Contents *Formaliz. Math.* 32 (**1**)

Elementary Number Theory Problems. Part XIII

Artur Korniłowic[z](https://orcid.org/0000-0002-4565-9082) Faculty of Computer Science University of Białystok Poland

Rafał Zi[o](https://orcid.org/0000-0001-9681-4380)bro^D Department of Carbohydrate Technology University of Agriculture Kraków, Poland

Summary. This paper formalizes problems 41, 92, 121–123, 172, 182, 183, 191, 192 and 192a from "250 Problems in Elementary Number Theory" by Wacław Sierpiński [\[8\]](#page-9-0).

MSC: [11A41](http://zbmath.org/classification/?q=cc:11A41) [03B35](http://zbmath.org/classification/?q=cc:03B35) [68V20](http://zbmath.org/classification/?q=cc:68V20)

Keywords: number theory; divisibility; prime number MML identifier: [NUMBER13](http://fm.mizar.org/miz/number13.miz), version: [8.1.14 5.79.1465](http://ftp.mizar.org/)

INTRODUCTION

In this paper, Problems 41 from Section I, 92, 121, 122, 123 from Section IV, 172, 182, 183, 191, 192, and 192a from Section V of [\[8\]](#page-9-0) are formalized, using the Mizar formalism [\[2\]](#page-8-0), [\[1\]](#page-8-1). The paper is a part of the project *Formalization of Elementary Number Theory in Mizar* [\[7\]](#page-9-1), [\[4\]](#page-9-2), [\[5\]](#page-9-3), [\[6\]](#page-9-4), [\[3\]](#page-8-2).

In the preliminary section, we proved some trivial but useful facts about numbers.

In problem 92 the inequality $p_{k+1} + p_{k+2} \leqslant p_1 \cdot p_2 \cdot \ldots \cdot p_k$ should be justified for any integer $k \geqslant 3$, where p_k denotes the *k*-th prime. Because we count primes starting from the index 0, we formulated the fact as:

```
3 <= k implies
primenumber(k) + primenumber(k+1) \leq Product primesFins(k);
```
where $\text{primesFins}(k)$ denotes the finite sequence of primes of the length k, and elements of finite sequences are indexed from 1.

Problem 121 about finding the least positive integer *n* for which $k \cdot 2^{2^n} + 1$ is composite is represented as separated theorems for every positive $k \leq 10$.

Problem 122 requires finding all positive integers $k \leq 10$ such that every number $k \cdot 2^{2^n} + 1$ $(n = 1, 2, ...)$ is composite. The proof lies in the fact that numbers $(3 \cdot t + 2) \cdot 2^{2^n} + 1$ are all divisible by 3 and greater than 3, for every natural t , and every positive natural n . In the book, there are minor misprints in the proof, where $2 \cdot 2^{2^2} + 1$ should be $2 \cdot 2^{2^n} + 1$ and $5 \cdot 2^{2^2} + 1$ should be $5 \cdot 2^{2^n} + 1$.

Problems 191 and 192 are generalized from positive integers to non-zero integers.

Problem 192a is formulated incorrectly in the book. It asks to prove that the system of two equations $x^2 + 7y^2 = z^2$ and $7x^2 + y^2 = t^2$ has no solutions in positive integers x, y, z , and t . However, it has solutions, for instance, $x = 3$, $y = 1, z = 4$, and $t = 8$. The example is provided in the book.

Proofs of other problems are straightforward formalizations of solutions given in the book.

1. Preliminaries

From now on a, b, c, k, m, n denote natural numbers, i, j denote integers, and *p* denotes a prime number.

Now we state the propositions:

(1) If $n < 3$, then $n = 0$ or $n = 1$ or $n = 2$.

(2) If $n < 4$, then $n = 0$ or $n = 1$ or $n = 2$ or $n = 3$.

(3) If $n < 5$, then $n = 0$ or $n = 1$ or $n = 2$ or $n = 3$ or $n = 4$.

Let us note that $\frac{1}{2}$ is non integer and there exists a rational number which is non natural and there exists a rational number which is non integer.

Now we state the proposition:

(4) If $j \neq 0$ and $\frac{i}{j}$ is integer, then $j | i$.

Let q be a non integer rational number. One can verify that q^2 is non integer. Now we state the proposition:

(5) If $\frac{a}{b} \cdot c$ is natural and $b \neq 0$ and *a* and *b* are relatively prime, then there exists a natural number *d* such that $c = b \cdot d$.

2. Problem 41

Let us consider an integer *k*. Now we state the propositions:

- (6) $2 \cdot k + 1$ and $9 \cdot k + 4$ are relatively prime.
- (7) $\gcd(2 \cdot k 1, 9 \cdot k + 4) = \gcd(k + 8, 17).$

3. Problem 92

Now we state the proposition:

(8) If $m > 1$ and $n > 1$ and m and n are relatively prime, then there exist prime numbers p, q such that $p \mid m$ and $p \nmid n$ and $q \mid n$ and $q \nmid m$ and $p \neq q$.

Let us consider *k*. The functor primesFinS(*k*) yielding a finite sequence of elements of N is defined by

(Def. 1) len $it = k$ and for every natural number *i* such that $i < k$ holds $it(i+1) =$ $pr(i).$

Let us observe that primes $\text{FinS}(0)$ is empty.

Now we state the propositions:

- (9) primesFinS(1) = $\langle 2 \rangle$.
- (10) primesFinS(2) = $\langle 2, 3 \rangle$.
- (11) primesFinS $(3) = \langle 2, 3, 5 \rangle$.
- (12) $p < pr(k)$ if and only if primeindex(p) k .
- (13) If primeindex $(p) < k$, then $1 + \text{primeing}(p) \in \text{dom}(\text{primesFin}(k)).$
- (14) If primeindex $(p) < k$, then $(p \times k)$ $(\text{primes} \times \text{Fins}(k))(1 + \text{prime} \times \text{Fins}(p)) = p$.
- (15) If $p < \text{pr}(k)$, then $p \in \text{rng primes}$ FinS(k). The theorem is a consequence of (13), (12), and (14).
- (16) If p and \prod primesFinS(k) are relatively prime, then $pr(k) \leqslