and f is right extended Riemann integrable on
a, b. Then suppose a ¬ c < d ¬ b. Then

(i) f is right extended Riemann integrable on c, d, and

(ii) if d < b, then (R>)
d∫
c

f(x)dx =
d∫
c

f(x)dx.
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The theorem is a consequence of (25).

(27) Suppose [a, b[ ⊆ dom f and f is right extended Riemann integrable on
a, b. Then if a ¬ c < d < b, then f is left extended Riemann integrable

on c, d and (R<)
d∫
c

f(x)dx =
d∫
c

f(x)dx. The theorem is a consequence of

(18).

Let us consider partial functions f , g from R to R and real numbers a, b.

(28) Suppose a < b and ]a, b] ⊆ dom f and ]a, b] ⊆ dom g and f is left exten-
ded Riemann integrable on a, b and g is left extended Riemann integrable
on a, b. Then

(i) f + g is left extended Riemann integrable on a, b, and

(ii) (R<)
b∫
a

(f + g)(x)dx = (R<)
b∫
a

f(x)dx+ (R<)
b∫
a

g(x)dx.

Proof: Consider I2 being a partial function from R to R such that
dom I2 = ]a, b] and for every real number x such that x ∈ dom I2 holds

I2(x) =
b∫
x

g(x)dx and I2 is right convergent in a and (R<)
b∫
a

g(x)dx =

lim
a+

I2. Consider I1 being a partial function from R to R such that dom I1 =

]a, b] and for every real number x such that x ∈ dom I1 holds I1(x) =
b∫
x

f(x)dx and I1 is right convergent in a and (R<)
b∫
a

f(x)dx = lim
a+

I1.

Set I3 = I1 + I2. dom I3 = ]a, b] and for every real number x such that

x ∈ dom I3 holds I3(x) =
b∫
x

(f + g)(x)dx. For every real number r such

that a < r there exists a real number g such that g < r and a < g and
g ∈ dom(I1+ I2). For every real number d such that a < d ¬ b holds f + g

is integrable on [d, b] and (f + g)�[d, b] is bounded. �

(29) Suppose a < b and [a, b[ ⊆ dom f and [a, b[ ⊆ dom g and f is right
extended Riemann integrable on a, b and g is right extended Riemann
integrable on a, b. Then

(i) f + g is right extended Riemann integrable on a, b, and

(ii) (R>)
b∫
a

(f + g)(x)dx = (R>)
b∫
a

f(x)dx+ (R>)
b∫
a

g(x)dx.

Proof: Consider I2 being a partial function from R to R such that
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dom I2 = [a, b[ and for every real number x such that x ∈ dom I2 holds

I2(x) =
x∫
a

g(x)dx and I2 is left convergent in b and (R>)
b∫
a

g(x)dx = lim
b−

I2.

Consider I1 being a partial function from R to R such that dom I1 = [a, b[

and for every real number x such that x ∈ dom I1 holds I1(x) =
x∫
a

f(x)dx

and I1 is left convergent in b and (R>)
b∫
a

f(x)dx = lim
b−

I1. Set I3 = I1+ I2.

dom I3 = [a, b[ and for every real number x such that x ∈ dom I3 holds

I3(x) =
x∫
a

(f + g)(x)dx. For every real number r such that r < b there

exists a real number g such that r < g < b and g ∈ dom(I1 + I2). For
every real number d such that a ¬ d < b holds f + g is integrable on [a, d]
and (f + g)�[a, d] is bounded. �

Let us consider a partial function f from R to R, real numbers a, b, and
a real number r. Now we state the propositions:

(30) Suppose ]a, b] ⊆ dom f and f is left extended Riemann integrable on a,
b. Then

(i) r · f is left extended Riemann integrable on a, b, and

(ii) (R<)
b∫
a

(r · f)(x)dx = r · ((R<)
b∫
a

f(x)dx).

Proof: For every real number r, r · f is left extended Riemann integrable

on a, b and (R<)
b∫
a

(r · f)(x)dx = r · ((R<)
b∫
a

f(x)dx). �

(31) Suppose [a, b[ ⊆ dom f and f is right extended Riemann integrable on
a, b. Then

(i) r · f is right extended Riemann integrable on a, b, and

(ii) (R>)
b∫
a

(r · f)(x)dx = r · ((R>)
b∫
a

f(x)dx).

Proof: For every real number r, r ·f is right extended Riemann integrable

on a, b and (R>)
b∫
a

(r · f)(x)dx = r · ((R>)
b∫
a

f(x)dx). �
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3. Definition of Improper Integral

Let f be a partial function from R to R and a, b be real numbers. We say
that f is left improper integrable on a and b if and only if

(Def. 1) for every real number d such that a < d ¬ b holds f is integrable on
[d, b] and f�[d, b] is bounded and there exists a partial function I1 from
R to R such that dom I1 = ]a, b] and for every real number x such that

x ∈ dom I1 holds I1(x) =
b∫
x

f(x)dx and (I1 is right convergent in a or

right divergent to +∞ in a or I1 is right divergent to −∞ in a).

We say that f is right improper integrable on a and b if and only if

(Def. 2) for every real number d such that a ¬ d < b holds f is integrable on
[a, d] and f�[a, d] is bounded and there exists a partial function I1 from
R to R such that dom I1 = [a, b[ and for every real number x such that

x ∈ dom I1 holds I1(x) =
x∫
a

f(x)dx and (I1 is left convergent in b or left

divergent to +∞ in b or I1 is left divergent to −∞ in b).

Assume f is left improper integrable on a and b. The functor left-improper-
integral(f, a, b) yielding an extended real is defined by

(Def. 3) there exists a partial function I1 from R to R such that dom I1 = ]a, b]

and for every real number x such that x ∈ dom I1 holds I1(x) =
b∫
x

f(x)dx

and (I1 is right convergent in a and it = lima+ I1 or I1 is right divergent to
+∞ in a and it = +∞ or I1 is right divergent to −∞ in a and it = −∞).

Assume f is right improper integrable on a and b. The functor right-improper-
integral(f, a, b) yielding an extended real is defined by

(Def. 4) there exists a partial function I1 from R to R such that dom I1 = [a, b[

and for every real number x such that x ∈ dom I1 holds I1(x) =
x∫
a

f(x)dx

and (I1 is left convergent in b and it = limb− I1 or I1 is left divergent to
+∞ in b and it = +∞ or I1 is left divergent to −∞ in b and it = −∞).

Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:

(32) If f is left extended Riemann integrable on a, b, then f is left improper
integrable on a and b.

(33) If f is right extended Riemann integrable on a, b, then f is right improper
integrable on a and b.
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(34) Suppose f is left improper integrable on a and b. Then

(i) f is left extended Riemann integrable on a, b and left-improper-integral

(f, a, b) = (R<)
b∫
a

f(x)dx, or

(ii) f is not left extended Riemann integrable on a, b and left-improper-
integral(f, a, b) = +∞, or

(iii) f is not left extended Riemann integrable on a, b and left-improper-
integral(f, a, b) = −∞.

The theorem is a consequence of (8) and (9).

(35) Let us consider a partial function f from R to R, and real numbers
a, b. Suppose there exists a partial function I1 from R to R such that
dom I1 = ]a, b] and for every real number x such that x ∈ dom I1 holds

I1(x) =
b∫
x

f(x)dx and I1 is right divergent to +∞ in a or right divergent

to −∞ in a. Then f is not left extended Riemann integrable on a, b. The
theorem is a consequence of (8) and (9).

(36) Let us consider partial functions f , I1 from R to R, and real numbers a,
b. Suppose f is left improper integrable on a and b and dom I1 = ]a, b] and

for every real number x such that x ∈ dom I1 holds I1(x) =
b∫
x

f(x)dx and

I1 is right convergent in a. Then left-improper-integral(f, a, b) = lima+ I1.
The theorem is a consequence of (34).

Let us consider a partial function f from R to R and real numbers a, b, c.

(37) Suppose a < b ¬ c and ]a, c] ⊆ dom f and f is left improper integrable
on a and c. Then

(i) f is left improper integrable on a and b, and

(ii) if left-improper-integral(f, a, c) = (R<)
c∫
a

f(x)dx, then left-improper-

integral(f, a, b) = (R<)
b∫
a

f(x)dx, and

(iii) if left-improper-integral(f, a, c) = +∞, then left-improper-integral
(f, a, b) = +∞, and

(iv) if left-improper-integral(f, a, c) = −∞, then left-improper-integral
(f, a, b) = −∞.
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The theorem is a consequence of (34).

(38) Suppose a < b ¬ c and ]a, c] ⊆ dom f and f�[b, c] is bounded and f is
left improper integrable on a and b and f is integrable on [b, c]. Then

(i) f is left improper integrable on a and c, and

(ii) if left-improper-integral(f, a, b) = (R<)
b∫
a

f(x)dx, then left-improper-

integral(f, a, c) = left-improper-integral(f, a, b) +
c∫
b

f(x)dx, and

(iii) if left-improper-integral(f, a, b) = +∞, then left-improper-integral
(f, a, c) = +∞, and

(iv) if left-improper-integral(f, a, b) = −∞, then left-improper-integral
(f, a, c) = −∞.

The theorem is a consequence of (34).

(39) Let us consider a partial function f from R to R, and real numbers a, b.
Suppose f is right improper integrable on a and b. Then

(i) f is right extended Riemann integrable on a, b and right-improper-

integral(f, a, b) = (R>)
b∫
a

f(x)dx, or

(ii) f is not right extended Riemann integrable on a, b and right-improper-
integral(f, a, b) = +∞, or

(iii) f is not right extended Riemann integrable on a, b and right-improper-
integral(f, a, b) = −∞.

The theorem is a consequence of (6) and (7).

(40) Let us consider a partial function f from R to R, and real numbers
a, b. Suppose there exists a partial function I1 from R to R such that
dom I1 = [a, b[ and for every real number x such that x ∈ dom I1 holds

I1(x) =
x∫
a

f(x)dx and I1 is left divergent to +∞ in b or left divergent to

−∞ in b. Then f is not right extended Riemann integrable on a, b. The
theorem is a consequence of (6) and (7).

(41) Let us consider partial functions f , I1 from R to R, and real numbers a, b.
Suppose f is right improper integrable on a and b and dom I1 = [a, b[ and

for every real number x such that x ∈ dom I1 holds I1(x) =
x∫
a

f(x)dx and
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I1 is left convergent in b. Then right-improper-integral(f, a, b) = limb− I1.
The theorem is a consequence of (39).

Let us consider a partial function f from R to R and real numbers a, b, c.

(42) Suppose a ¬ b < c and [a, c[ ⊆ dom f and f is right improper integrable
on a and c. Then

(i) f is right improper integrable on b and c, and

(ii) if right-improper-integral(f, a, c) = (R>)
c∫
a

f(x)dx, then right-

improper-integral(f, b, c) = (R>)
c∫
b

f(x)dx, and

(iii) if right-improper-integral(f, a, c) = +∞, then right-improper-
integral(f, b, c) = +∞, and

(iv) if right-improper-integral(f, a, c) = −∞, then right-improper-
integral(f, b, c) = −∞.

The theorem is a consequence of (39).

(43) Suppose a ¬ b < c and [a, c[ ⊆ dom f and f�[a, b] is bounded and f is
right improper integrable on b and c and f is integrable on [a, b]. Then

(i) f is right improper integrable on a and c, and

(ii) if right-improper-integral(f, b, c) = (R>)
c∫
b

f(x)dx, then right-

improper-integral(f, a, c) = right-improper-integral(f, b, c)+
b∫
a

f(x)dx, and

(iii) if right-improper-integral(f, b, c) = +∞, then right-improper-
integral(f, a, c) = +∞, and

(iv) if right-improper-integral(f, b, c) = −∞, then right-improper-
integral(f, a, c) = −∞.

The theorem is a consequence of (39).

Let f be a partial function from R to R and a, c be real numbers. We say
that f is improper integrable on a and c if and only if

(Def. 5) there exists a real number b such that a < b < c and f is left im-
proper integrable on a and b and f is right improper integrable on b

and c and it is not true that left-improper-integral(f, a, b) = −∞ and
right-improper-integral(f, b, c) = +∞ and it is not true that left-improper-
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integral(f, a, b) = +∞ and right-improper-integral(f, b, c) = −∞.

Now we state the propositions:

(44) Let us consider a partial function f from R to R, and real numbers a,
c. Suppose f is improper integrable on a and c. Then there exists a real
number b such that

(i) a < b < c, and

(ii) left-improper-integral(f, a, b) = (R<)
b∫
a

f(x)dx and right-improper-

integral(f, b, c) = (R>)
c∫
b

f(x)dx or left-improper-integral(f, a, b)

+ right-improper-integral(f, b, c) = +∞ or left-improper-integral

(f, a, b) + right-improper-integral(f, b, c) = −∞.

The theorem is a consequence of (34) and (39).

(45) Let us consider a partial function f from R to R, and real numbers a, b, c.
Suppose ]a, c[ ⊆ dom f and a < b < c and f is left improper integrable on
a and b and f is right improper integrable on b and c and it is not true that
left-improper-integral(f, a, b) = −∞ and right-improper-integral(f, b, c) =
+∞ and it is not true that left-improper-integral(f, a, b) = +∞ and
right-improper-integral(f, b, c) = −∞. Let us consider a real number b1.
Suppose a < b1 ¬ b. Then left-improper-integral(f, a, b) + right-improper-
integral(f, b, c) = left-improper-integral(f, a, b1) + right-improper-integral
(f, b1, c). The theorem is a consequence of (34) and (39).

(46) Let us consider a partial function f from R to R, and real numbers a, b, c.
Suppose ]a, c[ ⊆ dom f and a < b < c and f is left improper integrable on
a and b and f is right improper integrable on b and c and it is not true that
left-improper-integral(f, a, b) = −∞ and right-improper-integral(f, b, c) =
+∞ and it is not true that left-improper-integral(f, a, b) = +∞ and
right-improper-integral(f, b, c) = −∞. Let us consider a real number b2.
Suppose b ¬ b2 < c. Then left-improper-integral(f, a, b) + right-improper-
integral(f, b, c) = left-improper-integral(f, a, b2) + right-improper-integral
(f, b2, c). The theorem is a consequence of (39) and (34).

(47) Let us consider a partial function f from R to R, and real numbers a,
c. Suppose ]a, c[ ⊆ dom f and f is improper integrable on a and c. Let
us consider real numbers b1, b2. Suppose a < b1 < c and a < b2 < c.
Then left-improper-integral(f, a, b1) + right-improper-integral(f, b1, c) =
left-improper-integral(f, a, b2) + right-improper-integral(f, b2, c). The the-
orem is a consequence of (45) and (46).
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Let f be a partial function from R to R and a, b be real numbers. As-
sume ]a, b[ ⊆ dom f and f is improper integrable on a and b. The functor
improper-integral(f, a, b) yielding an extended real is defined by

(Def. 6) there exists a real number c such that a < c < b and f is left improper
integrable on a and c and f is right improper integrable on c and b and
it = left-improper-integral(f, a, c) + right-improper-integral(f, c, b).

Now we state the proposition:

(48) Let us consider a partial function f from R to R, and real numbers a,
c. Suppose ]a, c[ ⊆ dom f and f is improper integrable on a and c. Let us
consider a real number b. Suppose a < b < c. Then

(i) f is left improper integrable on a and b, and

(ii) f is right improper integrable on b and c, and

(iii) improper-integral(f, a, c) = left-improper-integral(f, a, b) + right-

improper-integral(f, b, c).

The theorem is a consequence of (37), (43), (47), (38), and (42).

4. Linearity of Improper Integral

Let us consider a partial function f from R to R, real numbers a, b, and
a partial function I1 from R to R. Now we state the propositions:

(49) Suppose f is left improper integrable on a and b and left-improper-integral
(f, a, b) = +∞. Then suppose dom I1 = ]a, b] and for every real number x

such that x ∈ dom I1 holds I1(x) =
b∫
x

f(x)dx. Then I1 is right divergent

to +∞ in a.

(50) Suppose f is left improper integrable on a and b and left-improper-integral
(f, a, b) = −∞. Then suppose dom I1 = ]a, b] and for every real number x

such that x ∈ dom I1 holds I1(x) =
b∫
x

f(x)dx. Then I1 is right divergent

to −∞ in a.

(51) Suppose f is right improper integrable on a and b and right-improper-
integral(f, a, b) = +∞. Then suppose dom I1 = [a, b[ and for every real

number x such that x ∈ dom I1 holds I1(x) =
x∫
a

f(x)dx. Then I1 is left

divergent to +∞ in b.
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(52) Suppose f is right improper integrable on a and b and right-improper-
integral(f, a, b) = −∞. Then suppose dom I1 = [a, b[ and for every real

number x such that x ∈ dom I1 holds I1(x) =
x∫
a

f(x)dx. Then I1 is left

divergent to −∞ in b.

Let us consider a partial function f from R to R and real numbers a, b, r.

(53) Suppose a < b and ]a, b] ⊆ dom f and f is left improper integrable on a

and b. Then

(i) r · f is left improper integrable on a and b, and

(ii) left-improper-integral(r · f, a, b) = r · left-improper-integral(f, a, b).

Proof: For every real number d such that a < d ¬ b holds r·f is integrable
on [d, b] and (r · f)�[d, b] is bounded. �

(54) Suppose a < b and [a, b[ ⊆ dom f and f is right improper integrable on
a and b. Then

(i) r · f is right improper integrable on a and b, and

(ii) right-improper-integral(r ·f, a, b) = r ·right-improper-integral(f, a, b).

Proof: For every real number d such that a ¬ d < b holds r·f is integrable
on [a, d] and (r · f)�[a, d] is bounded. �

Let us consider a partial function f from R to R and real numbers a, b.

(55) Suppose a < b and ]a, b] ⊆ dom f and f is left improper integrable on a

and b. Then

(i) −f is left improper integrable on a and b, and

(ii) left-improper-integral(−f, a, b) = −left-improper-integral(f, a, b).

The theorem is a consequence of (53).

(56) Suppose a < b and [a, b[ ⊆ dom f and f is right improper integrable on
a and b. Then

(i) −f is right improper integrable on a and b, and

(ii) right-improper-integral(−f, a, b) = −right-improper-integral(f, a, b).

The theorem is a consequence of (54).

Let us consider partial functions f , g from R to R and real numbers a, b.

(57) Suppose a < b and ]a, b] ⊆ dom f and ]a, b] ⊆ dom g and f is left
improper integrable on a and b and g is left improper integrable on a

and b and it is not true that left-improper-integral(f, a, b) = +∞ and
left-improper-integral(g, a, b) = −∞ and it is not true that left-improper-
integral(f, a, b) = −∞ and left-improper-integral(g, a, b) = +∞. Then
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(i) f + g is left improper integrable on a and b, and

(ii) left-improper-integral(f + g, a, b) = left-improper-integral(f, a, b) +
left-improper-integral(g, a, b).

Proof: For every real number d such that a < d ¬ b holds f + g is
integrable on [d, b] and (f + g)�[d, b] is bounded. �

(58) Suppose a < b and [a, b[ ⊆ dom f and [a, b[ ⊆ dom g and f is ri-
ght improper integrable on a and b and g is right improper integra-
ble on a and b and it is not true that right-improper-integral(f, a, b) =
+∞ and right-improper-integral(g, a, b) = −∞ and it is not true that
right-improper-integral(f, a, b) = −∞ and right-improper-integral(g, a, b) =
+∞. Then

(i) f + g is right improper integrable on a and b, and

(ii) right-improper-integral(f+g, a, b) = right-improper-integral(f, a, b)+
right-improper-integral(g, a, b).

Proof: For every real number d such that a ¬ d < b holds f + g is
integrable on [a, d] and (f + g)�[a, d] is bounded by [4, (11)]. �

(59) Suppose a < b and ]a, b] ⊆ dom f and ]a, b] ⊆ dom g and f is left
improper integrable on a and b and g is left improper integrable on a

and b and it is not true that left-improper-integral(f, a, b) = +∞ and
left-improper-integral(g, a, b) = +∞ and it is not true that left-improper-
integral(f, a, b) = −∞ and left-improper-integral(g, a, b) = −∞. Then

(i) f − g is left improper integrable on a and b, and

(ii) left-improper-integral(f − g, a, b) = left-improper-integral(f, a, b) −
left-improper-integral(g, a, b).

The theorem is a consequence of (55) and (57).

(60) Suppose a < b and [a, b[ ⊆ dom f and [a, b[ ⊆ dom g and f is ri-
ght improper integrable on a and b and g is right improper integra-
ble on a and b and it is not true that right-improper-integral(f, a, b) =
+∞ and right-improper-integral(g, a, b) = +∞ and it is not true that
right-improper-integral(f, a, b) = −∞ and right-improper-integral(g, a, b) =
−∞. Then

(i) f − g is right improper integrable on a and b, and

(ii) right-improper-integral(f−g, a, b) = right-improper-integral(f, a, b)−
right-improper-integral(g, a, b).

The theorem is a consequence of (56) and (58).

Let us consider a partial function f from R to R and real numbers a, b, r.
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(61) Suppose ]a, b[ ⊆ dom f and f is improper integrable on a and b. Then

(i) r · f is improper integrable on a and b, and

(ii) improper-integral(r · f, a, b) = r · improper-integral(f, a, b).

The theorem is a consequence of (48), (53), and (54).

(62) Suppose ]a, b[ ⊆ dom f and f is improper integrable on a and b. Then

(i) −f is improper integrable on a and b, and

(ii) improper-integral(−f, a, b) = −improper-integral(f, a, b).

The theorem is a consequence of (61).

Let us consider partial functions f , g from R to R and real numbers a, b.

(63) Suppose ]a, b[ ⊆ dom f and ]a, b[ ⊆ dom g and f is improper integrable
on a and b and g is improper integrable on a and b and it is not true that
improper-integral(f, a, b) = +∞ and improper-integral(g, a, b) = −∞ and
it is not true that improper-integral(f, a, b) = −∞ and improper-integral(g,
a, b) = +∞. Then

(i) f + g is improper integrable on a and b, and

(ii) improper-integral(f+g, a, b) = improper-integral(f, a, b)+improper-

integral(g, a, b).

The theorem is a consequence of (37), (38), (43), (42), (48), (57), and (58).

(64) Suppose ]a, b[ ⊆ dom f and ]a, b[ ⊆ dom g and f is improper integrable
on a and b and g is improper integrable on a and b and it is not true that
improper-integral(f, a, b) = +∞ and improper-integral(g, a, b) = +∞ and
it is not true that improper-integral(f, a, b) = −∞ and improper-integral(g,
a, b) = −∞. Then

(i) f − g is improper integrable on a and b, and

(ii) improper-integral(f−g, a, b) = improper-integral(f, a, b)− improper-

integral(g, a, b).

The theorem is a consequence of (62) and (63).
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Summary. The main purpose of formalization is to prove that the set of
prime numbers is diophantine, i.e., is representable by a polynomial formula. We
formalize this problem, using the Mizar system [1], [2], in two independent ways,
proving the existence of a polynomial without formulating it explicitly as well as
with its indication.

First, we reuse nearly all the techniques invented to prove the MRDP-
theorem [11]. Applying a trick with Mizar schemes that go beyond first-order
logic we give a short sophisticated proof for the existence of such a polynomial
but without formulating it explicitly. Then we formulate the polynomial propo-
sed in [6] that has 26 variables in the Mizar language as follows
(w·z+h+j−q)2+((g·k+g+k)·(h+j)+h−z)2+(2 · k3·(2·k+2)·(n+ 1)2+1−f2)2+
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t · (2 · a · p− p2 − 1)− p ·m)2

and we prove that that for any positive integer k so that k + 1 is prime it is
necessary and sufficient that there exist other natural variables a-z for which the
polynomial equals zero. 26 variables is not the best known result in relation to
the set of prime numbers, since any diophantine equation over N can be reduced
to one in 13 unknowns [8] or even less [5], [13]. The best currently known result
for all prime numbers, where the polynomial is explicitly constructed is 10 [7]
or even 7 in the case of Fermat as well as Mersenne prime number [4]. We are
currently focusing our formalization efforts in this direction.
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1. The Prime Number Set as a Diophantine Set

From now on n denotes a natural number, i, j, i1, i2, i3, i4, i5, i6 denote
elements of n, and p, q, r denote n-element finite 0-sequences of N.

Now we state the propositions:

(1) {p : p(i) > 1} is a Diophantine subset of the n-xtuples of N.
Proof: Define Q[finite 0-sequence of N] ≡ 1 · $1(i) > 0 · $1(i) + 1. Define
R[finite 0-sequence of N] ≡ $1(i) > 1. {q : Q[q]} = {r : R[r]}. �

(2) {p : p(i) = (p(j)−′ 1)!+1} is a Diophantine subset of the n-xtuples of N.
Proof: For every n, i1, and i2, {p : p(i1) = p(i2)−′1} is a Diophantine sub-
set of the n-xtuples of N. For every n, i1, and i2, {p : p(i1) = (p(i2)−′1)!} is
a Diophantine subset of the n-xtuples of N by [10, (32)]. Define P[natural
number, natural number,natural object, natural number,natural number,
natural number] ≡ $4 = 1 · $3 + 1. Define F(natural number,natural
number, natural number) = ($2 −′ 1)!. For every n, i1, i2, i3, i4, and i5,
{p : P[p(i1), p(i2),F(p(i3), p(i4), p(i5)), p(i3), p(i4), p(i5)]} is a Diophantine
subset of the n-xtuples of N. Define Q[finite 0-sequence of N] ≡ $1(i1) =
1 ·(($1(i2)−′ 1)!)+1. Define R[finite 0-sequence of N] ≡ $1(i1) = ($1(i2)−′
1)! + 1. {q : Q[q]} = {r : R[r]}. �

(3) {p : (p(i)−′ 1)! + 1 mod p(i) = 0 and p(i) > 1} is a Diophantine subset
of the n-xtuples of N.
Proof: Define P[natural number, natural number, natural object, natural
number, natural number,natural number] ≡ 1 · $3 ≡ 0 · $4 (mod 1 · $4).
Define F(natural number,natural number,natural number) = ($2−′ 1)! +
1. For every n, i1, i2, i3, and i4, {p : F(p(i1), p(i2), p(i3)) = p(i4)} is
a Diophantine subset of the n-xtuples of N. For every n, i1, i2, i3, i4, and i5,
{p : P[p(i1), p(i2),F(p(i3), p(i4), p(i5)), p(i3), p(i4), p(i5)]} is a Diophantine
subset of the n-xtuples of N. DefineQ1[finite 0-sequence of N] ≡ 1·(($1(i)−′
1)! + 1) ≡ 0 · $1(i) (mod 1 · $1(i)).

Define Q2[finite 0-sequence of N] ≡ $1(i) > 1. Define Q12[finite
0-sequence of N] ≡Q1[$1] andQ2[$1]. {q :Q2[q]} is a Diophantine subset of
the n-xtuples of N. {q : Q1[q] and Q2[q]} is a Diophantine subset of the n-
xtuples of N. DefineR[finite 0-sequence of N] ≡ ($1(i)−′1)!+1 mod $1(i) =
0 and $1(i) > 1 by [12, (11)]. Q12[q] iff R[q]. {q : Q12[q]} = {r : R[r]}. �

(4) Let us consider a natural number n, and an element i of n. Then {p, whe-
re p is an n-element finite 0-sequence of N : p(i) is prime} is a Diophantine
subset of the n-xtuples of N.
Proof: Define Q[finite 0-sequence of N] ≡ $1(i) is prime. Define R[finite
0-sequence of N] ≡ ($1(i) −′ 1)! + 1 mod $1(i) = 0 and $1(i) > 1. {q
: Q[q]} = {r : R[r]}. �
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2. Special Case of Pell’s Equation - Selected Properties

In the sequel i, j, n, n1, n2, m, k, l, u, e, p, t denote natural numbers, a, b
denote non trivial natural numbers, x, y denote integers, and r, q denote real
numbers.

Now we state the propositions:

(5) If 2 ¬ e and there exists i such that e2 · e · (e + 2) · (n + 1)2 + 1 = i2,
then e− 1 + ee−

′2 ¬ n.
Proof: Set a = e+ 1. Set n1 = n+ 1. Reconsider e2 = e− 2 as a natural
number. Consider j such that i = xa(j) and e·n1 = ya(j). (a−2)·e+ee2+1 <
(2 · a− 1)e2+1 by [14, (103)]. �

(6) If 2 ¬ e and 0 < t, then there exists n and there exists i such that
t | n+ 1 and e2 · e · (e+ 2) · (n+ 1)2 + 1 = i2.

(7) If n  k, then
(n
k

)
 (n+1−k)

k

k! .
Proof: Set n1 = n + 1. Define P[natural number] ≡ if $1 ¬ n, then( n
$1

)
 (n1−$1)

$1

$1!
. If P[i], then P[i+ 1]. P[i]. �

(8) If n  k, then
(n
k

)
¬ nk

k! .

Proof: Define P[natural number] ≡ if $1 ¬ n, then
( n
$1

)
¬ n$1
$1!

. If P[i],
then P[i+ 1]. P[i]. �

(9) If i ¬ j and 2 · j ¬ n+ 1, then
(n
i

)
¬
(n
j

)
.

Proof: Define P[natural number] ≡ if i ¬ $1 and 2 · $1 ¬ n + 1, then(n
i

)
¬
( n
$1

)
. If P[k], then P[k + 1]. P[k]. �

(10) If k ¬ n, then n! ¬ k! · (nn−′k).
Proof: Define P[natural number] ≡ (k + $1)! ¬ k! · (k + $1)

$1 . If P[i],
then P[i+ 1]. P[i]. �

(11) Suppose 0 < k and 2 · kk ¬ n and nk < p. Then

(i) (p+ 1)n mod pk+1 > 0, and

(ii) k! < (n+1)k·(pk)
(p+1)nmod pk+1 < k! + 1.

Proof: Set k1 = k + 1. Set n1 = n + 1. Reconsider K = k − 1, n3 =
n − k as a natural number. Set P = 〈

(n
0

)
10pn, . . . ,

(n
n

)
1np0〉.

∑
(P �k1) ≡∑

P (mod pk1).
∑

(P �k1) 6= 0.
∑

(P �k1) < pk1 .
(n
k

)
¬ nk

k! .
∑

(P �k) ¬
nk

k! ·(p
K)·k.

(n
k

)
 (n1−k)

k

k! . k ·k ¬ n and 2·k ·k ¬ n1. 1·(2 · kk)  2·k2 ·(k!).
�

(12) (i) xa(n+ 2) = 2 · a · xa(n+ 1)− xa(n), and

(ii) ya(n+ 2) = 2 · a · ya(n+ 1)− ya(n).
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(13) xa(n) ≡ pn + ya(n) · (a− p) (mod 2 · a · p− p2 − 1).
Proof: Set P = 2 · a · p − p2 − 1. Define T [natural number] ≡ xa($1) −
ya($1) · (a − p) ≡ p$1 (modP ). Define P[natural number] ≡ T [$1] and
T [$1 + 1]. P[0]. If P[k], then P[k + 1]. P[k]. �

(14) If 0 < pn < a, then pn + ya(n) · (a− p) ¬ xa(n).

(15) If a ¬ b, then xa(n) ¬ xb(n) and ya(n) ¬ yb(n).
Proof: Define P[natural number] ≡ xa($1) ¬ xb($1) and ya($1) ¬ yb($1).
If P[k], then P[k + 1]. P[k]. �

(16) If a ≡ b (mod k), then xa(n) ≡ xb(n) (mod k).

(17) xa(|2 · x+ y|) ≡ −xa(|y|) (mod xa(|x|)).
Proof: Set i = x. Set j = y. Set A = a2 −′ 1. A · sgn(i) · ya(|i|) · (sgn(i) ·
ya(|i|) · xa(|j|)) = (A · (ya(|i|) · ya(|i|))) · xa(|j|). �

(18) xa(|4 · x + y|) ≡ xa(|y|) (mod xa(|x|)). The theorem is a consequence of
(17).

(19) If k < n, then xa(k) < xa(n).
Proof: Define P[natural number] ≡ if $1 > 0, then xa(k) < xa(k + $1).
For every natural number i such that P[i] holds P[i+ 1]. P[n1]. �

(20) If xa(k) = xa(n), then k = n. The theorem is a consequence of (19).

(21) If i ¬ j ¬ 2 · n and xa(i) ≡ xa(j) (mod xa(n)), then i = 0 and j = 2 and
a = 2 and n = 1 or i = j. The theorem is a consequence of (19), (17), and
(20).

(22) If 0 < i ¬ n and 0 ¬ j < 4 · n and xa(i) ≡ xa(j) (mod xa(n)), then j = i

or j + i = 4 · n. The theorem is a consequence of (18) and (21).

(23) xa(|4 · x · n+ y|) ≡ xa(|y|) (mod xa(|x|)).
Proof: Define P[natural number] ≡ xa(|4·x·$1+y|) ≡ xa(|y|) (mod xa(|x|)).
If P[k], then P[k + 1]. P[k]. �

(24) Suppose 0 < i ¬ n and xa(i) ≡ xa(j) (mod xa(n)). Then

(i) j ≡ i (mod 4 · n), or

(ii) j ≡ −i (mod 4 · n).

The theorem is a consequence of (23) and (22).

(25) ya(2 · n) = 2 · ya(n) · xa(n).
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3. Special Case of Pell’s Equation - Diophantine Polynomial with
8 Variables

Now we state the propositions:

(26) Let us consider a non trivial natural number a, and natural numbers y,
n, b, c, d, r, s, t, u, v, x. Suppose 1 ¬ n and 〈〈x, y〉〉 is a Pell’s solution
of a2 −′ 1 and 〈〈u, v〉〉 is a Pell’s solution of a2 −′ 1 and 〈〈s, t〉〉 is a Pell’s
solution of b2−′ 1 and v = 4 ·r ·y2 and b = a+u2 ·(u2−a) and s = x+c ·u
and t = n+ 4 · d · y and n ¬ y. Then

(i) b is not trivial, and

(ii) u2 > a, and

(iii) y = ya(n).

Proof: Consider i being a natural number such that x = xa(i) and y =
ya(i). Consider n1 being a natural number such that u = xa(n1) and v =
ya(n1). v 6= 0 by [3, (1)]. Reconsider B = b as a non trivial natural number.
Consider j being a natural number such that s = xB(j) and t = yB(j).
xB(j) ≡ xa(j) (mod xa(n1)). j ≡ i (mod 4 · n1) or j ≡ −i (mod 4 · n1).
Consider d1 being a natural number such that ya(i) · d1 = n1. n = i by [9,
(13)]. �

(27) Let us consider a non trivial natural number a, and natural numbers y,
n. Suppose 1 ¬ n. Suppose y = ya(n). Then there exist natural numbers
b, c, d, r, s, t, u, v, x such that

(i) 〈〈x, y〉〉 is a Pell’s solution of a2 −′ 1, and

(ii) 〈〈u, v〉〉 is a Pell’s solution of a2 −′ 1, and

(iii) 〈〈s, t〉〉 is a Pell’s solution of b2 −′ 1, and

(iv) v = 4 · r · y2, and

(v) b = a+ u2 · (u2 − a), and

(vi) s = x+ c · u, and

(vii) t = n+ 4 · d · y, and

(viii) n ¬ y.

The theorem is a consequence of (25), (16), and (15).

(28) Let us consider natural numbers y, n. Suppose 1 ¬ n. Then y = ya(n)
if and only if there exist natural numbers c, d, r, u, x such that 〈〈x, y〉〉
is a Pell’s solution of a2 −′ 1 and u2 = 16 · (a2 − 1) · r2 · y2 · y2 + 1 and
(x+ c · u)2 = ((a+ u2 · (u2 − a))2 − 1) · (n+ 4 · d · y)2 + 1 and n ¬ y.
Proof: If y = ya(n), then there exist natural numbers c, d, r, u, x such
that 〈〈x, y〉〉 is a Pell’s solution of a2−′1 and u2 = 16 ·(a2−1) ·r2 ·y2 ·y2+1
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and (x+ c · u)2 = ((a+ u2 · (u2 − a))2 − 1) · (n+ 4 · d · y)2 + 1 and n ¬ y.
Consider k such that x = xa(k) and y = ya(k). r 6= 0. �

(29) Let us consider positive natural numbers f , k. Then f = k! if and only
if there exist natural numbers j, h, w and there exist positive natural
numbers n, p, q, z such that q = w · z + h+ j and z = f · (h+ j) + h and
2 · k3 ·(2 ·k+2) ·(n+ 1)2+1 is a square and p = (n+ 1)k and q = (p+ 1)n

and z = pk+1.
Proof: Set k2 = 2 · k. If f = k!, then there exist natural numbers j, h, w
and there exist positive natural numbers n, p, q, z such that q = w·z+h+j
and z = f · (h + j) + h and 2 · k3 · (k2 + 2) · (n+ 1)2 + 1 is a square and
p = (n+ 1)k and q = (p+ 1)n and z = pk+1. k2k ¬ n. h + j 6= z.
k! < z

h+j < k! + 1. �

(30) Let us consider a positive natural number k. Then k + 1 is prime if
and only if there exist natural numbers a, b, c, d, e, f , g, h, i, j, l, m,
n, o, p, q, r, s, t, u, w, v, x, y, z such that q = w · z + h + j and
z = (g · k + g + k) · (h + j) + h and 2 · k3 · (2 · k + 2) · (n+ 1)2 + 1 = f2

and e = p + q + z + 2 · n and e3 · (e + 2) · (a+ 1)2 + 1 = o2 and 〈〈x, y〉〉
is a Pell’s solution of a2 −′ 1 and u2 = 16 · (a2 − 1) · r2 · y2 · y2 + 1 and
(x + c · u)2 = ((a + u2 · (u2 − a))2 − 1) · (n + 4 · d · y)2 + 1 and 〈〈m, l〉〉
is a Pell’s solution of a2 −′ 1 and l = k + i · (a − 1) and n + l + v = y

and m = p + l · (a − n − 1) + b · (2 · a · (n + 1) − (n + 1)2 − 1) and
x = q + y · (a − p − 1) + s · (2 · a · (p + 1) − (p + 1)2 − 1) and p · m =
z + p · l · (a− p) + t · (2 · a · p− p2 − 1).
Proof: If k+ 1 is prime, then there exist natural numbers a, b, c, d, e, f ,
g, h, i, j, l, m, n, o, p, q, r, s, t, u, w, v, x, y, z such that q = w · z+h+ j

and z = (g · k+ g+ k) · (h+ j) +h and 2 · k3 · (2 · k+ 2) · (n+ 1)2+ 1 = f2

and e = p + q + z + 2 · n and e3 · (e + 2) · (a+ 1)2 + 1 = o2 and 〈〈x, y〉〉
is a Pell’s solution of a2 −′ 1 and u2 = 16 · (a2 − 1) · r2 · y2 · y2 + 1 and
(x + c · u)2 = ((a + u2 · (u2 − a))2 − 1) · (n + 4 · d · y)2 + 1 and 〈〈m, l〉〉
is a Pell’s solution of a2 −′ 1 and l = k + i · (a − 1) and n + l + v = y

and m = p + l · (a − n − 1) + b · (2 · a · (n + 1) − (n + 1)2 − 1) and
x = q + y · (a − p − 1) + s · (2 · a · (p + 1) − (p + 1)2 − 1) and p · m =
z+p·l ·(a−p)+t·(2·a·p−p2−1). 2·k−1+2 · k2·k−′2 ¬ n. e−1+ee−

′2 ¬ a.
e− 1 + ee−

′2 ¬ a. y = ya(n).
Consider n2 being a natural number such that x = xa(n2) and y =

ya(n2). Consider k1 being a natural number such that m = xa(k1) and
l = ya(k1). (n+ 1)k < a. (n+ 1)k + (ya(k)) · (a− (n+ 1)) ≡ xa(k) (mod 2 ·
a · (n+ 1)− (n+ 1)2− 1). (p+ 1)n < a. (p+ 1)n + (ya(n)) · (a− (p+ 1)) ≡
xa(n) (mod 2 · a · (p+ 1)− (p+ 1)2 − 1). pk+1 < a. pk + (ya(k)) · (a− p) ≡
xa(k) (mod 2 · a · p− p2 − 1). g · k + g + k = k!. �
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4. Prime Representing Polynomial with 26 Variables

Now we state the proposition:

(31) Prime Representing Polynomial:
Let us consider a positive natural number k. Then k + 1 is prime if and
only if there exist natural numbers a, b, c, d, e, f , g, h, i, j, l, m, n, o, p,
q, r, s, t, u, w, v, x, y, z such that:

0 = (w · z + h+ j − q)2 + ((g · k + g + k) · (h+ j) + h− z)2 + (2 · k3 ·
(2 · k + 2) · (n+ 1)2 + 1− f2)2 +
(p+q+z+2·n−e)2+(e3·(e+2)·(a+ 1)2+1−o2)2+(x2−(a2−′1)·y2−1)2+
(16 · (a2 − 1) · r2 · y2 · y2 + 1− u2)2 + (((a+ u2 · (u2 − a))2 − 1) · (n+ 4 ·
d · y)2 + 1− (x+ c · u)2)2 +
(m2 − (a2 −′ 1) · l2 − 1)2 + (k + i · (a− 1)− l)2 + (n+ l + v − y)2 +
(p+ l · (a− n− 1) + b · (2 · a · (n+ 1)− (n+ 1)2 − 1)−m)2 +
(q+ y · (a− p− 1) + s · (2 · a · (p+ 1)− (p+ 1)2− 1)− x)2+ (z+ p · l · (a−
p) + t · (2 · a · p− p2 − 1)− p ·m)2. The theorem is a consequence of (30).
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Let R be a non degenerated ring. One can check that 1S is non zero and R-
membered and there exists an element of S which is non zero and R-membered.

Let F be a field, E be an extension of F , and a be a non zero, F -membered
element of E. Let us observe that a−1 is F -membered.

Let R be a ring and a, b, c be elements of R. One can check that 〈a, b, c〉
is (the carrier of R)-valued and there exists a field which is strict and has not
characteristic 2.

Let R be a ring. One can check that (0R)2 reduces to 0R and (1R)2 reduces
to 1R and (−1R)2 reduces to 1R.

Now we state the propositions:

(2) Let us consider a commutative ring R, and elements a, b of R. Then
(a · b)2 = a2 · b2.

(3) Let us consider a field F , an element a of F , a non zero element b of F ,
and an integer i. Suppose i ? a 6= 0F and i ? b 6= 0F . Then (i ? a)·(i ? b)−1 =
a · b−1.

(4) Let us consider a commutative ring R, an element a of R, and an integer
i. Then (i ? a)2 = i2 ? a2.

Let us consider an integral domain R with non characteristic 2 and an ele-
ment a of R. Now we state the propositions:

(5) 2 ? a = 0R if and only if a = 0R.

(6) 4 ? a = 0R if and only if a = 0R. The theorem is a consequence of (5).

(7) Let us consider a ring R, a ring extension S of R, an element a of R,
and an element b of S. If b = a, then for every integer i, i ? a = i ? b.
Proof: Define P[integer] ≡ for every integer k such that k = $1 holds
k ? a = k ? b. For every integer u such that P[u] holds P[u−1] and P[u+1]
by [11, (62), (64)], [8, (15)]. For every integer i, P[i]. �

(8) Let us consider an integral domain R, a domain ring extension S of R,
an element a of R, and an element b of S. If b2 = a2, then b = a or b = −a.

Let us consider a field F , an extension E of F , and an element a of E. Now
we state the propositions:

(9) FAdj(F, {a,−a}) = FAdj(F, {a}).
(10) FAdj(F, {a}) = FAdj(F, {−a}). The theorem is a consequence of (9).

One can check that there exists a polynomial-disjoint field which is non
algebraic closed.

Let F be a non algebraic closed field. One can verify that there exists an ele-
ment of the carrier of PolyRing(F ) which is irreducible and non linear.

Let F be a field. One can verify that every element of the carrier of PolyRing(F )
which is irreducible and non linear and has also not roots and every element of
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the carrier of PolyRing(F ) which is irreducible and has roots is also linear.
Let F be a polynomial-disjoint field and p be an irreducible element of

the carrier of PolyRing(F ). Note that KrRootP(p) is F-algebraic.
Let F be a non algebraic closed, polynomial-disjoint field and p be an ir-

reducible, non linear element of the carrier of PolyRing(F ). Let us note that
KrRootP(p) is non zero and non F -membered.

2. More on Polynomials

Now we state the proposition:

(11) Let us consider a non degenerated ring R, a non zero polynomial p over
R, and a polynomial q over R. Then deg(p ∗ q) ¬ deg p+ deg q.

Let L be a well unital, non degenerated double loop structure, k be a non
zero element of N, and a be an element of L. Let us note that rpoly(k, a) is
monic.

Let R be a non degenerated ring, a be a non zero element of R, and b be
an element of R. Let us note that 〈b, a〉 is linear and 〈b, 1R〉 is monic and linear.

Now we state the propositions:

(12) Let us consider a ring R, and elements a, b, x of R. Then x · 〈b, a〉 =
〈x · b, x · a〉.

(13) Let us consider a ring R, and a polynomial p over R. Suppose deg p < 2.
Let us consider an element a of R. Then there exist elements y, z of R
such that p = 〈y, z〉.

(14) Let us consider a commutative ring R, and a polynomial p over R. Suppo-
se deg p < 2. Let us consider an element a of R. Then there exist elements
y, z of R such that eval(p, a) = y + a · z. The theorem is a consequence of
(13).

(15) Let us consider a field F , an extension E of F , and a polynomial p over
F . Suppose deg p < 2. Let us consider an element a of E. Then there exist
F -membered elements y, z of E such that ExtEval(p, a) = y + a · z. The
theorem is a consequence of (13).

Let R be a ring and a be an element of R. The functors: X- a and X+ a

yielding elements of the carrier of PolyRing(R) are defined by terms

(Def. 2) rpoly(1, a),

(Def. 3) rpoly(1,−a),

respectively. Let R be a non degenerated ring. Let us observe that X- a is linear
and monic and X+ a is linear and monic.
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3. Quadratic Polynomials

Let R be a ring and p be a polynomial over R. We say that p is quadratic if
and only if

(Def. 4) deg p = 2.

Let R be a non degenerated ring. Note that there exists a polynomial over
R which is monic and quadratic and there exists an element of the carrier of
PolyRing(R) which is monic and quadratic and every quadratic polynomial over
R is non constant and every quadratic element of the carrier of PolyRing(R) is
non constant.

Let L be a non empty zero structure and a, b, c be elements of L. The functor
〈c, b, a〉 yielding a sequence of L is defined by the term

(Def. 5) ((0.L+· (0, c)) +· (1, b)) +· (2, a).

Note that 〈c, b, a〉 is finite-Support.
Let us consider a non empty zero structure L and elements a, b, c of L. Now

we state the propositions:

(16) (i) 〈c, b, a〉(0) = c, and

(ii) 〈c, b, a〉(1) = b, and

(iii) 〈c, b, a〉(2) = a, and

(iv) for every natural number n such that n  3 holds 〈c, b, a〉(n) = 0L.

(17) deg〈c, b, a〉 ¬ 2.

(18) deg〈c, b, a〉 = 2 if and only if a 6= 0L.

Let R be a non degenerated ring, a be a non zero element of R, and b, c be
elements of R. One can check that 〈c, b, a〉 is quadratic and 〈c, b, 1R〉 is quadratic
and monic.

Let R be an integral domain and a, x be non zero elements of R. Observe
that x · 〈c, b, a〉 is quadratic.

Let us consider a ring R and elements a, b, c, x of R. Now we state the
propositions:

(19) x · 〈c, b, a〉 = 〈x · c, x · b, x · a〉.
(20) eval(〈c, b, a〉, x) = c+ b · x+ a · x2.
(21) Let us consider a non degenerated ring R, and a polynomial p over R.

Then p is quadratic if and only if there exists a non zero element a of R
and there exist elements b, c of R such that p = 〈c, b, a〉.

(22) Let us consider a non degenerated ring R, and a monic polynomial p
over R. Then p is quadratic if and only if there exist elements b, c of R
such that p = 〈c, b, 1R〉. The theorem is a consequence of (21).
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(23) Let us consider a non degenerated ring R, a ring extension S of R,
elements a1, b1, c1 of R, and elements a2, b2, c2 of S. Suppose a1 = a2 and
b1 = b2 and c1 = c2. Then 〈c2, b2, a2〉 = 〈c1, b1, a1〉.

Let R be a non degenerated ring and p be a polynomial over R. We say that
p is purely quadratic if and only if

(Def. 6) there exists a non zero element a of R and there exists an element c of
R such that p = 〈c, 0R, a〉.

Let a be a non zero element of R and c be an element of R. Let us note
that 〈c, 0R, a〉 is purely quadratic and there exists a polynomial over R which
is monic and purely quadratic and every polynomial over R which is purely
quadratic is also quadratic.

Let R be a ring and a be an element of R. The functors: X2- a and X2+ a

yielding elements of the carrier of PolyRing(R) are defined by terms

(Def. 7) 〈−a, 0R, 1R〉,
(Def. 8) 〈a, 0R, 1R〉,

respectively. Let R be a non degenerated ring. One can check that every poly-
nomial over R which is linear is also non quadratic and every polynomial over
R which is quadratic is also non linear.

Let a be an element of R. One can verify that X2- a is purely quadratic, mo-
nic, and non constant and X2+ a is purely quadratic, monic, and non constant.

Now we state the propositions:

(24) Let us consider a field F , and elements b1, c1, b2, c2 of F . Then 〈c1, b1〉 ∗
〈c2, b2〉 = 〈c1 · c2, b1 · c2 + b2 · c1, b1 · b2〉. The theorem is a consequence of
(1).

(25) Let us consider a field F with non characteristic 2, a non zero element a of
F , elements b, c of F , and an element w of F . Suppose w2 = b2−(4 ? a) ·c.
Then

(i) eval(〈c, b, a〉, (−b+ w) · (2 ? a)−1) = 0F , and

(ii) eval(〈c, b, a〉, (−b− w) · (2 ? a)−1) = 0F .

The theorem is a consequence of (5), (2), (4), and (20).

(26) Let us consider a field F , a non zero element a of F , and elements b, c
of F . Suppose Roots(〈c, b, a〉) 6= ∅. Then b2 − (4 ? a) · c is a square. The
theorem is a consequence of (20), (4), and (2).

(27) Let us consider a field F with non characteristic 2, a non zero element a of
F , elements b, c of F , and an element w of F . Suppose w2 = b2−(4 ? a) ·c.
Then Roots(〈c, b, a〉) = {(−b + w) · (2 ? a)−1, (−b − w) · (2 ? a)−1}. The
theorem is a consequence of (5), (20), (4), (2), and (25).



234 christoph schwarzweller et al.

(28) Let us consider a field F with non characteristic 2, a non zero element a of
F , elements b, c of F , and an element w of F . Suppose w2 = b2−(4 ? a) ·c.
Let us consider elements r1, r2 of F . Suppose r1 = (−b+w) · (2 ? a)−1 and
r2 = (−b− w) · (2 ? a)−1. Then 〈c, b, a〉 = a · (X- r1 ∗X- r2).
Proof: 〈a ·r1 ·r2, a · (−(r1 + r2)), a · (1F )〉 = a · (rpoly(1, r1)∗ rpoly(1, r2)).
2 ? a 6= 0F and 4 ? a 6= 0F and a 6= 0F . a · r1 · r2 = c by [9, (5),(9)].
a · (−(r1 + r2)) = b by [10, (2)],(3). �

Let R be a non degenerated ring and p be a quadratic polynomial over R.
The functor Discriminant(p) yielding an element of R is defined by

(Def. 9) there exists a non zero element a of R and there exist elements b, c of R
such that p = 〈c, b, a〉 and it = b2 − (4 ? a) · c.

We introduce the notation DC(p) as a synonym of Discriminant(p).
Let p be a monic, quadratic polynomial over R. Observe that the functor

Discriminant(p) is defined by

(Def. 10) there exist elements b, c of R such that p = 〈c, b, 1R〉 and it = b2 − 4 ? c.

Let p be a monic, purely quadratic polynomial over R. One can check that
the functor Discriminant(p) is defined by

(Def. 11) there exists an element c of R such that p = 〈c, 0R, 1R〉 and it = −4 ? c.

Let us consider a field F with non characteristic 2 and a quadratic polynomial
p over F . Now we state the propositions:

(29) Roots(p) 6= ∅ if and only if DC(p) is a square. The theorem is a conse-
quence of (21), (25), and (26).

(30) Roots(p) = 1 if and only if DC(p) = 0F . The theorem is a consequence
of (21), (27), (5), and (29).

(31) Roots(p) = 2 if and only if DC(p) is non zero and a square. The theorem
is a consequence of (21), (5), (29), and (27).

(32) Let us consider a field F with non characteristic 2, and a quadratic
element p of the carrier of PolyRing(F ). Then p is reducible if and only if
DC(p) is a square. The theorem is a consequence of (21), (28), and (19).

(33) Let us consider a field F with non characteristic 2, and an element a
of F . Then X2- a is reducible if and only if a is a square. The theorem is
a consequence of (5), (6), and (32).
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4. Quadratic Polynomials over Z/2

Now we state the propositions:

(34) The carrier of Z/2 = {0Z/2, 1Z/2}.
(35) −1Z/2 = 1Z/2.

One can verify that Z/2 is polynomial-disjoint and every element of Z/2 is
a square and every non zero polynomial over Z/2 is monic and every non zero
element of the carrier of PolyRing(Z/2) is monic.

The functors: X2, X2 + 1, X2 + X, and X2 + X + 1 yielding quadratic ele-
ments of the carrier of PolyRing(Z/2) are defined by terms

(Def. 12) 〈0Z/2, 0Z/2, 1Z/2〉,
(Def. 13) 〈1Z/2, 0Z/2, 1Z/2〉,
(Def. 14) 〈0Z/2, 1Z/2, 1Z/2〉,
(Def. 15) 〈1Z/2, 1Z/2, 1Z/2〉,

respectively. The functors: X- and X-1 yielding linear elements of the carrier of
PolyRing(Z/2) are defined by terms

(Def. 16) 〈0Z/2, 1Z/2〉,
(Def. 17) 〈1Z/2, 1Z/2〉,

respectively. Now we state the propositions:

(36) the set of all p where p is a quadratic polynomial over Z/2 =
{X2,X2 + 1,X2 + X,X2 + X + 1}. The theorem is a consequence of (22)
and (34).

(37) the set of all p where p is a quadratic polynomial over Z/2 = 4. The the-
orem is a consequence of (36).

(38) Let us consider a quadratic polynomial p over Z/2. Then DC(p) is a squ-
are.

(39) (i) X2 = X- ∗X-, and

(ii) Roots(X2) = {0Z/2}.
(40) (i) X2 + 1 = X-1 ∗X-1, and

(ii) Roots(X2 + 1) = {1Z/2}.
The theorem is a consequence of (35).

(41) (i) X2 + X = X- ∗X-1, and

(ii) Roots(X2 + X) = {0Z/2, 1Z/2}.
The theorem is a consequence of (35).

(42) Roots(X2 + X + 1) = ∅. The theorem is a consequence of (34) and (20).

Let us note that X2 is reducible and X2 + 1 is reducible and X2 + X is
reducible and X2 + X + 1 is irreducible. Now we state the propositions:
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(43) Z/2 is a splitting field of X2.

(44) Z/2 is a splitting field of X2 + 1.

(45) Z/2 is a splitting field of X2 + X.

The functor α yielding an element of embField(canHomP(X2 + X + 1)) is
defined by the term

(Def. 18) KrRootP(X2 + X + 1).

The functor α− 1 yielding an element of embField(canHomP(X2 + X + 1))
is defined by the term

(Def. 19) α− 1embField(canHomP(X2+X+1)).

Let us observe that α is non zero and (Z/2)-algebraic.
Now we state the propositions:

(46) (i) −α = α, and

(ii) (α)−1 = α− 1, and

(iii) (α)−1 6= α.

(47) X2 + X + 1 = X-α ∗X-(α)−1 = X-α ∗X-α− 1.

(48) Roots(FAdj(Z/2, {α}),X2 + X + 1) = {α, α− 1}. The theorem is a con-
sequence of (46).

(49) Roots(FAdj(Z/2, {α}),X2 + X + 1) = 2.

(50) MinPoly(α,Z/2) = X2 + X + 1.

(51) deg(FAdj(Z/2, {α}),Z/2) = 2. The theorem is a consequence of (50) and
(18).

(52) FAdj(Z/2, {α}) is a splitting field of X2 + X + 1. The theorem is a con-
sequence of (48).

5. Fields with Non Squares

Let R be a ring. We say that R is quadratic complete if and only if

(Def. 20) the carrier of R ⊆ SQ(R).

Let us observe that −1RF is non square and −1FQ is non square and every non
degenerated ring which is algebraic closed is also quadratic complete and every
non degenerated ring which is preordered is also non quadratic complete and FQ
is non quadratic complete and RF is non quadratic complete and CF is quadratic
complete and there exists a field which is non quadratic complete, polynomial-
disjoint, and strict and there exists a field which is quadratic complete and strict
and every ring which is non quadratic complete is also non degenerated.

Let R be a non quadratic complete ring. One can check that there exists
an element of R which is non square and there exists a field which is strict,
polynomial-disjoint, and non quadratic complete and has not characteristic 2.
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Let F be a non quadratic complete field without characteristic 2. Let us
note that there exists an element of the carrier of PolyRing(F ) which is monic,
quadratic, and irreducible.

Let F be a field with non characteristic 2 and a be square element of F . One
can verify that X2- a is reducible.

Let F be a non quadratic complete field without characteristic 2 and a be
a non square element of F . Note that X2- a is irreducible.

Let F be a non quadratic complete, polynomial-disjoint field without cha-
racteristic 2. The functor

√
a yielding an element of embField(canHomP(X2- a))

is defined by the term

(Def. 21) KrRootP(X2- a).

One can verify that
√
a is non zero and F-algebraic and embField(canHomP

(X2- a)) is (FAdj(F, {
√
a}))-extending and

√
a is (FAdj(F, {

√
a}))-membered

and non F -membered.
From now on F denotes a non quadratic complete, polynomial-disjoint field

without characteristic 2.
Let us consider a non square element a of F . Now we state the propositions:

(53)
√
a ·
√
a = a. The theorem is a consequence of (20).

(54) MinPoly(
√
a, F ) = X2- a.

(55) deg(FAdj(F, {
√
a}), F ) = 2.

(56) X-
√
a ∗X+

√
a = X2- a. The theorem is a consequence of (53).

(57) Roots(FAdj(F, {
√
a}),X2- a) = {

√
a,−
√
a}. The theorem is a consequ-

ence of (56).

(58) FAdj(F, {
√
a}) is a splitting field of X2- a. The theorem is a consequence

of (56) and (57).

(59) {1F ,
√
a} is a basis of VecSp(FAdj(F, {

√
a}), F ).

(60) The carrier of FAdj(F, {
√
a}) = the set of all y+(@

√
a)·z where y, z are

F -membered elements of FAdj(F, {
√
a}).

(61) Let us consider a non square element a of F , and F -membered elements
a1, a2, b1, b2 of FAdj(F, {

√
a}). Suppose a1 + (@

√
a) · b1 = a2 + (@

√
a) · b2.

Then

(i) a1 = a2, and

(ii) b1 = b2.
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6. Splittingfields for Quadratic Polynomials

Let F be a field with non characteristic 2 and p be a quadratic element of
the carrier of PolyRing(F ). We say that p is DC-square if and only if

(Def. 22) DC(p) is a square.

Note that there exists a quadratic element of the carrier of PolyRing(F )
which is monic and DC-square.

Let F be a non quadratic complete field without characteristic 2. One can
check that there exists a quadratic element of the carrier of PolyRing(F ) which
is monic and non DC-square.

Let p be a non DC-square, quadratic element of the carrier of PolyRing(F ).
One can verify that DC(p) is non square and X2- DC(p) is irreducible.

Let F be a field with non characteristic 2 and p be a DC-square, quadra-
tic element of the carrier of PolyRing(F ). One can verify that X2- DC(p) is
reducible.

Now we state the proposition:

(62) Let us consider a field F with non characteristic 2, and a quadratic
element p of the carrier of PolyRing(F ). Then F is a splitting field of p if
and only if DC(p) is a square. The theorem is a consequence of (21), (28),
and (26).

Let F be a non quadratic complete, polynomial-disjoint field without cha-
racteristic 2 and p be a non DC-square, quadratic element of the carrier of
PolyRing(F ). Observe that

√
DC(p) is non zero and F-algebraic.

The functor RootDC(p) yielding an element of FAdj(F, {
√

DC(p)}) is defined
by the term

(Def. 23)
√

DC(p).

The functors: Root1(p) and Root2(p) yielding elements of FAdj(F, {
√

DC(p)})
are defined by terms

(Def. 24) (−(@(p(1),FAdj(F, {
√

DC(p)})))+
RootDC(p)) · (2 ?(@(p(2),FAdj(F, {

√
DC(p)}))))−1,

(Def. 25) (−(@(p(1),FAdj(F, {
√

DC(p)})))−
RootDC(p)) · (2 ?(@(p(2),FAdj(F, {

√
DC(p)}))))−1,

respectively. In the sequel p denotes a non DC-square, quadratic element of
the carrier of PolyRing(F ).

Now we state the propositions:

(63) RootDC(p) ·RootDC(p) = DC(p). The theorem is a consequence of (53).

(64) Let us consider a non zero element a of FAdj(F, {
√

DC(p)}), and ele-
ments b, c of FAdj(F, {

√
DC(p)}). Suppose p = 〈c, b, a〉. Then
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(i) Root1(p) = (−b+ RootDC(p)) · (2 ? a)−1, and

(ii) Root2(p) = (−b− RootDC(p)) · (2 ? a)−1.

(65) p = (@(LC p,FAdj(F, {
√

DC(p)}))) · (X- Root1(p) ∗ X- Root2(p)). The
theorem is a consequence of (28), (21), (23), (64), (63), and (7).

(66) Roots(FAdj(F, {
√

DC(p)}), p) = {Root1(p),Root2(p)}. The theorem is
a consequence of (65).

(67) Root1(p) 6= Root2(p). The theorem is a consequence of (21), (23), (5),
and (64).

(68) deg(FAdj(F, {
√

DC(p)}), F ) = 2.

(69) FAdj(F, {
√

DC(p)}) is a splitting field of p. The theorem is a consequence
of (65), (66), (21), (5), (23), (64), and (7).

7. Quadratic Extensions

Let F be a field and E be an extension of F . We say that E is F -quadratic
if and only if

(Def. 26) deg(E,F ) = 2.

Let F be a non quadratic complete, polynomial-disjoint field without charac-
teristic 2. Let us observe that there exists an extension of F which is F -quadratic.

Let F be a field. One can check that every extension of F which is F -
quadratic is also F -finite.

Let F be a non quadratic complete, polynomial-disjoint field without charac-
teristic 2 and a be a non square element of F . Let us observe that FAdj(F, {

√
a})

is F -quadratic.
Now we state the propositions:

(70) Let us consider a field F , and elements a, b of F . If b2 = a, then
eval(X2- a, b) = 0F .

(71) Let us consider a field F with non characteristic 2, an extension E of F ,
and an element a of F . Suppose there exists no element b of F such that
a = b2. Let us consider an element b of E. Suppose b2 = a. Then

(i) FAdj(F, {b}) is a splitting field of X2- a, and

(ii) deg(FAdj(F, {b}), F ) = 2.

The theorem is a consequence of (9), (70), and (33).

(72) Let us consider a field F with non characteristic 2, and an extension E

of F . Then deg(E,F ) = 2 if and only if there exists an element a of F
such that there exists no element b of F such that a = b2 and there exists
an element b of E such that a = b2 and E ≈ FAdj(F, {b}). The theorem
is a consequence of (22), (23), (7), (26), (27), (5), (8), and (71).
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(73) Let us consider an extension E of F . Then E is F -quadratic if and only
if there exists a non square element a of F such that E and FAdj(F, {

√
a})

are isomorphic over F . The theorem is a consequence of (22), (23), (7),
(26), (27), (5), (8), (58), and (71).
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Summary. In this article, we formalize in Mizar [1], [2] the 3-fold product
space of real normed spaces for usefulness in application fields such as engineering,
although the formalization of the 2-fold product space of real normed spaces has
been stored in the Mizar Mathematical Library [3].

First, we prove some theorems about the 3-variable function and 3-fold Car-
tesian product for preparation. Then we formalize the definition of 3-fold product
space of real linear spaces. Finally, we formulate the definition of 3-fold product
space of real normed spaces. We referred to [7] and [6] in the formalization.
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1. 3-Variable Function & 3-Fold Cartesian Product

From now on v, x, x1, x2, y, z denote objects and X, X1, X2, X3 denote
sets.

The scheme FuncEx3A deals with sets X, Y , W , Z and a 4-ary predicate P
and states that

(Sch. 1) There exists a function f from X × Y ×W into Z such that for every
objects x, y, w such that x, y, w ∈W holds P [x, y, w, f(x, y, w)]

provided

• for every objects x, y, w such that x, y, w ∈ W there exists z such that
z ∈ Z and P [x, y, w, z].
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Now we state the propositions:

(1) Let us consider non empty sets X, Y, Z, and a function D. Suppose
domD = {1, 2, 3} and D(1) = X and D(2) = Y and D(3) = Z. Then
there exists a function I from X × Y × Z into

∏
D such that

(i) I is one-to-one and onto, and

(ii) for every objects x, y, z such that x ∈ X and y ∈ Y and z ∈ Z holds
I(x, y, z) = 〈x, y, z〉.

Proof: Define P[object, object, object, object] ≡ $4 = 〈$1, $2, $3〉. For eve-
ry objects x, y, z such that x ∈ X and y ∈ Y and z ∈ Z there exists
an object w such that w ∈

∏
D and P[x, y, z, w]. Consider I being a func-

tion from X × Y × Z into
∏
D such that for every objects x, y, z such

that x ∈ X and y ∈ Y and z ∈ Z holds P[x, y, z, I(x, y, z)]. �

(2) Let us consider non empty sets X, Y, Z. Then there exists a function I

from X × Y × Z into
∏
〈X,Y, Z〉 such that

(i) I is one-to-one and onto, and

(ii) for every objects x, y, z such that x ∈ X and y ∈ Y and z ∈ Z holds
I(x, y, z) = 〈x, y, z〉.

The theorem is a consequence of (1).

2. 3-Fold Product Space of Real Linear Spaces

Let E, F , G be non empty additive loop structures. The functor E ×F ×G
yielding a strict, non empty additive loop structure is defined by the term

(Def. 1) (E × F )×G.

Let e be a point of E, f be a point of F , and g be a point of G. One can
verify that the functor 〈〈e, f, g〉〉 yields an element of E × F × G. Let E, F , G
be Abelian, non empty additive loop structures. Observe that E × F × G is
Abelian.

Let E, F , G be add-associative, non empty additive loop structures. One
can verify that E × F ×G is add-associative. Let E, F , G be right zeroed, non
empty additive loop structures. Note that E × F ×G is right zeroed.

Let E, F , G be right complementable, non empty additive loop structures.
Let us note that E × F ×G is right complementable.

Now we state the propositions:

(3) Let us consider non empty additive loop structures E, F , G. Then

(i) for every set x, x is a point of E × F ×G iff there exists a point x1
of E and there exists a point x2 of F and there exists a point x3 of
G such that x = 〈〈x1, x2, x3〉〉, and
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(ii) for every points x1, y1 of E and for every points x2, y2 of F and
for every points x3, y3 of G, 〈〈x1, x2, x3〉〉 + 〈〈y1, y2, y3〉〉 = 〈〈x1 + y1,

x2 + y2, x3 + y3〉〉, and

(iii) 0E×F×G = 〈〈0E , 0F , 0G〉〉.
Proof: For every set x, x is a point of E × F ×G iff there exists a point
x1 of E and there exists a point x2 of F and there exists a point x3 of G
such that x = 〈〈x1, x2, x3〉〉 by [5, (7)]. �

(4) Let us consider add-associative, right zeroed, right complementable,
non empty additive loop structures E, F , G, a point x1 of E, a point x2
of F , and a point x3 of G. Then −〈〈x1, x2, x3〉〉 = 〈〈−x1, −x2, −x3〉〉.

Let E, F , G be non empty RLS structures. The functor E ×F ×G yielding
a strict, non empty RLS structure is defined by the term

(Def. 2) (E × F )×G.

Let e be a point of E, f be a point of F , and g be a point of G. Let us
note that the functor 〈〈e, f, g〉〉 yields an element of E × F ×G. Let E, F , G be
Abelian, non empty RLS structures. One can check that E ×F ×G is Abelian.

Let E, F , G be add-associative, non empty RLS structures. Let us note that
E × F ×G is add-associative.

Let E, F , G be right zeroed, non empty RLS structures. Let us observe that
E × F × G is right zeroed. Let E, F , G be right complementable, non empty
RLS structures. One can verify that E × F ×G is right complementable.

Now we state the propositions:

(5) Let us consider non empty RLS structures E, F , G. Then

(i) for every set x, x is a point of E × F ×G iff there exists a point x1
of E and there exists a point x2 of F and there exists a point x3 of
G such that x = 〈〈x1, x2, x3〉〉, and

(ii) for every points x1, y1 of E and for every points x2, y2 of F and
for every points x3, y3 of G, 〈〈x1, x2, x3〉〉 + 〈〈y1, y2, y3〉〉 = 〈〈x1 + y1,

x2 + y2, x3 + y3〉〉, and

(iii) 0E×F×G = 〈〈0E , 0F , 0G〉〉, and

(iv) for every point x1 of E and for every point x2 of F and for every
point x3 of G and for every real number a, a · 〈〈x1, x2, x3〉〉 = 〈〈a · x1,
a · x2, a · x3〉〉.

Proof: For every set x, x is a point of E × F ×G iff there exists a point
x1 of E and there exists a point x2 of F and there exists a point x3 of
G such that x = 〈〈x1, x2, x3〉〉. For every points x1, y1 of E and for every
points x2, y2 of F and for every points x3, y3 of G, 〈〈x1, x2, x3〉〉+ 〈〈y1, y2,
y3〉〉 = 〈〈x1 + y1, x2 + y2, x3 + y3〉〉. �
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(6) Let us consider add-associative, right zeroed, right complementable,
non empty RLS structures E, F , G, a point x1 of E, a point x2 of F , and
a point x3 of G. Then −〈〈x1, x2, x3〉〉 = 〈〈−x1, −x2, −x3〉〉.

Let E, F , G be vector distributive, non empty RLS structures. Let us observe
that E × F ×G is vector distributive.

Let E, F , G be scalar distributive, non empty RLS structures. Let us observe
that E × F ×G is scalar distributive.

Let E, F , G be scalar associative, non empty RLS structures. Let us observe
that E × F ×G is scalar associative.

Let E, F , G be scalar unital, non empty RLS structures. Let us observe that
E × F ×G is scalar unital.

Let E, F , G be Abelian, add-associative, right zeroed, right complementa-
ble, scalar distributive, vector distributive, scalar associative, scalar unital,
non empty RLS structures. One can verify that 〈E,F,G〉 is real-linear-space-
yielding. Now we state the proposition:

(7) Let us consider real linear spaces X, Y, Z. Then there exists a function
I from X × Y × Z into

∏
〈X,Y, Z〉 such that

(i) I is one-to-one and onto, and

(ii) for every point x of X and for every point y of Y and for every point
z of Z, I(x, y, z) = 〈x, y, z〉, and

(iii) for every points v, w of X × Y × Z, I(v + w) = I(v) + I(w), and

(iv) for every point v of X×Y ×Z and for every real number r, I(r ·v) =
r · I(v), and

(v) I(0X×Y×Z) = 0∏〈X,Y,Z〉.
Proof: Set C1 = the carrier of X. Set C2 = the carrier of Y. Set C3 =
the carrier of Z. Consider I being a function from C1×C2×C3 into

∏
〈C1,

C2, C3〉 such that I is one-to-one and onto and for every objects x, y, z
such that x ∈ C1 and y ∈ C2 and z ∈ C3 holds I(x, y, z) = 〈x, y, z〉. For
every points v, w of X × Y × Z, I(v + w) = I(v) + I(w). For every point
v of X × Y × Z and for every real number r, I(r · v) = r · I(v). �

Let E, F , G be real linear spaces, e be a point of E, f be a point of F , and
g be a point of G. Note that the functor 〈e, f, g〉 yields an element of

∏
〈E,F,

G〉. Now we state the proposition:

(8) Let us consider real linear spaces E, F , G. Then

(i) for every set x, x is a point of
∏
〈E,F,G〉 iff there exists a point x1

of E and there exists a point x2 of F and there exists a point x3 of
G such that x = 〈x1, x2, x3〉, and



The 3-fold product space of real normed spaces and its ... 245

(ii) for every points x1, y1 of E and for every points x2, y2 of F and for
every points x3, y3 of G, 〈x1, x2, x3〉+ 〈y1, y2, y3〉 = 〈x1+ y1, x2+ y2,

x3 + y3〉, and

(iii) 0∏〈E,F,G〉 = 〈0E , 0F , 0G〉, and

(iv) for every point x1 of E and for every point x2 of F and for every
point x3 of G, −〈x1, x2, x3〉 = 〈−x1,−x2,−x3〉, and

(v) for every point x1 of E and for every point x2 of F and for every
point x3 of G and for every real number a, a · 〈x1, x2, x3〉 = 〈a · x1,
a · x2, a · x3〉.

Proof: Consider I being a function from E×F ×G into
∏
〈E,F,G〉 such

that I is one-to-one and onto and for every point x of E and for every
point y of F and for every point z of G, I(x, y, z) = 〈x, y, z〉 and for
every points v, w of E × F × G, I(v + w) = I(v) + I(w) and for every
point v of E × F ×G and for every real number r, I(r · v) = r · I(v) and
0∏〈E,F,G〉 = I(0E×F×G).

For every set x, x is a point of
∏
〈E,F,G〉 iff there exists a point x1 of

E and there exists a point x2 of F and there exists a point x3 of G such
that x = 〈x1, x2, x3〉. For every points x1, y1 of E and for every points x2,
y2 of F and for every points x3, y3 of G, 〈x1, x2, x3〉+〈y1, y2, y3〉 = 〈x1+y1,
x2 + y2, x3 + y3〉. 0∏〈E,F,G〉 = 〈0E , 0F , 0G〉. For every point x1 of E and
for every point x2 of F and for every point x3 of G, −〈x1, x2, x3〉 = 〈−x1,
−x2,−x3〉. I(a · 〈〈x1, x2, x3〉〉) = I(a · x1, a · x2, a · x3). �

3. 3-Fold Product Space of Real Normed Spaces

Let E, F , G be non empty normed structures. The functor E×F×G yielding
a strict, non empty normed structure is defined by the term

(Def. 3) (E × F )×G.

Let e be a point of E, f be a point of F , and g be a point of G. One can
verify that the functor 〈〈e, f, g〉〉 yields an element of E × F × G. Let E, F ,
G be real normed spaces. Let us note that E × F × G is reflexive, discernible,
real normed space-like, scalar distributive, vector distributive, scalar associative,
scalar unital, Abelian, add-associative, right zeroed, and right complementable
and 〈E,F,G〉 is real-norm-space-yielding.

Now we state the propositions:

(9) Let us consider real normed spaces E, F , G. Then

(i) for every set x, x is a point of E × F ×G iff there exists a point x1
of E and there exists a point x2 of F and there exists a point x3 of
G such that x = 〈〈x1, x2, x3〉〉, and
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(ii) for every points x1, y1 of E and for every points x2, y2 of F and
for every points x3, y3 of G, 〈〈x1, x2, x3〉〉 + 〈〈y1, y2, y3〉〉 = 〈〈x1 + y1,

x2 + y2, x3 + y3〉〉, and

(iii) 0E×F×G = 〈〈0E , 0F , 0G〉〉, and

(iv) for every point x1 of E and for every point x2 of F and for every
point x3 of G and for every real number a, a · 〈〈x1, x2, x3〉〉 = 〈〈a · x1,
a · x2, a · x3〉〉, and

(v) for every point x1 of E and for every point x2 of F and for every
point x3 of G, −〈〈x1, x2, x3〉〉 = 〈〈−x1, −x2, −x3〉〉, and

(vi) for every point x1 of E and for every point x2 of F and for every
point x3 of G, ‖〈〈x1, x2, x3〉〉‖ =

√
‖x1‖2 + ‖x2‖2 + ‖x3‖2 and there

exists an element w of R3 such that w = 〈‖x1‖, ‖x2‖, ‖x3‖〉 and ‖〈〈x1,
x2, x3〉〉‖ = |w|.

Proof: For every set x, x is a point of E × F ×G iff there exists a point
x1 of E and there exists a point x2 of F and there exists a point x3 of G
such that x = 〈〈x1, x2, x3〉〉. For every point x1 of E and for every point x2
of F and for every point x3 of G and for every real number a, a · 〈〈x1, x2,
x3〉〉 = 〈〈a ·x1, a ·x2, a ·x3〉〉. Consider v10 being an element of R2 such that
v10 = 〈‖〈〈x1, y1〉〉‖, ‖z1‖〉 and (prodnorm(E × F,G))(〈〈x1, y1〉〉, z1) = |v10|.
Consider v20 being an element of R2 such that v20 = 〈‖x1‖, ‖y1‖〉 and
(prodnorm(E,F ))(x1, y1) = |v20|. �

(10) Let us consider real normed spaces X, Y, Z. Then there exists a function
I from X × Y × Z into

∏
〈X,Y, Z〉 such that

(i) I is one-to-one and onto, and

(ii) for every point x of X and for every point y of Y and for every point
z of Z, I(x, y, z) = 〈x, y, z〉, and

(iii) for every points v, w of X × Y × Z, I(v + w) = I(v) + I(w), and

(iv) for every point v of X×Y ×Z and for every real number r, I(r ·v) =
r · I(v), and

(v) 0∏〈X,Y,Z〉 = I(0X×Y×Z), and

(vi) for every point v of X × Y × Z, ‖I(v)‖ = ‖v‖.

Proof: Reconsider X0 = X, Y0 = Y, Z0 = Z as a real linear space.
Consider I0 being a function from X0 × Y0 × Z0 into

∏
〈X0, Y0, Z0〉 such

that I0 is one-to-one and onto and for every point x of X and for every
point y of Y and for every point z of Z, I0(x, y, z) = 〈x, y, z〉 and for
every points v, w of X0×Y0×Z0, I0(v+w) = I0(v) + I0(w) and for every
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point v of X0 × Y0 × Z0 and for every real number r, I0(r · v) = r · I0(v)
and 0∏〈X0,Y0,Z0〉 = I0(0X0×Y0×Z0).

Reconsider I = I0 as a function from X × Y × Z into
∏
〈X,Y, Z〉.

For every points g1, g2 of X0 × Y0 and for every points f1, f2 of Z0,
(prodadd(X×Y, Z))(〈〈g1, f1〉〉, 〈〈g2, f2〉〉) = 〈〈g1+ g2, f1+f2〉〉. For every real
number r and for every point g of X0 × Y0 and for every point f of Z0,
(prodmlt(X × Y,Z))(r, 〈〈g, f〉〉) = 〈〈r · g, r · f〉〉. For every point v of X ×
Y × Z, ‖I(v)‖ = ‖v‖ by [4, (11)]. �

Let E, F , G be real normed spaces, e be a point of E, f be a point of F ,
and g be a point of G. One can check that the functor 〈e, f, g〉 yields an element
of
∏
〈E,F,G〉. Now we state the proposition:

(11) Let us consider real normed spaces E, F , G. Then

(i) for every set x, x is a point of
∏
〈E,F,G〉 iff there exists a point x1

of E and there exists a point x2 of F and there exists a point x3 of
G such that x = 〈x1, x2, x3〉, and

(ii) for every points x1, y1 of E and for every points x2, y2 of F and for
every points x3, y3 of G, 〈x1, x2, x3〉+ 〈y1, y2, y3〉 = 〈x1+ y1, x2+ y2,

x3 + y3〉, and

(iii) 0∏〈E,F,G〉 = 〈0E , 0F , 0G〉, and

(iv) for every point x1 of E and for every point x2 of F and for every
point x3 of G, −〈x1, x2, x3〉 = 〈−x1,−x2,−x3〉, and

(v) for every point x1 of E and for every point x2 of F and for every
point x3 of G and for every real number a, a · 〈x1, x2, x3〉 = 〈a · x1,
a · x2, a · x3〉, and

(vi) for every point x1 of E and for every point x2 of F and for every
point x3 of G, ‖〈x1, x2, x3〉‖ =

√
‖x1‖2 + ‖x2‖2 + ‖x3‖2 and there

exists an element w of R3 such that w = 〈‖x1‖, ‖x2‖, ‖x3‖〉 and ‖〈x1,
x2, x3〉‖ = |w|.

Proof: Consider I being a function from E×F ×G into
∏
〈E,F,G〉 such

that I is one-to-one and onto and for every point x of E and for every
point y of F and for every point z of G, I(x, y, z) = 〈x, y, z〉 and for
every points v, w of E × F × G, I(v + w) = I(v) + I(w) and for every
point v of E × F ×G and for every real number r, I(r · v) = r · I(v) and
0∏〈E,F,G〉 = I(0E×F×G) and for every point v of E×F ×G, ‖I(v)‖ = ‖v‖.
For every set x, x is a point of

∏
〈E,F,G〉 iff there exists a point x1

of E and there exists a point x2 of F and there exists a point x3 of G
such that x = 〈x1, x2, x3〉. For every points x1, y1 of E and for every
points x2, y2 of F and for every points x3, y3 of G, 〈x1, x2, x3〉 + 〈y1,
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y2, y3〉 = 〈x1 + y1, x2 + y2, x3 + y3〉. 0∏〈E,F,G〉 = 〈0E , 0F , 0G〉. ‖〈〈x1, x2,
x3〉〉‖ =

√
‖x1‖2 + ‖x2‖2 + ‖x3‖2. Consider w being an element of R3 such

that w = 〈‖x1‖, ‖x2‖, ‖x3‖〉 and ‖〈〈x1, x2, x3〉〉‖ = |w|. �

Let E, F , G be complete real normed spaces. Let us note that E ×F ×G is
complete.
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Isomorphisms between two Graph-membered sets or two Graph-yielding
functions are formalized in section 3. They are the foundation for isomorphisms
between unions (section 4) and sums (section 6) of graphs.

Section 4 introduces attributes vertex-disjoint and edge-disjoint for
sets or functions of graphs. A lot of attention is given to graph unions of vertex-
disjoint sets of graphs, since these essentially are the graph sums.

The rest of the article then focuses on graph sums, that are vertex-disjoint
unions of the range of a function of graphs, which is isomorphic to a given
graph function not necessarily vertex-disjoint, so that in future articles authors
do not need to create a vertex-disjoint function themselves. This “canonical”
distinction function is formalized in section 5. A second distinction function is
provided that leaves exactly one graph of the original graph function as it was.
Isomorphism theorems between these two distinction functions and the original
functions are provided as well and needed for the sum isomorphisms in the next
section.

Section 6 introduces the mode GraphSum of a (not necessarily vertex-disjoint)
graph function as a graph (directed) isomorphic to the union of the range of the
distinction function. The second distinction function is used to provide a graph
sum that is a supergraph of a given graph in the graph function.

Finally the last section defines the graph sum of two graph as a supergraph
of the first graph using the general definition from section 6.

1. Replacing Vertices and Edges

Let G be a graph, V be a non empty, one-to-one many sorted set indexed by
the vertices of G, and E be a one-to-one many sorted set indexed by the edges
of G. The functor replaceVerticesEdges(V,E) yielding a plain graph is defined
by

(Def. 1) there exist functions S, T from rngE into rng V such that S = V ·
(the source of G) · (E−1) and T = V · (the target of G) · (E−1) and it =
createGraph(rng V, rngE,S, T ).

The functor replaceVertices(V ) yielding a plain graph is defined by the term

(Def. 2) replaceVerticesEdges(V, idα), where α is the edges of G.

Let E be a one-to-one many sorted set indexed by the edges of G. The
functor replaceEdges(E) yielding a plain graph is defined by the term

(Def. 3) replaceVerticesEdges(idα, E), where α is the vertices of G.

Now we state the propositions:

(1) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, and a one-to-one many sorted set E indexed
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by the edges of G. Then

(i) the vertices of replaceVerticesEdges(V,E) = rng V , and

(ii) the edges of replaceVerticesEdges(V,E) = rngE, and

(iii) the source of replaceVerticesEdges(V,E) = V · (the source of G) ·
(E−1), and

(iv) the target of replaceVerticesEdges(V,E) = V · (the target of G) ·
(E−1).

(2) Let us consider a graph G, and a non empty, one-to-one many sorted set
V indexed by the vertices of G. Then

(i) the vertices of replaceVertices(V ) = rng V , and

(ii) the edges of replaceVertices(V ) = the edges of G, and

(iii) the source of replaceVertices(V ) = V · (the source of G), and

(iv) the target of replaceVertices(V ) = V · (the target of G).

The theorem is a consequence of (1).

(3) Let us consider a graph G, and a one-to-one many sorted set E indexed
by the edges of G. Then

(i) the vertices of replaceEdges(E) = the vertices of G, and

(ii) the edges of replaceEdges(E) = rngE, and

(iii) the source of replaceEdges(E) = (the source of G) · (E−1), and

(iv) the target of replaceEdges(E) = (the target of G) · (E−1).
The theorem is a consequence of (1).

(4) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, a one-to-one many sorted set E indexed by
the edges of G, and objects e, v, w. Suppose e joins v to w in G. Then
E(e) joins V (v) to V (w) in replaceVerticesEdges(V,E). The theorem is
a consequence of (1).

(5) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, and objects e, v, w. Suppose e joins v to w
in G. Then e joins V (v) to V (w) in replaceVertices(V ). The theorem is
a consequence of (4).

(6) Let us consider a graph G, a one-to-one many sorted set E indexed by
the edges of G, and objects e, v, w. If e joins v to w in G, then E(e) joins
v to w in replaceEdges(E). The theorem is a consequence of (4).

(7) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, a one-to-one many sorted set E indexed by
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the edges of G, and objects e, v, w. Suppose e joins v and w in G. Then
E(e) joins V (v) and V (w) in replaceVerticesEdges(V,E). The theorem is
a consequence of (4).

(8) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, and objects e, v, w. Suppose e joins v and
w in G. Then e joins V (v) and V (w) in replaceVertices(V ). The theorem
is a consequence of (5).

(9) Let us consider a graph G, a one-to-one many sorted set E indexed by
the edges of G, and objects e, v, w. If e joins v and w in G, then E(e)
joins v and w in replaceEdges(E). The theorem is a consequence of (6).

(10) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, a one-to-one many sorted set E indexed by
the edges of G, and objects e, v, w. Suppose e ∈ domE and v, w ∈ domV

and E(e) joins V (v) to V (w) in replaceVerticesEdges(V,E). Then e joins
v to w in G. The theorem is a consequence of (1).

(11) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, and objects e, v, w. Suppose v, w ∈ domV

and e joins V (v) to V (w) in replaceVertices(V ). Then e joins v to w in G.
The theorem is a consequence of (2) and (10).

(12) Let us consider a graph G, a one-to-one many sorted set E indexed by
the edges of G, and objects e, v, w. Suppose e ∈ domE and E(e) joins
v to w in replaceEdges(E). Then e joins v to w in G. The theorem is
a consequence of (3) and (10).

(13) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, a one-to-one many sorted set E indexed by
the edges of G, and objects e, v, w. Suppose e ∈ domE and v, w ∈ domV

and E(e) joins V (v) and V (w) in replaceVerticesEdges(V,E). Then e joins
v and w in G. The theorem is a consequence of (10).

(14) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, and objects e, v, w. Suppose v, w ∈ domV

and e joins V (v) and V (w) in replaceVertices(V ). Then e joins v and w in
G. The theorem is a consequence of (11).

(15) Let us consider a graph G, a one-to-one many sorted set E indexed by
the edges of G, and objects e, v, w. Suppose e ∈ domE and E(e) joins
v and w in replaceEdges(E). Then e joins v and w in G. The theorem is
a consequence of (12).

Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, and a one-to-one many sorted set E indexed by
the edges of G. Now we state the propositions:
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(16) There exists a partial graph mapping F from G to replaceVerticesEdges
(V,E) such that

(i) FV = V , and

(ii) FE = E, and

(iii) F is directed-isomorphism.

The theorem is a consequence of (1) and (4).

(17) replaceVerticesEdges(V,E) is G-directed-isomorphic.
The theorem is a consequence of (16).

Let G be a loopless graph, V be a non empty, one-to-one many sorted set
indexed by the vertices of G, and E be a one-to-one many sorted set indexed by
the edges of G. One can verify that replaceVerticesEdges(V,E) is loopless and
replaceVertices(V ) is loopless.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
observe that replaceEdges(E) is loopless.

Let G be a non loopless graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. One can verify that replaceVerticesEdges(V,E)
is non loopless and replaceVertices(V ) is non loopless.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
note that replaceEdges(E) is non loopless.

Let G be a non-multi graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. Observe that replaceVerticesEdges(V,E) is
non-multi and replaceVertices(V ) is non-multi.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
note that replaceEdges(E) is non-multi.

Let G be a non non-multi graph and V be a non empty, one-to-one many
sorted set indexed by the vertices of G. Observe that replaceVerticesEdges(V,E)
is non non-multi and replaceVertices(V ) is non non-multi.

Let E be a one-to-one many sorted set indexed by the edges of G. One can
check that replaceEdges(E) is non non-multi.

Let G be a non-directed-multi graph and V be a non empty, one-to-one many
sorted set indexed by the vertices of G. Note that replaceVerticesEdges(V,E) is
non-directed-multi and replaceVertices(V ) is non-directed-multi.

Let E be a one-to-one many sorted set indexed by the edges of G. One can
check that replaceEdges(E) is non-directed-multi.

Let G be a non non-directed-multi graph and V be a non empty, one-to-one
many sorted set indexed by the vertices of G. Note that replaceVerticesEdges(V,

E) is non non-directed-multi and replaceVertices(V ) is non non-directed-
multi.
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Let E be a one-to-one many sorted set indexed by the edges of G. Let us
observe that replaceEdges(E) is non non-directed-multi.

Let G be a simple graph and V be a non empty, one-to-one many sorted set
indexed by the vertices of G. One can verify that replaceVerticesEdges(V,E) is
simple and replaceVertices(V ) is simple.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
observe that replaceEdges(E) is simple.

Let G be a directed-simple graph and V be a non empty, one-to-one many
sorted set indexed by the vertices of G. One can check that replaceVerticesEdges

(V,E) is directed-simple and replaceVertices(V ) is directed-simple.
Let E be a one-to-one many sorted set indexed by the edges of G. One can

verify that replaceEdges(E) is directed-simple.
Let G be a trivial graph and V be a non empty, one-to-one many sorted

set indexed by the vertices of G. Note that replaceVerticesEdges(V,E) is trivial
and replaceVertices(V ) is trivial.

Let E be a one-to-one many sorted set indexed by the edges of G. One can
check that replaceEdges(E) is trivial.

Let G be a non trivial graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. Note that replaceVerticesEdges(V,E) is non
trivial and replaceVertices(V ) is non trivial.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
observe that replaceEdges(E) is non trivial.

Let G be a vertex-finite graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. One can verify that replaceVerticesEdges(V,E)
is vertex-finite and replaceVertices(V ) is vertex-finite.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
observe that replaceEdges(E) is vertex-finite.

Let G be a non vertex-finite graph and V be a non empty, one-to-one many
sorted set indexed by the vertices of G. One can verify that replaceVerticesEdges

(V,E) is non vertex-finite and replaceVertices(V ) is non vertex-finite.
Let E be a one-to-one many sorted set indexed by the edges of G. Let us

note that replaceEdges(E) is non vertex-finite.
Let G be an edge-finite graph and V be a non empty, one-to-one many sorted

set indexed by the vertices of G. Observe that replaceVerticesEdges(V,E) is
edge-finite and replaceVertices(V ) is edge-finite.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
note that replaceEdges(E) is edge-finite.

Let G be a non edge-finite graph and V be a non empty, one-to-one many
sorted set indexed by the vertices of G. Observe that replaceVerticesEdges(V,E)
is non edge-finite and replaceVertices(V ) is non edge-finite.
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Let E be a one-to-one many sorted set indexed by the edges of G. One can
check that replaceEdges(E) is non edge-finite.

Let G be a finite graph and V be a non empty, one-to-one many sorted set
indexed by the vertices of G. Note that replaceVerticesEdges(V,E) is finite and
replaceVertices(V ) is finite.

Let E be a one-to-one many sorted set indexed by the edges of G. One can
check that replaceEdges(E) is finite.

Let G be an acyclic graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. Let us note that replaceVerticesEdges(V,E) is
acyclic and replaceVertices(V ) is acyclic.

Let E be a one-to-one many sorted set indexed by the edges of G. Note that
replaceEdges(E) is acyclic.

Let G be a non acyclic graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. Let us note that replaceVerticesEdges(V,E) is
non acyclic and replaceVertices(V ) is non acyclic.

Let E be a one-to-one many sorted set indexed by the edges of G. One can
verify that replaceEdges(E) is non acyclic.

Let G be a connected graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. One can check that replaceVerticesEdges(V,E)
is connected and replaceVertices(V ) is connected.

Let E be a one-to-one many sorted set indexed by the edges of G. One can
verify that replaceEdges(E) is connected.

Let G be a non connected graph and V be a non empty, one-to-one many sor-
ted set indexed by the vertices of G. One can check that replaceVerticesEdges(V,

E) is non connected and replaceVertices(V ) is non connected.
Let E be a one-to-one many sorted set indexed by the edges of G. Observe

that replaceEdges(E) is non connected.
Let G be a tree-like graph and V be a non empty, one-to-one many sorted

set indexed by the vertices of G. Let us observe that replaceVerticesEdges(V,E)
is tree-like and replaceVertices(V ) is tree-like.

Let E be a one-to-one many sorted set indexed by the edges of G. Observe
that replaceEdges(E) is tree-like.

Let G be a chordal graph and V be a non empty, one-to-one many sorted set
indexed by the vertices of G. One can verify that replaceVerticesEdges(V,E) is
chordal and replaceVertices(V ) is chordal.

Let E be a one-to-one many sorted set indexed by the edges of G. Let us
observe that replaceEdges(E) is chordal.

Let G be an edgeless graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. One can check that replaceVerticesEdges(V,E)
is edgeless and replaceVertices(V ) is edgeless.
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Let E be a one-to-one many sorted set indexed by the edges of G. One can
verify that replaceEdges(E) is edgeless.

Let G be a non edgeless graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. One can check that replaceVerticesEdges(V,E)
is non edgeless and replaceVertices(V ) is non edgeless.

Let E be a one-to-one many sorted set indexed by the edges of G. Observe
that replaceEdges(E) is non edgeless.

Let G be a loopfull graph and V be a non empty, one-to-one many sorted set
indexed by the vertices of G. Let us observe that replaceVerticesEdges(V,E) is
loopfull and replaceVertices(V ) is loopfull. Let E be a one-to-one many sorted
set indexed by the edges of G. Observe that replaceEdges(E) is loopfull.

Let G be a non loopfull graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. Let us observe that replaceVerticesEdges(V,E)
is non loopfull and replaceVertices(V ) is non loopfull.

Let E be a one-to-one many sorted set indexed by the edges of G. Note that
replaceEdges(E) is non loopfull.

LetG be a locally-finite graph and V be a non empty, one-to-one many sorted
set indexed by the vertices of G. Let us note that replaceVerticesEdges(V,E) is
locally-finite and replaceVertices(V ) is locally-finite.

Let E be a one-to-one many sorted set indexed by the edges of G. Note that
replaceEdges(E) is locally-finite.

Let G be a non locally-finite graph and V be a non empty, one-to-one many
sorted set indexed by the vertices of G. Let us note that replaceVerticesEdges(V,

E) is non locally-finite and replaceVertices(V ) is non locally-finite. Let E be
a one-to-one many sorted set indexed by the edges of G. One can verify that
replaceEdges(E) is non locally-finite.

Let c be a non zero cardinal number, G be a c-vertex graph, and V be a non
empty, one-to-one many sorted set indexed by the vertices of G. Let us observe
that replaceVerticesEdges(V,E) is c-vertex and replaceVertices(V ) is c-vertex.

Let E be a one-to-one many sorted set indexed by the edges of G. One can
verify that replaceEdges(E) is c-vertex.

Let c be a cardinal number, G be a c-edge graph, and V be a non empty,
one-to-one many sorted set indexed by the vertices of G. Let us observe that
replaceVerticesEdges(V,E) is c-edge and replaceVertices(V ) is c-edge.

Let E be a one-to-one many sorted set indexed by the edges of G. One can
verify that replaceEdges(E) is c-edge. Now we state the propositions:

(18) Let us consider a graph G, a non empty, one-to-one many sorted set
V indexed by the vertices of G, a one-to-one many sorted set E indexed
by the edges of G, and a walk W1 of G. Then there exists a walk W2 of
replaceVerticesEdges(V,E) such that
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(i) V ·W1.vertexSeq() = W2.vertexSeq(), and

(ii) E ·W1.edgeSeq() = W2.edgeSeq().

The theorem is a consequence of (16).

(19) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, and a walk W1 of G. Then there exists a walk
W2 of replaceVertices(V ) such that

(i) V ·W1.vertexSeq() = W2.vertexSeq(), and

(ii) W1.edgeSeq() = W2.edgeSeq().

The theorem is a consequence of (18).

(20) Let us consider a graph G, a one-to-one many sorted set E indexed by
the edges of G, and a walk W1 of G. Then there exists a walk W2 of
replaceEdges(E) such that

(i) W1.vertexSeq() = W2.vertexSeq(), and

(ii) E ·W1.edgeSeq() = W2.edgeSeq().

The theorem is a consequence of (18).

(21) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, a one-to-one many sorted set E indexed by
the edges of G, and a walk W2 of replaceVerticesEdges(V,E). Then there
exists a walk W1 of G such that

(i) V ·W1.vertexSeq() = W2.vertexSeq(), and

(ii) E ·W1.edgeSeq() = W2.edgeSeq().

The theorem is a consequence of (16).

(22) Let us consider a graph G, a non empty, one-to-one many sorted set V
indexed by the vertices of G, and a walk W2 of replaceVertices(V ). Then
there exists a walk W1 of G such that

(i) V ·W1.vertexSeq() = W2.vertexSeq(), and

(ii) W1.edgeSeq() = W2.edgeSeq().

The theorem is a consequence of (21).

(23) Let us consider a graph G, a one-to-one many sorted set E indexed by
the edges of G, and a walk W2 of replaceEdges(E). Then there exists
a walk W1 of G such that

(i) W1.vertexSeq() = W2.vertexSeq(), and

(ii) E ·W1.edgeSeq() = W2.edgeSeq().

The theorem is a consequence of (21).
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2. Graph Selectors of Graph-yielding Functions

Let F be a graph-yielding function. The functors: the vertices of F , the edges
of F , the source of F , and the target of F yielding functions are defined by
conditions

(Def. 4) dom the vertices of F = domF and for every object x such that x ∈
domF there exists a graph G such that G = F (x) and (the vertices of
F )(x) = the vertices of G,

(Def. 5) dom the edges of F = domF and for every object x such that x ∈ domF

there exists a graph G such that G = F (x) and (the edges of F )(x) =
the edges of G,

(Def. 6) dom the source of F = domF and for every object x such that x ∈
domF there exists a graph G such that G = F (x) and (the source of
F )(x) = the source of G,

(Def. 7) dom the target of F = domF and for every object x such that x ∈ domF

there exists a graph G such that G = F (x) and (the target of F )(x) =
the target of G,

respectively. Let us observe that the source of F is function yielding and the tar-
get of F is function yielding.

Let F be an empty, graph-yielding function. One can verify that the vertices
of F is empty and the edges of F is empty and the source of F is empty and
the target of F is empty.

Let F be a non empty, graph-yielding function. One can verify that the ver-
tices of F is non empty and the edges of F is non empty and the source of F is
non empty and the target of F is non empty.

Let F be a graph-yielding function. One can check that the vertices of F is
non-empty.

Let F be a non empty, graph-yielding function. The functors: the vertices of
F , the edges of F , the source of F , and the target of F are defined by conditions

(Def. 8) dom the vertices of F = domF and for every element x of domF ,
(the vertices of F )(x) = the vertices of F (x),

(Def. 9) dom the edges of F = domF and for every element x of domF , (the edges
of F )(x) = the edges of F (x),

(Def. 10) dom the source of F = domF and for every element x of domF , (the source
of F )(x) = the source of F (x),

(Def. 11) dom the target of F = domF and for every element x of domF , (the target
of F )(x) = the target of F (x),

respectively.
Let us consider a graph-yielding function F . Now we state the propositions:
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(24) The vertices of rngF = rng(the vertices of F ).

(25) The edges of rngF = rng(the edges of F ).

(26) The source of rngF = rng(the source of F ).

(27) The target of rngF = rng(the target of F ).

3. Isomorphisms between Graph-membered Sets or Graph-yielding
Functions

Let S1, S2 be graph-membered sets. We say that S1 and S2 are directed-
isomorphic if and only if

(Def. 12) there exists a one-to-one function f such that dom f = S1 and rng f = S2
and for every graph G such that G ∈ S1 holds f(G) is a G-directed-
isomorphic graph.

One can check that the predicate is reflexive and symmetric. We say that S1
and S2 are isomorphic if and only if

(Def. 13) there exists a one-to-one function f such that dom f = S1 and rng f = S2
and for every graph G such that G ∈ S1 holds f(G) is a G-isomorphic
graph.

Let us note that the predicate is reflexive and symmetric.
Let us consider graph-membered sets S1, S2, S3. Now we state the proposi-

tions:

(28) If S1 and S2 are directed-isomorphic and S2 and S3 are directed-isomorphic,
then S1 and S3 are directed-isomorphic.

(29) If S1 and S2 are isomorphic and S2 and S3 are isomorphic, then S1 and
S3 are isomorphic.

Let us consider graph-membered sets S1, S2. Now we state the propositions:

(30) If S1 and S2 are directed-isomorphic, then S1 and S2 are isomorphic.

(31) If S1 and S2 are directed-isomorphic, then S1 = S2 .

(32) If S1 and S2 are isomorphic, then S1 = S2 .

(33) Let us consider empty, graph-membered sets S1, S2. Then S1 and S2 are
directed-isomorphic.

Let us consider graphs G1, G2. Now we state the propositions:

(34) {G1} and {G2} are directed-isomorphic if and only if G2 is G1-directed-
isomorphic.

(35) {G1} and {G2} are isomorphic if and only if G2 is G1-isomorphic.

Let us consider graph-membered sets S1, S2. Now we state the propositions:

(36) Suppose S1 and S2 are isomorphic. Then
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(i) if S1 is empty, then S2 is empty, and

(ii) if S1 is loopless, then S2 is loopless, and

(iii) if S1 is non-multi, then S2 is non-multi, and

(iv) if S1 is simple, then S2 is simple, and

(v) if S1 is acyclic, then S2 is acyclic, and

(vi) if S1 is connected, then S2 is connected, and

(vii) if S1 is tree-like, then S2 is tree-like, and

(viii) if S1 is chordal, then S2 is chordal, and

(ix) if S1 is edgeless, then S2 is edgeless, and

(x) if S1 is loopfull, then S2 is loopfull.

(37) Suppose S1 and S2 are directed-isomorphic. Then

(i) if S1 is non-directed-multi, then S2 is non-directed-multi, and

(ii) if S1 is directed-simple, then S2 is directed-simple.

Let F1, F2 be graph-yielding functions. We say that F1 and F2 are directed-
isomorphic if and only if

(Def. 14) there exists a one-to-one function p such that dom p = domF1 and
rng p = domF2 and for every object x such that x ∈ domF1 there exist
graphs G1, G2 such that G1 = F1(x) and G2 = F2(p(x)) and G2 is G1-
directed-isomorphic.

Let us observe that the predicate is reflexive and symmetric. We say that F1
and F2 are isomorphic if and only if

(Def. 15) there exists a one-to-one function p such that dom p = domF1 and
rng p = domF2 and for every object x such that x ∈ domF1 there exist
graphs G1, G2 such that G1 = F1(x) and G2 = F2(p(x)) and G2 is G1-
isomorphic.

Observe that the predicate is reflexive and symmetric.
Let us consider non empty, graph-yielding functions F1, F2. Now we state

the propositions:

(38) Suppose domF1 = domF2 and for every element x1 of domF1 and for
every element x2 of domF2 such that x1 = x2 holds F2(x2) is F1(x1)-
directed-isomorphic. Then F1 and F2 are directed-isomorphic.

(39) Suppose domF1 = domF2 and for every element x1 of domF1 and for
every element x2 of domF2 such that x1 = x2 holds F2(x2) is F1(x1)-
isomorphic. Then F1 and F2 are isomorphic.

Let us consider graph-yielding functions F1, F2, F3. Now we state the pro-
positions:
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(40) If F1 and F2 are directed-isomorphic and F2 and F3 are
directed-isomorphic, then F1 and F3 are directed-isomorphic.

(41) If F1 and F2 are isomorphic and F2 and F3 are isomorphic, then F1 and
F3 are isomorphic.

(42) Let us consider graph-yielding functions F1, F2. If F1 and F2 are directed-
isomorphic, then F1 and F2 are isomorphic.

(43) Let us consider empty, graph-yielding functions F1, F2. Then

(i) F1 and F2 are directed-isomorphic, and

(ii) F1 and F2 are isomorphic.

Let us consider graph-yielding functions F1, F2. Now we state the proposi-
tions:

(44) If F1 and F2 are directed-isomorphic, then F1 = F2 .

(45) If F1 and F2 are isomorphic, then F1 = F2 .

Let us consider graphs G1, G2 and objects x, y. Now we state the proposi-
tions:

(46) x 7−→. G1 and y 7−→. G2 are directed-isomorphic if and only if G2 is G1-
directed-isomorphic.

(47) x 7−→. G1 and y 7−→. G2 are isomorphic if and only if G2 is G1-isomorphic.

Let us consider graph-yielding functions F1, F2. Now we state the proposi-
tions:

(48) Suppose F1 and F2 are isomorphic. Then

(i) if F1 is empty, then F2 is empty, and

(ii) if F1 is loopless, then F2 is loopless, and

(iii) if F1 is non-multi, then F2 is non-multi, and

(iv) if F1 is simple, then F2 is simple, and

(v) if F1 is acyclic, then F2 is acyclic, and

(vi) if F1 is connected, then F2 is connected, and

(vii) if F1 is tree-like, then F2 is tree-like, and

(viii) if F1 is chordal, then F2 is chordal, and

(ix) if F1 is edgeless, then F2 is edgeless, and

(x) if F1 is loopfull, then F2 is loopfull.

(49) Suppose F1 and F2 are directed-isomorphic. Then

(i) if F1 is non-directed-multi, then F2 is non-directed-multi, and

(ii) if F1 is directed-simple, then F2 is directed-simple.
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Let I be a set and F1, F2 be graph-yielding many sorted sets indexed by I.
Note that F1 and F2 are directed-isomorphic if and only if the condition (Def.
16) is satisfied.

(Def. 16) there exists a permutation p of I such that for every object x such that
x ∈ I there exist graphs G1, G2 such that G1 = F1(x) and G2 = F2(p(x))
and G2 is G1-directed-isomorphic.

One can check that the predicate is reflexive and symmetric. Let us note that
F1 and F2 are isomorphic if and only if the condition (Def. 17) is satisfied.

(Def. 17) there exists a permutation p of I such that for every object x such that
x ∈ I there exist graphs G1, G2 such that G1 = F1(x) and G2 = F2(p(x))
and G2 is G1-isomorphic.

Note that the predicate is reflexive and symmetric.

4. Distinguishing the Vertex and Edge Sets of Several Graphs
from Each Other

Let S be a graph-membered set. We say that S is vertex-disjoint if and only
if

(Def. 18) for every graphs G1, G2 such that G1, G2 ∈ S and G1 6= G2 holds
the vertices of G1 misses the vertices of G2.

We say that S is edge-disjoint if and only if

(Def. 19) for every graphs G1, G2 such that G1, G2 ∈ S and G1 6= G2 holds
the edges of G1 misses the edges of G2.

Now we state the proposition:

(50) Let us consider a graph-membered set S. Then S is vertex-disjoint and
edge-disjoint if and only if for every graphs G1, G2 such that G1, G2 ∈
S and G1 6= G2 holds the vertices of G1 misses the vertices of G2 and
the edges of G1 misses the edges of G2.

Let us note that every graph-membered set which is trivial is also vertex-
disjoint and edge-disjoint and every graph-membered set which is edgeless is
also edge-disjoint and every graph-membered set which is edge-disjoint is al-
so ∪-tolerating and every graph-membered set which is vertex-disjoint and ∪-
tolerating is also edge-disjoint.

Let G be a graph. One can check that {G} is vertex-disjoint and edge-
disjoint.

Let us consider graphs G1, G2. Now we state the propositions:

(51) {G1, G2} is vertex-disjoint if and only if G1 = G2 or the vertices of G1
misses the vertices of G2.
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(52) {G1, G2} is edge-disjoint if and only if G1 = G2 or the edges of G1 misses
the edges of G2.

One can verify that there exists a graph-membered set which is non emp-
ty, ∪-tolerating, vertex-disjoint, edge-disjoint, acyclic, simple, directed-simple,
loopless, non-multi, and non-directed-multi.

Let S be a vertex-disjoint, graph-membered set. Note that the vertices of S
is mutually-disjoint.

Let S be an edge-disjoint, graph-membered set. One can verify that the edges
of S is mutually-disjoint.

Let S be a vertex-disjoint, graph-membered set. Observe that every subset
of S is vertex-disjoint.

Let S1 be a vertex-disjoint, graph-membered set and S2 be a set. Let us note
that S1 ∩ S2 is vertex-disjoint and S1 \ S2 is vertex-disjoint.

Let S be an edge-disjoint, graph-membered set. One can verify that every
subset of S is edge-disjoint.

Let S1 be an edge-disjoint, graph-membered set and S2 be a set. Let us
observe that S1 ∩ S2 is edge-disjoint and S1 \ S2 is edge-disjoint.

Let us consider graph-membered sets S1, S2. Now we state the propositions:

(53) If S1 ∪ S2 is vertex-disjoint, then S1 is vertex-disjoint and S2 is vertex-
disjoint.

(54) If S1∪S2 is edge-disjoint, then S1 is edge-disjoint and S2 is edge-disjoint.

Let us consider vertex-disjoint graph union sets S1, S2, a graph union G1 of
S1, and a graph union G2 of S2. Now we state the propositions:

(55) If S1 and S2 are directed-isomorphic, then G2 is G1-directed-isomorphic.
Proof: Consider h being a one-to-one function such that domh = S1
and rng h = S2 and for every graph G such that G ∈ S1 holds h(G)
is a G-directed-isomorphic graph. Define Q[object, object] ≡ there exists
an element G of S1 and there exists a partial graph mapping F from G

to h(G) such that $1 = G and $2 = F and F is directed-isomorphism. For
every element G of S1, there exists an object F such that Q[G,F ].

Consider H being a many sorted set indexed by S1 such that for every
element G of S1, Q[G,H(G)]. For every element G of S1, there exists
a partial graph mapping F from G to h(G) such that H(G) = F and F

is directed-isomorphism. Set V = rng pr1(H). Set E = rng pr2(H). For
every object y such that y ∈ V holds y is a function. For every functions
f1, f2 such that f1, f2 ∈ V holds f1 tolerates f2. For every object y such
that y ∈ E holds y is a function. For every functions g1, g2 such that g1,
g2 ∈ E holds g1 tolerates g2. �

(56) Suppose S1 and S2 are isomorphic. Then there exists a vertex-disjoint
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graph union set S3 and there exists a subset E of the edges of G2 and there
exists a graph union G3 of S3 such that S1 and S3 are directed-isomorphic
and G3 is a graph given by reversing directions of the edges E of G2.

Proof: Consider h being a one-to-one function such that domh = S1 and
rng h = S2 and for every graph G such that G ∈ S1 holds h(G) is a G-
isomorphic graph. Define Q[object, object] ≡ there exists an element G of
S1 and there exists a partial graph mapping F from G to h(G) such that
$1 = G and $2 = F and F is isomorphism. For every element G of S1, there
exists an object F such that Q[G,F ]. Consider H being a many sorted set
indexed by S1 such that for every element G of S1, Q[G,H(G)]. For every
element G of S1, there exists a partial graph mapping F from G to h(G)
such that H(G) = F and F is isomorphism. Define R[object, object] ≡
there exists an element G of S1 and there exists a subset E of the edges of
h(G) such that $1 = G and $2 = E and for every graph G′ given by rever-
sing directions of the edges E of h(G), there exists a partial graph mapping
F from G to G′ such that F = H(G) and F is directed-isomorphism.

For every element G of S1, there exists an object E such that R[G,E]
by [5, (89)]. Consider A being a many sorted set indexed by S1 such that
for every element G of S1, R[G,A(G)]. For every element G of S1, A(G)
is a subset of the edges of h(G). For every element G of S1 and for every
graph G′ given by reversing directions of the edges A(G) of h(G), there
exists a partial graph mapping F from G to G′ such that F = H(G) and
F is directed-isomorphism. Define U(element of S1) = the graph given by
reversing directions of the edges A($1) of h($1). Consider B being a many
sorted set indexed by S1 such that for every element G of S1, B(G) =
U(G). For every object y such that y ∈

⋃
rngA holds y ∈ the edges of G2.

�

(57) If S1 and S2 are isomorphic, then G2 is G1-isomorphic. The theorem is
a consequence of (56) and (55).

(58) Let us consider a vertex-disjoint graph union set S, a graph union G of
S, and a walk W of G. Then there exists an element H of S such that W
is a walk of H.

Proof: Define P[walk of G] ≡ there exists an element H of S such that $1
is a walk of H. For every trivial walk W of G, P[W ] by [8, (128)]. For every
walk W of G and for every object e such that e ∈ W.last().edgesInOut()
and P[W ] holds P[W.addEdge(e)] by [7, (21)], [8, (16)], [9, (67)], [6, (117)].
For every walk W of G, P[W ] by [8, Sch.1]. �

Let us consider a vertex-disjoint graph union set S and a graph union G of
S. Now we state the propositions:
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(59) If G is connected, then there exists a graph H such that S = {H}. The
theorem is a consequence of (58).

(60) (i) S is non-multi iff G is non-multi, and

(ii) S is non-directed-multi iff G is non-directed-multi, and

(iii) S is acyclic iff G is acyclic.
The theorem is a consequence of (58).

(61) (i) S is simple iff G is simple, and

(ii) S is directed-simple iff G is directed-simple.
The theorem is a consequence of (60).

Let S be a vertex-disjoint, non-multi graph union set. Let us note that every
graph union of S is non-multi.

Let S be a vertex-disjoint, non-directed-multi graph union set. One can check
that every graph union of S is non-directed-multi.

Let S be a vertex-disjoint, simple graph union set. Let us observe that every
graph union of S is simple.

Let S be a vertex-disjoint, directed-simple graph union set. Observe that
every graph union of S is directed-simple.

Let S be a vertex-disjoint, acyclic graph union set. Let us note that every
graph union of S is acyclic.

Now we state the propositions:

(62) Let us consider a vertex-disjoint graph union set S, an element H of
S, and a graph union G of S. Then H is a subgraph of G induced by
the vertices of H.

(63) Let us consider a vertex-disjoint graph union set S, and a graph union
G of S. Then

(i) S is chordal iff G is chordal, and

(ii) S is loopfull iff G is loopfull.

The theorem is a consequence of (58) and (62).

(64) Let us consider a vertex-disjoint graph union set S, a graph union G of
S, an element H of S, a vertex v of G, and a vertex w of H. If v = w,
then G.reachableFrom(v) = H.reachableFrom(w). The theorem is a con-
sequence of (58).

(65) Let us consider a vertex-disjoint graph union set S, and a graph union G
of S. ThenG.componentSet() =

⋃
the set of all H.componentSet() where

H is an element of S. The theorem is a consequence of (64).

(66) Let us consider a vertex-disjoint, non empty, graph-membered set S.
Then the set of all H.componentSet() where H is an element of S is
mutually-disjoint.
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(67) Let us consider a non empty, connected, graph-membered set S. Then
the set of all H.componentSet() where H is an element of S =
SmallestPartition(the vertices of S).

Let us consider a vertex-disjoint graph union set S and a graph union G of
S. Now we state the propositions:

(68) S ⊆ G.numComponents(). The theorem is a consequence of (66) and
(65).

(69) If S is connected, then S = G.numComponents(). The theorem is a con-
sequence of (67) and (65).

Let F be a graph-yielding function. We say that F is vertex-disjoint if and
only if

(Def. 20) for every objects x1, x2 such that x1, x2 ∈ domF and x1 6= x2 there exist
graphs G1, G2 such that G1 = F (x1) and G2 = F (x2) and the vertices of
G1 misses the vertices of G2.

We say that F is edge-disjoint if and only if

(Def. 21) for every objects x1, x2 such that x1, x2 ∈ domF and x1 6= x2 there
exist graphs G1, G2 such that G1 = F (x1) and G2 = F (x2) and the edges
of G1 misses the edges of G2.

Observe that every graph-yielding function which is trivial is also vertex-
disjoint and edge-disjoint and every graph-yielding function which is vertex-
disjoint is also one-to-one.

Let F be a non empty, graph-yielding function. Let us observe that F is
vertex-disjoint if and only if the condition (Def. 22) is satisfied.

(Def. 22) for every elements x1, x2 of domF such that x1 6= x2 holds the vertices
of F (x1) misses the vertices of F (x2).

Observe that F is edge-disjoint if and only if the condition (Def. 23) is satisfied.

(Def. 23) for every elements x1, x2 of domF such that x1 6= x2 holds the edges of
F (x1) misses the edges of F (x2).

Let us consider a non empty, graph-yielding function F . Now we state the
propositions:

(70) F is vertex-disjoint if and only if for every elements x1, x2 of domF such
that x1 6= x2 holds (the vertices of F )(x1) misses (the vertices of F )(x2).

(71) F is edge-disjoint if and only if for every elements x1, x2 of domF such
that x1 6= x2 holds (the edges of F )(x1) misses (the edges of F )(x2).

(72) F is vertex-disjoint and edge-disjoint if and only if for every elements
x1, x2 of domF such that x1 6= x2 holds the vertices of F (x1) misses
the vertices of F (x2) and the edges of F (x1) misses the edges of F (x2).
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(73) F is vertex-disjoint and edge-disjoint if and only if for every elements
x1, x2 of domF such that x1 6= x2 holds (the vertices of F )(x1) mis-
ses (the vertices of F )(x2) and (the edges of F )(x1) misses (the edges of
F )(x2). The theorem is a consequence of (70) and (71).

Let x be an object and G be a graph. One can check that x 7−→. G is vertex-
disjoint and edge-disjoint and 〈G〉 is vertex-disjoint and edge-disjoint and there
exists a graph-yielding function which is non empty, vertex-disjoint, and edge-
disjoint.

Let F be a vertex-disjoint, graph-yielding function. Observe that rngF is
vertex-disjoint.

Let F be an edge-disjoint, graph-yielding function. Let us note that rngF
is edge-disjoint.

Let us consider non empty, one-to-one, graph-yielding functions F1, F2. Now
we state the propositions:

(74) If F1 and F2 are directed-isomorphic, then rngF1 and rngF2 are directed-
isomorphic.

(75) If F1 and F2 are isomorphic, then rngF1 and rngF2 are isomorphic.

Let us consider graphs G1, G2. Now we state the propositions:

(76) 〈G1, G2〉 is vertex-disjoint if and only if the vertices of G1 misses the ver-
tices of G2.

(77) 〈G1, G2〉 is edge-disjoint if and only if the edges of G1 misses the edges
of G2.

5. Distinguishing the Range of a Graph-yielding Function

Let f be a function and x be an object. The functor
∐

(f, x) yielding a many
sorted set indexed by f(x) is defined by the term

(Def. 24) 〈f(x) 7−→ 〈〈f, x〉〉, idf(x)〉.
Now we state the propositions:

(78) Let us consider a function f , and objects x, y. Suppose x ∈ dom f and
y ∈ f(x). Then

∐
(f, x)(y) = 〈〈f, x, y〉〉.

(79) Let us consider a function f , and objects x, z. Suppose x ∈ dom f and
z ∈ rng

∐
(f, x). Then there exists an object y such that

(i) y ∈ f(x), and

(ii) z = 〈〈f, x, y〉〉.

The theorem is a consequence of (78).
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(80) Let us consider a function f , and an object x. Then rng
∐

(f, x) = {〈〈f,
x〉〉} × f(x). The theorem is a consequence of (79) and (78).

Let us consider a function f and objects x1, x2. Now we state the proposi-
tions:

(81) rng
∐

(f, x1) misses f(x2). The theorem is a consequence of (79).

(82) If x1 6= x2, then rng
∐

(f, x1) misses rng
∐

(f, x2). The theorem is a con-
sequence of (79).

Let f be a function and x be an object. One can verify that
∐

(f, x) is
one-to-one.

Let f be an empty function. One can verify that
∐

(f, x) is empty.
Let f be a non empty, non-empty function and x be an element of dom f .

One can verify that
∐

(f, x) is non empty.
Let F be a non empty, graph-yielding function and x be an element of

domF . One can check that
∐

(the vertices of F, x) is non empty and (the vertices
of F (x))-defined and

∐
(the edges of F, x) is (the edges of F (x))-defined and∐

(the vertices of F, x) is total as a (the vertices of F (x))-defined function and∐
(the edges of F, x) is total as a (the edges of F (x))-defined function.

The functor
∐
F yielding a graph-yielding function is defined by

(Def. 25) dom it = domF and for every element x of domF , it(x) =
replaceVerticesEdges(

∐
(the vertices of F, x),

∐
(the edges of F, x)).

Note that
∐
F is non empty and

∐
F is plain.

Let us consider a non empty, graph-yielding function F and an element x of
domF . Now we state the propositions:

(83) (The vertices of
∐
F )(x) = {〈〈the vertices of F, x〉〉} × (the vertices of

F )(x). The theorem is a consequence of (1) and (80).

(84) (The edges of
∐
F )(x) = {〈〈the edges of F, x〉〉} × (the edges of F )(x).

The theorem is a consequence of (1) and (80).

Let F be a non empty, graph-yielding function. Note that
∐
F is vertex-

disjoint and edge-disjoint.
Let us consider a non empty, graph-yielding function F , an element x of

domF , and an element x′ of dom(
∐
F ). Now we state the propositions:

(85) Suppose x = x′. Then there exists a partial graph mapping G from F (x)
to (

∐
F )(x′) such that

(i) GV =
∐

(the vertices of F, x), and

(ii) GE =
∐

(the edges of F, x), and

(iii) G is directed-isomorphism.

The theorem is a consequence of (16).
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(86) If x = x′, then (
∐
F )(x′) is F (x)-directed-isomorphic. The theorem is

a consequence of (85).

(87) Let us consider a non empty, graph-yielding function F . Then F and∐
F are directed-isomorphic. The theorem is a consequence of (86) and

(38).

Let us consider non empty, graph-yielding functions F1, F2. Now we state
the propositions:

(88) If F1 and F2 are directed-isomorphic, then
∐
F1 and

∐
F2 are directed-

isomorphic. The theorem is a consequence of (87) and (40).

(89) If F1 and F2 are isomorphic, then
∐
F1 and

∐
F2 are isomorphic. The

theorem is a consequence of (42), (87), and (41).

Let us consider a non empty, graph-yielding function F , an element x of
domF , an element x′ of dom(

∐
F ), and objects v, e, w. Now we state the

propositions:

(90) Suppose x = x′. Then suppose e joins v to w in F (x). Then 〈〈the edges
of F, x, e〉〉 joins 〈〈the vertices of F, x, v〉〉 to 〈〈the vertices of F, x, w〉〉 in
(
∐
F )(x′). The theorem is a consequence of (85) and (78).

(91) Suppose x = x′. Then suppose e joins v and w in F (x). Then 〈〈the edges
of F, x, e〉〉 joins 〈〈the vertices of F, x, v〉〉 and 〈〈the vertices of F, x, w〉〉 in
(
∐
F )(x′). The theorem is a consequence of (90).

Let us consider a non empty, graph-yielding function F , an element x of
domF , an element x′ of dom(

∐
F ), and objects v′, e′, w′. Now we state the

propositions:

(92) Suppose x = x′ and e′ joins v′ to w′ in (
∐
F )(x′). Then there exist

objects v, e, w such that

(i) e joins v to w in F (x), and

(ii) e′ = 〈〈the edges of F, x, e〉〉, and

(iii) v′ = 〈〈the vertices of F, x, v〉〉, and

(iv) w′ = 〈〈the vertices of F, x, w〉〉.
The theorem is a consequence of (85), (83), (80), (79), (84), and (78).

(93) Suppose x = x′ and e′ joins v′ and w′ in (
∐
F )(x′). Then there exist

objects v, e, w such that

(i) e joins v and w in F (x), and

(ii) e′ = 〈〈the edges of F, x, e〉〉, and

(iii) v′ = 〈〈the vertices of F, x, v〉〉, and

(iv) w′ = 〈〈the vertices of F, x, w〉〉.
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The theorem is a consequence of (92).

Let F be a non empty, loopless, graph-yielding function. One can verify
that

∐
F is loopless.

Let F be a non empty, non loopless, graph-yielding function. Note that
∐
F

is non loopless.
Let F be a non empty, non-multi, graph-yielding function. Observe that∐
F is non-multi.
Let F be a non empty, non non-multi, graph-yielding function. One can

verify that
∐
F is non non-multi.

Let F be a non empty, non-directed-multi, graph-yielding function. Note
that

∐
F is non-directed-multi.

Let F be a non empty, non non-directed-multi, graph-yielding function. One
can verify that

∐
F is non non-directed-multi.

Let F be a non empty, simple, graph-yielding function. Observe that
∐
F

is simple.
Let F be a non empty, directed-simple, graph-yielding function. One can

check that
∐
F is directed-simple.

Let F be a non empty, acyclic, graph-yielding function. Let us observe that∐
F is acyclic.
Let F be a non empty, non acyclic, graph-yielding function. One can check

that
∐
F is non acyclic.

Let F be a non empty, connected, graph-yielding function. Let us note that∐
F is connected.
Let F be a non empty, non connected, graph-yielding function. Let us

observe that
∐
F is non connected.

Let F be a non empty, tree-like, graph-yielding function. One can check
that

∐
F is tree-like.

Let F be a non empty, edgeless, graph-yielding function. Observe that
∐
F

is edgeless.
Let F be a non empty, non edgeless, graph-yielding function. One can verify

that
∐
F is non edgeless.

Let F be a non empty, graph-yielding function and z be an element of domF .
The functor

∐
(F, z) yielding a graph-yielding function is defined by the term

(Def. 26)
∐
F +· (z, F (z)�(the graph selectors)).

Let us note that
∐

(F, z) is non empty. Now we state the propositions:

(94) Let us consider a non empty, graph-yielding function F , and an element
z of domF . Then domF = dom(

∐
(F, z)).

(95) Let us consider a non empty, graph-yielding function F , an element z of
domF , and a graph-yielding function G. Then G =

∐
(F, z) if and only
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if domG = domF and G(z) = F (z)�(the graph selectors) and for every
element x of domF such that x 6= z holds G(x) =
replaceVerticesEdges(

∐
(the vertices of F, x),

∐
(the edges of F, x)).

(96) Let us consider a non empty, graph-yielding function F , and an element
z of domF . Then

∐
(F, z)(z) = F (z)�(the graph selectors).

Let F be a non empty, graph-yielding function and z be an element of domF .
Observe that

∐
(F, z) is plain. Now we state the propositions:

(97) Let us consider a non empty, graph-yielding function F , and an element
z of domF . Then (the vertices of

∐
(F, z))(z) = (the vertices of F )(z).

The theorem is a consequence of (94) and (96).

(98) Let us consider a non empty, graph-yielding function F , and elements
x, z of domF . Suppose x 6= z. Then (the vertices of

∐
(F, z))(x) =

(the vertices of
∐
F )(x). The theorem is a consequence of (95).

Let us consider a non empty, graph-yielding function F and an element z of
domF . Now we state the propositions:

(99) The vertices of
∐

(F, z) = (the vertices of
∐
F ) +· (z, the vertices of

F (z)). The theorem is a consequence of (97) and (98).

(100) (The edges of
∐

(F, z))(z) = (the edges of F )(z). The theorem is a con-
sequence of (94) and (96).

(101) Let us consider a non empty, graph-yielding function F , and elements x,
z of domF . Suppose x 6= z. Then (the edges of

∐
(F, z))(x) = (the edges

of
∐
F )(x). The theorem is a consequence of (95).

(102) Let us consider a non empty, graph-yielding function F , and an element z
of domF . Then the edges of

∐
(F, z) = (the edges of

∐
F )+·(z, the edges

of F (z)). The theorem is a consequence of (100) and (101).

Let F be a non empty, graph-yielding function and z be an element of domF .
Let us note that

∐
(F, z) is vertex-disjoint and edge-disjoint.

Let us consider a non empty, graph-yielding function F , elements x, z of
domF , and an element x′ of dom(

∐
(F, z)). Now we state the propositions:

(103) Suppose x 6= z and x = x′. Then there exists a partial graph mapping
G from F (x) to

∐
(F, z)(x′) such that

(i) GV =
∐

(the vertices of F, x), and

(ii) GE =
∐

(the edges of F, x), and

(iii) G is directed-isomorphism.

The theorem is a consequence of (85).

(104) If x = x′, then
∐

(F, z)(x′) is (F (x))-directed-isomorphic. The theorem
is a consequence of (96) and (103).
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Let us consider a non empty, graph-yielding function F and an element z of
domF . Now we state the propositions:

(105) F and
∐

(F, z) are directed-isomorphic. The theorem is a consequence of
(104) and (38).

(106)
∐
F and

∐
(F, z) are directed-isomorphic. The theorem is a consequence

of (87), (105), and (40).

(107) Let us consider non empty, graph-yielding functions F1, F2, an element z1
of domF1, and an element z2 of domF2. Suppose F1 and F2 are directed-
isomorphic. Then

∐
(F1, z1) and

∐
(F2, z2) are directed-isomorphic. The

theorem is a consequence of (105) and (40).

Let us consider a non empty, graph-yielding function F , an element z of
domF , an element z′ of dom(

∐
(F, z)), and objects v, e, w. Now we state the

propositions:

(108) If z = z′, then e joins v to w in F (z) iff e joins v to w in
∐

(F, z)(z′).
The theorem is a consequence of (96).

(109) If z = z′, then e joins v and w in F (z) iff e joins v and w in
∐

(F, z)(z′).
The theorem is a consequence of (96).

Let us consider a non empty, graph-yielding function F , elements x, z of
domF , an element x′ of dom(

∐
(F, z)), and objects v, e, w. Now we state the

propositions:

(110) Suppose x 6= z and x = x′. Then suppose e joins v to w in F (x). Then
〈〈the edges of F, x, e〉〉 joins 〈〈the vertices of F, x, v〉〉 to 〈〈the vertices of F,
x, w〉〉 in

∐
(F, z)(x′). The theorem is a consequence of (90).

(111) Suppose x 6= z and x = x′. Then suppose e joins v and w in F (x). Then
〈〈the edges of F, x, e〉〉 joins 〈〈the vertices of F, x, v〉〉 and 〈〈the vertices of
F, x, w〉〉 in

∐
(F, z)(x′). The theorem is a consequence of (91).

Let us consider a non empty, graph-yielding function F , elements x, z of
domF , an element x′ of dom(

∐
(F, z)), and objects v′, e′, w′. Now we state the

propositions:

(112) Suppose x 6= z and x = x′ and e′ joins v′ to w′ in
∐

(F, z)(x′). Then
there exist objects v, e, w such that

(i) e joins v to w in F (x), and

(ii) e′ = 〈〈the edges of F, x, e〉〉, and

(iii) v′ = 〈〈the vertices of F, x, v〉〉, and

(iv) w′ = 〈〈the vertices of F, x, w〉〉.

The theorem is a consequence of (92).
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(113) Suppose x 6= z and x = x′ and e′ joins v′ and w′ in
∐

(F, z)(x′). Then
there exist objects v, e, w such that

(i) e joins v and w in F (x), and

(ii) e′ = 〈〈the edges of F, x, e〉〉, and

(iii) v′ = 〈〈the vertices of F, x, v〉〉, and

(iv) w′ = 〈〈the vertices of F, x, w〉〉.
The theorem is a consequence of (93).

Let F be a non empty, loopless, graph-yielding function and z be an element
of domF . One can check that

∐
(F, z) is loopless.

Let F be a non empty, non loopless, graph-yielding function. Let us observe
that

∐
(F, z) is non loopless.

Let F be a non empty, non-multi, graph-yielding function. Let us note that∐
(F, z) is non-multi.

Let F be a non empty, non non-multi, graph-yielding function. One can
check that

∐
(F, z) is non non-multi.

Let F be a non empty, non-directed-multi, graph-yielding function. Let us
observe that

∐
(F, z) is non-directed-multi.

Let F be a non empty, non non-directed-multi, graph-yielding function. Let
us observe that

∐
(F, z) is non non-directed-multi.

Let F be a non empty, simple, graph-yielding function. Let us observe that∐
(F, z) is simple.

Let F be a non empty, directed-simple, graph-yielding function. Note that∐
(F, z) is directed-simple.

Let F be a non empty, acyclic, graph-yielding function. Let us observe that∐
(F, z) is acyclic.

Let F be a non empty, non acyclic, graph-yielding function. Let us note
that

∐
(F, z) is non acyclic.

Let F be a non empty, connected, graph-yielding function. One can check
that

∐
(F, z) is connected.

Let F be a non empty, non connected, graph-yielding function. Let us
observe that

∐
(F, z) is non connected.

Let F be a non empty, tree-like, graph-yielding function. Let us note that∐
(F, z) is tree-like.

Let F be a non empty, edgeless, graph-yielding function. One can verify
that

∐
(F, z) is edgeless.

Let F be a non empty, non edgeless, graph-yielding function. Observe that∐
(F, z) is non edgeless.

Let us consider graphs G2, H and a partial graph mapping F from G2 to
H. Now we state the propositions:
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(114) If F is directed and weak subgraph embedding, then there exists a su-
pergraph G1 of G2 such that G1 is H-directed-isomorphic.
Proof: Set c = (the vertices of H) 7−→ (the vertices of G2). rng〈c, idα〉 ∩
rng(FV)−1 = ∅, where α is the vertices of H. Set d = (the edges of
H) 7−→ (the edges of G2). rng〈d, idα〉∩rng(FE)−1 = ∅, where α is the edges
of H. �

(115) If F is weak subgraph embedding, then there exists a supergraph G1 of
G2 such that G1 is H-isomorphic. The theorem is a consequence of (114).

6. The Sum of Graphs

Let F be a non empty, graph-yielding function.
A graph sum of F is a graph defined by

(Def. 27) there exists a graph union G′ of rng
∐
F such that it is G′-directed-

isomorphic.

Now we state the proposition:

(116) Let us consider a non empty, graph-yielding function F , a graph sum S

of F , and a graph union G′ of rng
∐
F . Then S is G′-directed-isomorphic.

Let us consider non empty, graph-yielding functions F1, F2, a graph sum S1
of F1, and a graph sum S2 of F2. Now we state the propositions:

(117) If F1 and F2 are directed-isomorphic, then S2 is S1-directed-isomorphic.
The theorem is a consequence of (74), (88), (55), and (116).

(118) If F1 and F2 are isomorphic, then S2 is S1-isomorphic. The theorem is
a consequence of (89), (57), (75), and (116).

Now we state the propositions:

(119) Let us consider a non empty, graph-yielding function F , and graph sums
S1, S2 of F . Then S2 is S1-directed-isomorphic.

(120) Let us consider an object x, and a graph G. Then every graph sum of
x 7−→. G is G-directed-isomorphic. The theorem is a consequence of (17).

(121) Let us consider a non empty, graph-yielding function F , and a graph
sum S of F . Suppose S is connected. Then there exists an object x and
there exists a connected graph G such that F = x7−→. G. The theorem is
a consequence of (59) and (120).

Let X be a non empty set. Observe that there exists a graph-yielding many
sorted set indexed by X which is non empty, vertex-disjoint, and edge-disjoint.

Now we state the propositions:

(122) Let us consider a non empty, graph-yielding function F , an element x
of domF , and a graph sum S of F . Then there exists a partial graph
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mapping M from F (x) to S such that M is strong subgraph embedding.
The theorem is a consequence of (62) and (17).

(123) Let us consider a non empty, graph-yielding function F , and an element z
of domF . Then there exists a graph sum S of F such that S is supergraph
of F (z) and graph union of rng

∐
(F, z). The theorem is a consequence of

(106), (55), (74), (94), and (95).

(124) Let us consider a non empty, graph-yielding function F , and a graph
sum S of F . Then

(i) F is loopless iff S is loopless, and

(ii) F is non-multi iff S is non-multi, and

(iii) F is non-directed-multi iff S is non-directed-multi, and

(iv) F is simple iff S is simple, and

(v) F is directed-simple iff S is directed-simple, and

(vi) F is chordal iff S is chordal, and

(vii) F is edgeless iff S is edgeless, and

(viii) F is loopfull iff S is loopfull.

Let F be a non empty, loopless, graph-yielding function. Observe that every
graph sum of F is loopless.

Let F be a non empty, non loopless, graph-yielding function. Note that
every graph sum of F is non loopless.

Let F be a non empty, non-directed-multi, graph-yielding function. One can
verify that every graph sum of F is non-directed-multi.

Let F be a non empty, non non-directed-multi, graph-yielding function.
Observe that every graph sum of F is non non-directed-multi.

Let F be a non empty, non-multi, graph-yielding function. Note that every
graph sum of F is non-multi.

Let F be a non empty, non non-multi, graph-yielding function. One can
verify that every graph sum of F is non non-multi.

Let F be a non empty, simple, graph-yielding function. Observe that every
graph sum of F is simple.

Let F be a non empty, directed-simple, graph-yielding function. Observe
that every graph sum of F is directed-simple.

Let F be a non empty, edgeless, graph-yielding function. Observe that every
graph sum of F is edgeless.

Let F be a non empty, non edgeless, graph-yielding function. Note that
every graph sum of F is non edgeless.

Let F be a non empty, loopfull, graph-yielding function. One can verify that
every graph sum of F is loopfull.
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Let F be a non empty, non loopfull, graph-yielding function. Observe that
every graph sum of F is non loopfull. Now we state the proposition:

(125) Let us consider a non empty, graph-yielding function F , and a graph
sum S of F . Then

(i) F is acyclic iff S is acyclic, and

(ii) F is chordal iff S is chordal.

The theorem is a consequence of (87), (42), (60), (48), and (63).

Let F be a non empty, acyclic, graph-yielding function. Let us note that
every graph sum of F is acyclic.

Let F be a non empty, non acyclic, graph-yielding function. One can check
that every graph sum of F is non acyclic.

Now we state the propositions:

(126) Let us consider a non empty, graph-yielding function F , and a graph sum
S of F . Then F ⊆ S.numComponents(). The theorem is a consequence of
(68).

(127) Let us consider a non empty, connected, graph-yielding function F , and
a graph sum S of F . Then F = S.numComponents(). The theorem is
a consequence of (69).

7. The Sum of two Graphs

Let G1, G2 be graphs.
A graph sum of G1 and G2 is a supergraph of G1 defined by

(Def. 28) it is a graph sum of 〈G1, G2〉.
Now we state the proposition:

(128) Let us consider graphs G1, G2, and a graph sum S of G1 and G2. Then

(i) G1 is loopless and G2 is loopless iff S is loopless, and

(ii) G1 is non-multi and G2 is non-multi iff S is non-multi, and

(iii) G1 is non-directed-multi and G2 is non-directed-multi iff S is non-
directed-multi, and

(iv) G1 is simple and G2 is simple iff S is simple, and

(v) G1 is directed-simple and G2 is directed-simple iff S is directed-
simple, and

(vi) G1 is acyclic and G2 is acyclic iff S is acyclic, and

(vii) G1 is chordal and G2 is chordal iff S is chordal, and
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(viii) G1 is edgeless and G2 is edgeless iff S is edgeless, and

(ix) G1 is loopfull and G2 is loopfull iff S is loopfull.

The theorem is a consequence of (124).

Let G1, G2 be loopless graphs. Note that every graph sum of G1 and G2 is
loopless.

Let G1, G2 be non loopless graphs. Let us observe that every graph sum of
G1 and G2 is non loopless.

Let G1, G2 be non-directed-multi graphs. Let us note that every graph sum
of G1 and G2 is non-directed-multi.

Let G1, G2 be non non-directed-multi graphs. One can verify that every
graph sum of G1 and G2 is non non-directed-multi.

Let G1, G2 be non-multi graphs. Observe that every graph sum of G1 and
G2 is non-multi.

Let G1, G2 be non non-multi graphs. One can check that every graph sum
of G1 and G2 is non non-multi.

Let G1, G2 be simple graphs. Let us observe that every graph sum of G1
and G2 is simple.

Let G1, G2 be directed-simple graphs. Observe that every graph sum of G1
and G2 is directed-simple.

Let G1, G2 be acyclic graphs. Let us note that every graph sum of G1 and
G2 is acyclic.

Let G1, G2 be non acyclic graphs. One can verify that every graph sum of
G1 and G2 is non acyclic.

Let G1, G2 be edgeless graphs. Observe that every graph sum of G1 and G2
is edgeless.

Let G1, G2 be non edgeless graphs. One can check that every graph sum of
G1 and G2 is non edgeless.

Let G1, G2 be loopfull graphs. Let us observe that every graph sum of G1
and G2 is loopfull.

Let G1, G2 be non loopfull graphs. Note that every graph sum of G1 and
G2 is non loopfull.

Let us consider graphs G1, G2 and a graph sum S of G1 and G2. Now we
state the propositions:

(129) S.order() = G1.order() +G2.order().

(130) S.size() = G1.size() +G2.size().

(131) S.numComponents() = G1.numComponents() +G2.numComponents().
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(1) If f is divergent in −∞ to +∞, then f is not convergent in −∞ and f

is not divergent in −∞ to −∞.
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(4) If f is divergent in +∞ to −∞, then f is not convergent in +∞ and f

is not divergent in +∞ to +∞.

(5) Suppose f is convergent in −∞. Then

(i) there exists a real number r such that f�]−∞, r[ is lower bounded,
and

(ii) there exists a real number r such that f�]−∞, r[ is upper bounded.
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Proof: Consider g being a real number such that for every real number
g1 such that 0 < g1 there exists a real number r such that for every
real number r1 such that r1 < r and r1 ∈ dom f holds |f(r1) − g| < g1.
Consider r being a real number such that for every real number r1 such
that r1 < r and r1 ∈ dom f holds |f(r1) − g| < 1. For every object r1
such that r1 ∈ dom(f�]−∞, r[) holds −1 + g < (f�]−∞, r[)(r1). Consider
r being a real number such that for every real number r1 such that r1 < r

and r1 ∈ dom f holds |f(r1) − g| < 1. For every object r1 such that
r1 ∈ dom(f�]−∞, r[) holds (f�]−∞, r[)(r1) < g + 1. �

(6) Suppose f is convergent in +∞. Then

(i) there exists a real number r such that f�]r,+∞[ is lower bounded,
and

(ii) there exists a real number r such that f�]r,+∞[ is upper bounded.

Proof: Consider g being a real number such that for every real number
g1 such that 0 < g1 there exists a real number r such that for every
real number r1 such that r < r1 and r1 ∈ dom f holds |f(r1) − g| < g1.
Consider r being a real number such that for every real number r1 such
that r < r1 and r1 ∈ dom f holds |f(r1) − g| < 1. For every object r1
such that r1 ∈ dom(f�]r,+∞[) holds −1 + g < (f�]r,+∞[)(r1). Consider
r being a real number such that for every real number r1 such that r < r1
and r1 ∈ dom f holds |f(r1) − g| < 1. For every object r1 such that
r1 ∈ dom(f�]r,+∞[) holds (f�]r,+∞[)(r1) < g + 1. �

(7) Suppose f is divergent in −∞ to +∞. Then there exists a real number
r such that f�]−∞, r[ is lower bounded.
Proof: Consider r being a real number such that for every real number
r1 such that r1 < r and r1 ∈ dom f holds 1 < f(r1). For every object r1
such that r1 ∈ dom(f�]−∞, r[) holds 1 < (f�]−∞, r[)(r1). �

(8) Suppose f is divergent in −∞ to −∞. Then there exists a real number
r such that f�]−∞, r[ is upper bounded.
Proof: Consider r being a real number such that for every real number
r1 such that r1 < r and r1 ∈ dom f holds f(r1) < 1. For every object r1
such that r1 ∈ dom(f�]−∞, r[) holds (f�]−∞, r[)(r1) < 1. �

(9) Suppose f is divergent in +∞ to +∞. Then there exists a real number
r such that f�]r,+∞[ is lower bounded.
Proof: Consider r being a real number such that for every real number
r1 such that r < r1 and r1 ∈ dom f holds 1 < f(r1). For every object r1
such that r1 ∈ dom(f�]r,+∞[) holds 1 < (f�]r,+∞[)(r1). �

(10) Suppose f is divergent in +∞ to −∞. Then there exists a real number
r such that f�]r,+∞[ is upper bounded.
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Proof: Consider r being a real number such that for every real number
r1 such that r < r1 and r1 ∈ dom f holds f(r1) < 1. For every object r1
such that r1 ∈ dom(f�]r,+∞[) holds (f�]r,+∞[)(r1) < 1. �

Let us consider partial functions f1, f2 from R to R. Now we state the
propositions:

(11) Suppose f1 is divergent in −∞ to −∞ and for every real number r, there
exists a real number g such that g < r and g ∈ dom(f1 + f2) and there
exists a real number r such that f2�]−∞, r[ is upper bounded. Then f1+f2
is divergent in −∞ to −∞.

(12) Suppose f1 is divergent in +∞ to −∞ and for every real number r, there
exists a real number g such that r < g and g ∈ dom(f1 + f2) and there
exists a real number r such that f2�]r,+∞[ is upper bounded. Then f1+f2
is divergent in +∞ to −∞.

(13) Let us consider a partial function f from R to R, and a real number d.
Suppose ]−∞, d] ⊆ dom f and f is extended Riemann integrable on −∞,
d. Let us consider real numbers b, c. Suppose b < c ¬ d. Then f is right
extended Riemann integrable on b, c and left extended Riemann integrable
on b, c.

(14) Let us consider a partial function f from R to R, and a real number
a. Suppose [a,+∞[ ⊆ dom f and f is extended Riemann integrable on
a, +∞. Let us consider real numbers b, c. Suppose a ¬ b < c. Then f

is right extended Riemann integrable on b, c and left extended Riemann
integrable on b, c.

Let us consider a partial function f from R to R, a real number a, and a real
number b. Now we state the propositions:

(15) Suppose ]−∞, a] ⊆ dom f and f is extended Riemann integrable on −∞,
a. Then if b ¬ a, then f is extended Riemann integrable on −∞, b.

(16) Suppose [a,+∞[ ⊆ dom f and f is extended Riemann integrable on a,
+∞. Then if a ¬ b, then f is extended Riemann integrable on b, +∞.

Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:

(17) Suppose a ¬ b and ]−∞, b] ⊆ dom f and f is integrable on [a, b] and
f�[a, b] is bounded and f is extended Riemann integrable on −∞, a. Then

(i) f is extended Riemann integrable on −∞, b, and

(ii) (R<)
b∫

−∞

f(x)dx = (R<)
a∫

−∞

f(x)dx+
b∫
a

f(x)dx.

Proof: For every real number c such that c ¬ b holds f is integrable on
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[c, b] and f�[c, b] is bounded. Consider I being a partial function from R
to R such that dom I = ]−∞, a] and for every real number x such that

x ∈ dom I holds I(x) =
a∫
x

f(x)dx and I is convergent in −∞. Reconsider

B = ]−∞, b] as a non empty subset of R. Define F(element of B) =

(
b∫
$1

f(x)dx)(∈ R). Consider I1 being a function from B into R such that

for every element x of B, I1(x) = F(x). For every real number x such that

x ∈ dom I1 holds I1(x) =
b∫
x

f(x)dx. For every real number r, there exists

a real number g such that g < r and g ∈ dom I1. Consider G being a real
number such that for every real number g1 such that 0 < g1 there exists
a real number r such that for every real number r1 such that r1 < r and

r1 ∈ dom I holds |I(r1)−G| < g1. Set G1 = G+
b∫
a

f(x)dx. For every real

number g1 such that 0 < g1 there exists a real number r such that for every
real number r1 such that r1 < r and r1 ∈ dom I1 holds |I1(r1)−G1| < g1.
�

(18) Suppose a ¬ b and [a,+∞[ ⊆ dom f and f is integrable on [a, b] and
f�[a, b] is bounded and f is extended Riemann integrable on b, +∞. Then

(i) f is extended Riemann integrable on a, +∞, and

(ii) (R>)
+∞∫
a

f(x)dx = (R>)
+∞∫
b

f(x)dx+
b∫
a

f(x)dx.

Proof: For every real number c such that a ¬ c holds f is integrable on
[a, c] and f�[a, c] is bounded. Consider I being a partial function from R
to R such that dom I = [b,+∞[ and for every real number x such that

x ∈ dom I holds I(x) =
x∫
b

f(x)dx and I is convergent in +∞. Reconsider

A = [a,+∞[ as a non empty subset of R. Define F(element of A) =

(

$1∫
a

f(x)dx)(∈ R). Consider I1 being a function from A into R such that

for every element x of A, I1(x) = F(x). For every real number x such that

x ∈ dom I1 holds I1(x) =
x∫
a

f(x)dx. For every real number r, there exists

a real number g such that r < g and g ∈ dom I1. Consider G being a real
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number such that for every real number g1 such that 0 < g1 there exists
a real number r such that for every real number r1 such that r < r1 and

r1 ∈ dom I holds |I(r1)−G| < g1. Set G1 = G+
b∫
a

f(x)dx. For every real

number g1 such that 0 < g1 there exists a real number r such that for every
real number r1 such that r < r1 and r1 ∈ dom I1 holds |I1(r1)−G1| < g1
by [5, (17)]. �

(19) Let us consider a partial function f from R to R. Suppose dom f = R.
Then f is ∞-extended Riemann integrable if and only if for every real
number a, f is extended Riemann integrable on a, +∞ and extended
Riemann integrable on −∞, a. The theorem is a consequence of (16),
(17), (18), and (15).

2. Improper Integral on Infinite Interval

Let f be a partial function from R to R and b be a real number. We say that
f is improper integrable on ]−∞, b] if and only if

(Def. 1) for every real number a such that a ¬ b holds f is integrable on [a, b] and
f�[a, b] is bounded and there exists a partial function I1 from R to R such
that dom I1 = ]−∞, b] and for every real number x such that x ∈ dom I1

holds I1(x) =
b∫
x

f(x)dx and (I1 is convergent in −∞ or divergent in −∞

to +∞ or I1 is divergent in −∞ to −∞).

Let a be a real number. We say that f is improper integrable on [a, +∞[ if
and only if

(Def. 2) for every real number b such that a ¬ b holds f is integrable on [a, b] and
f�[a, b] is bounded and there exists a partial function I1 from R to R such
that dom I1 = [a,+∞[ and for every real number x such that x ∈ dom I1

holds I1(x) =
x∫
a

f(x)dx and (I1 is convergent in +∞ or divergent in +∞

to +∞ or I1 is divergent in +∞ to −∞).

Let b be a real number. Assume f is improper integrable on ]−∞, b]. The

functor
b∫

−∞

f(x)dx yielding an extended real is defined by

(Def. 3) there exists a partial function I1 from R to R such that dom I1 = ]−∞, b]
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and for every real number x such that x ∈ dom I1 holds I1(x) =
b∫
x

f(x)dx

and (I1 is convergent in −∞ and it = lim−∞ I1 or I1 is divergent in −∞
to +∞ and it = +∞ or I1 is divergent in −∞ to −∞ and it = −∞).

Let a be a real number. Assume f is improper integrable on [a, +∞[. The

functor
+∞∫
a

f(x)dx yielding an extended real is defined by

(Def. 4) there exists a partial function I1 from R to R such that dom I1 = [a,+∞[

and for every real number x such that x ∈ dom I1 holds I1(x) =
x∫
a

f(x)dx

and (I1 is convergent in +∞ and it = lim+∞ I1 or I1 is divergent in +∞
to +∞ and it = +∞ or I1 is divergent in +∞ to −∞ and it = −∞).

Now we state the propositions:

(20) Let us consider a partial function f from R to R, and a real number b.
Suppose f is extended Riemann integrable on −∞, b. Then f is improper
integrable on ]−∞, b].

(21) Let us consider a partial function f from R to R, and a real number a.
Suppose f is extended Riemann integrable on a, +∞. Then f is improper
integrable on [a, +∞[.

(22) Let us consider a partial function f from R to R, and a real number b.
Suppose f is improper integrable on ]−∞, b]. Then

(i) f is extended Riemann integrable on −∞, b and
b∫

−∞

f(x)dx = (R<)
b∫

−∞

f(x)dx, or

(ii) f is not extended Riemann integrable on −∞, b and
b∫

−∞

f(x)dx =

+∞, or

(iii) f is not extended Riemann integrable on −∞, b and
b∫

−∞

f(x)dx =

−∞.

The theorem is a consequence of (1) and (2).

(23) Let us consider a partial function f from R to R, and a real number b.
Suppose there exists a partial function I1 from R to R such that dom I1 =
]−∞, b] and for every real number x such that x ∈ dom I1 holds I1(x) =
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b∫
x

f(x)dx and I1 is divergent in −∞ to +∞ or divergent in −∞ to −∞.

Then f is not extended Riemann integrable on −∞, b. The theorem is
a consequence of (1) and (2).

(24) Let us consider partial functions f , I1 from R to R, and a real number
b. Suppose f is improper integrable on ]−∞, b] and dom I1 = ]−∞, b] and

for every real number x such that x ∈ dom I1 holds I1(x) =
b∫
x

f(x)dx

and I1 is convergent in −∞. Then
b∫

−∞

f(x)dx = lim
−∞

I1. The theorem is

a consequence of (22).

Let us consider a partial function f from R to R and real numbers b, c. Now
we state the propositions:

(25) Suppose b ¬ c and ]−∞, c] ⊆ dom f and f is improper integrable on
]−∞, c]. Then

(i) f is improper integrable on ]−∞, b], and

(ii) if
c∫

−∞

f(x)dx = (R<)
c∫

−∞

f(x)dx, then
b∫

−∞

f(x)dx = (R<)
b∫

−∞

f(x)dx,

and

(iii) if
c∫

−∞

f(x)dx = +∞, then
b∫

−∞

f(x)dx = +∞, and

(iv) if
c∫

−∞

f(x)dx = −∞, then
b∫

−∞

f(x)dx = −∞.

The theorem is a consequence of (22).

(26) Suppose b ¬ c and ]−∞, c] ⊆ dom f and f�[b, c] is bounded and f is
improper integrable on ]−∞, b] and f is integrable on [b, c]. Then

(i) f is improper integrable on ]−∞, c], and

(ii) if
b∫

−∞

f(x)dx = (R<)
b∫

−∞

f(x)dx, then

c∫
−∞

f(x)dx =
b∫

−∞

f(x)dx+
c∫
b

f(x)dx, and
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(iii) if
b∫

−∞

f(x)dx = +∞, then
c∫

−∞

f(x)dx = +∞, and

(iv) if
b∫

−∞

f(x)dx = −∞, then
c∫

−∞

f(x)dx = −∞.

The theorem is a consequence of (22).

(27) Let us consider a partial function f from R to R, and a real number b.
Suppose f is improper integrable on [b, +∞[. Then

(i) f is extended Riemann integrable on b, +∞ and
+∞∫
b

f(x)dx = (R>)
+∞∫
b

f(x)dx, or

(ii) f is not extended Riemann integrable on b, +∞ and
+∞∫
b

f(x)dx =

+∞, or

(iii) f is not extended Riemann integrable on b, +∞ and
+∞∫
b

f(x)dx =

−∞.

The theorem is a consequence of (3) and (4).

(28) Let us consider a partial function f from R to R, and a real number b.
Suppose there exists a partial function I1 from R to R such that dom I1 =
[b,+∞[ and for every real number x such that x ∈ dom I1 holds I1(x) =
x∫
b

f(x)dx and I1 is divergent in +∞ to +∞ or divergent in +∞ to −∞.

Then f is not extended Riemann integrable on b, +∞. The theorem is
a consequence of (3) and (4).

(29) Let us consider partial functions f , I1 from R to R, and a real number
b. Suppose f is improper integrable on [b, +∞[ and dom I1 = [b,+∞[ and

for every real number x such that x ∈ dom I1 holds I1(x) =
x∫
b

f(x)dx

and I1 is convergent in +∞. Then
+∞∫
b

f(x)dx = lim
+∞

I1. The theorem is

a consequence of (27).

Let us consider a partial function f from R to R and real numbers b, c. Now
we state the propositions:
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(30) Suppose b  c and [c,+∞[ ⊆ dom f and f is improper integrable on [c,
+∞[. Then

(i) f is improper integrable on [b, +∞[, and

(ii) if
+∞∫
c

f(x)dx = (R>)
+∞∫
c

f(x)dx, then
+∞∫
b

f(x)dx = (R>)
+∞∫
b

f(x)dx,

and

(iii) if
+∞∫
c

f(x)dx = +∞, then
+∞∫
b

f(x)dx = +∞, and

(iv) if
+∞∫
c

f(x)dx = −∞, then
+∞∫
b

f(x)dx = −∞.

The theorem is a consequence of (27).

(31) Suppose b  c and [c,+∞[ ⊆ dom f and f�[c, b] is bounded and f is
improper integrable on [b, +∞[ and f is integrable on [c, b]. Then

(i) f is improper integrable on [c, +∞[, and

(ii) if
+∞∫
b

f(x)dx = (R>)
+∞∫
b

f(x)dx, then
+∞∫
c

f(x)dx =
+∞∫
b

f(x)dx+
b∫
c

f(x)dx,

and

(iii) if
+∞∫
b

f(x)dx = +∞, then
+∞∫
c

f(x)dx = +∞, and

(iv) if
+∞∫
b

f(x)dx = −∞, then
+∞∫
c

f(x)dx = −∞.

The theorem is a consequence of (27).

Let f be a partial function from R to R. We say that f is improper integrable
on R if and only if

(Def. 5) there exists a real number r such that f is improper integrable on ]−∞, r]

and f is improper integrable on [r, +∞[ and it is not true that
r∫

−∞

f(x)dx =

−∞ and
+∞∫
r

f(x)dx = +∞ and it is not true that
r∫

−∞

f(x)dx = +∞ and

+∞∫
r

f(x)dx = −∞.
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Now we state the propositions:

(32) Let us consider a partial function f from R to R. Suppose f is improper

integrable on R. Then there exists a real number b such that
b∫

−∞

f(x)dx =

(R<)
b∫

−∞

f(x)dx and
+∞∫
b

f(x)dx = (R>)
+∞∫
b

f(x)dx or
b∫

−∞

f(x)dx+
+∞∫
b

f(x)dx

= +∞ or
b∫

−∞

f(x)dx+
+∞∫
b

f(x)dx = −∞. The theorem is a consequence of

(22) and (27).

(33) Let us consider a partial function f from R to R, and a real number
b. Suppose dom f = R and f is improper integrable on ]−∞, b] and f

is improper integrable on [b, +∞[ and it is not true that
b∫

−∞

f(x)dx =

−∞ and
+∞∫
b

f(x)dx = +∞ and it is not true that
b∫

−∞

f(x)dx = +∞ and

+∞∫
b

f(x)dx = −∞. Let us consider a real number b1. Suppose b1 ¬ b.

Then
b∫

−∞

f(x)dx +
+∞∫
b

f(x)dx =

b1∫
−∞

f(x)dx +
+∞∫
b1

f(x)dx. The theorem is

a consequence of (22), (27), and (31).

(34) Let us consider a partial function f from R to R, and a real number
b. Suppose dom f = R and f is improper integrable on ]−∞, b] and f

is improper integrable on [b, +∞[ and it is not true that
b∫

−∞

f(x)dx =

−∞ and
+∞∫
b

f(x)dx = +∞ and it is not true that
b∫

−∞

f(x)dx = +∞ and

+∞∫
b

f(x)dx = −∞. Let us consider a real number b2. Suppose b ¬ b2.

Then
b∫

−∞

f(x)dx +
+∞∫
b

f(x)dx =

b2∫
−∞

f(x)dx +
+∞∫
b2

f(x)dx. The theorem is
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a consequence of (27), (30), (31), and (22).

(35) Let us consider a partial function f from R to R. Suppose dom f = R
and f is improper integrable on R. Let us consider real numbers b1, b2.

Then

b1∫
−∞

f(x)dx +
+∞∫
b1

f(x)dx =

b2∫
−∞

f(x)dx +
+∞∫
b2

f(x)dx. The theorem is

a consequence of (33) and (34).

Let f be a partial function from R to R. Assume dom f = R and f is

improper integrable on R. The functor
+∞∫
−∞

f(x)dx yielding an extended real is

defined by

(Def. 6) there exists a real number c such that f is improper integrable on ]−∞,

c] and f is improper integrable on [c, +∞[ and it =
c∫

−∞

f(x)dx+
+∞∫
c

f(x)dx.

Now we state the proposition:

(36) Let us consider a partial function f from R to R, and a real number b.
Suppose dom f = R and f is improper integrable on R. Then

(i) f is improper integrable on ]−∞, b], and

(ii) f is improper integrable on [b, +∞[, and

(iii)
+∞∫
−∞

f(x)dx =
b∫

−∞

f(x)dx+
+∞∫
b

f(x)dx.

The theorem is a consequence of (25), (31), (35), (26), and (30).

3. Linearity of Improper Integral on Infinite Interval

Let us consider a partial function f from R to R, a real number b, and
a partial function I1 from R to R. Now we state the propositions:

(37) Suppose f is improper integrable on ]−∞, b] and
b∫

−∞

f(x)dx = +∞.

Then suppose dom I1 = ]−∞, b] and for every real number x such that

x ∈ dom I1 holds I1(x) =
b∫
x

f(x)dx. Then I1 is divergent in −∞ to +∞.

(38) Suppose f is improper integrable on ]−∞, b] and
b∫

−∞

f(x)dx = −∞.
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Then suppose dom I1 = ]−∞, b] and for every real number x such that

x ∈ dom I1 holds I1(x) =
b∫
x

f(x)dx. Then I1 is divergent in −∞ to −∞.

Let us consider a partial function f from R to R, a real number a, and
a partial function I1 from R to R. Now we state the propositions:

(39) Suppose f is improper integrable on [a, +∞[ and
+∞∫
a

f(x)dx = +∞.

Then suppose dom I1 = [a,+∞[ and for every real number x such that

x ∈ dom I1 holds I1(x) =
x∫
a

f(x)dx. Then I1 is divergent in +∞ to +∞.

(40) Suppose f is improper integrable on [a, +∞[ and
+∞∫
a

f(x)dx = −∞.

Then suppose dom I1 = [a,+∞[ and for every real number x such that

x ∈ dom I1 holds I1(x) =
x∫
a

f(x)dx. Then I1 is divergent in +∞ to −∞.

(41) Let us consider a partial function f from R to R, and real numbers b, r.
Suppose ]−∞, b] ⊆ dom f and f is improper integrable on ]−∞, b]. Then

(i) r · f is improper integrable on ]−∞, b], and

(ii)
b∫

−∞

(r · f)(x)dx = r ·
b∫

−∞

f(x)dx.

Proof: For every real number d such that d ¬ b holds r · f is integrable
on [d, b] and (r · f)�[d, b] is bounded. �

(42) Let us consider a partial function f from R to R, and real numbers a, r.
Suppose [a,+∞[ ⊆ dom f and f is improper integrable on [a, +∞[. Then

(i) r · f is improper integrable on [a, +∞[, and

(ii)
+∞∫
a

(r · f)(x)dx = r ·
+∞∫
a

f(x)dx.

Proof: For every real number d such that a ¬ d holds r · f is integrable
on [a, d] and (r · f)�[a, d] is bounded. �

(43) Let us consider a partial function f from R to R, and a real number b.
Suppose ]−∞, b] ⊆ dom f and f is improper integrable on ]−∞, b]. Then

(i) −f is improper integrable on ]−∞, b], and
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(ii)
b∫

−∞

(−f)(x)dx = −
b∫

−∞

f(x)dx.

The theorem is a consequence of (41).

(44) Let us consider a partial function f from R to R, and a real number a.
Suppose [a,+∞[ ⊆ dom f and f is improper integrable on [a, +∞[. Then

(i) −f is improper integrable on [a, +∞[, and

(ii)
+∞∫
a

(−f)(x)dx = −
+∞∫
a

f(x)dx.

The theorem is a consequence of (42).

(45) Let us consider partial functions f , g from R to R, and a real number
b. Suppose ]−∞, b] ⊆ dom f and ]−∞, b] ⊆ dom g and f is improper
integrable on ]−∞, b] and g is improper integrable on ]−∞, b] and it is

not true that
b∫

−∞

f(x)dx = +∞ and
b∫

−∞

g(x)dx = −∞ and it is not true

that
b∫

−∞

f(x)dx = −∞ and
b∫

−∞

g(x)dx = +∞. Then

(i) f + g is improper integrable on ]−∞, b], and

(ii)
b∫

−∞

(f + g)(x)dx =
b∫

−∞

f(x)dx+
b∫

−∞

g(x)dx.

Proof: For every real number d such that d ¬ b holds f + g is integrable
on [d, b] and (f + g)�[d, b] is bounded. �

(46) Let us consider partial functions f , g from R to R, and a real number
a. Suppose [a,+∞[ ⊆ dom f and [a,+∞[ ⊆ dom g and f is improper
integrable on [a, +∞[ and g is improper integrable on [a, +∞[ and it is

not true that
+∞∫
a

f(x)dx = +∞ and
+∞∫
a

g(x)dx = −∞ and it is not true

that
+∞∫
a

f(x)dx = −∞ and
+∞∫
a

g(x)dx = +∞. Then

(i) f + g is improper integrable on [a, +∞[, and

(ii)
+∞∫
a

(f + g)(x)dx =
+∞∫
a

f(x)dx+
+∞∫
a

g(x)dx.
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Proof: For every real number d such that a ¬ d holds f + g is integrable
on [a, d] and (f + g)�[a, d] is bounded. �

(47) Let us consider partial functions f , g from R to R, and a real number
b. Suppose ]−∞, b] ⊆ dom f and ]−∞, b] ⊆ dom g and f is improper
integrable on ]−∞, b] and g is improper integrable on ]−∞, b] and it is

not true that
b∫

−∞

f(x)dx = +∞ and
b∫

−∞

g(x)dx = +∞ and it is not true

that
b∫

−∞

f(x)dx = −∞ and
b∫

−∞

g(x)dx = −∞. Then

(i) f − g is improper integrable on ]−∞, b], and

(ii)
b∫

−∞

(f − g)(x)dx =
b∫

−∞

f(x)dx−
b∫

−∞

g(x)dx.

The theorem is a consequence of (43) and (45).

(48) Let us consider partial functions f , g from R to R, and a real number
a. Suppose [a,+∞[ ⊆ dom f and [a,+∞[ ⊆ dom g and f is improper
integrable on [a, +∞[ and g is improper integrable on [a, +∞[ and it is

not true that
+∞∫
a

f(x)dx = +∞ and
+∞∫
a

g(x)dx = +∞ and it is not true

that
+∞∫
a

f(x)dx = −∞ and
+∞∫
a

g(x)dx = −∞. Then

(i) f − g is improper integrable on [a, +∞[, and

(ii)
+∞∫
a

(f − g)(x)dx =
+∞∫
a

f(x)dx−
+∞∫
a

g(x)dx.

The theorem is a consequence of (44) and (46).

Let us consider a partial function f from R to R and a real number r. Now
we state the propositions:

(49) Suppose dom f = R and f is improper integrable on R. Then

(i) r · f is improper integrable on R, and

(ii)
+∞∫
−∞

(r · f)(x)dx = r ·
+∞∫
−∞

f(x)dx.

The theorem is a consequence of (36), (41), and (42).

(50) Suppose dom f = R and f is improper integrable on R. Then
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(i) −f is improper integrable on R, and

(ii)
+∞∫
−∞

(−f)(x)dx = −
+∞∫
−∞

f(x)dx.

The theorem is a consequence of (49).

Let us consider partial functions f , g from R to R. Now we state the propo-
sitions:

(51) Suppose dom f = R and dom g = R and f is improper integrable on

R and g is improper integrable on R and it is not true that
+∞∫
−∞

f(x)dx =

+∞ and
+∞∫
−∞

g(x)dx = −∞ and it is not true that
+∞∫
−∞

f(x)dx = −∞ and

+∞∫
−∞

g(x)dx = +∞. Then

(i) f + g is improper integrable on R, and

(ii)
+∞∫
−∞

(f + g)(x)dx =
+∞∫
−∞

f(x)dx+
+∞∫
−∞

g(x)dx.

The theorem is a consequence of (25), (26), (31), (30), (36), (45), and (46).

(52) Suppose dom f = R and dom g = R and f is improper integrable on

R and g is improper integrable on R and it is not true that
+∞∫
−∞

f(x)dx =

+∞ and
+∞∫
−∞

g(x)dx = +∞ and it is not true that
+∞∫
−∞

f(x)dx = −∞ and

+∞∫
−∞

g(x)dx = −∞. Then

(i) f − g is improper integrable on R, and

(ii)
+∞∫
−∞

(f − g)(x)dx =
+∞∫
−∞

f(x)dx−
+∞∫
−∞

g(x)dx.

The theorem is a consequence of (50) and (51).
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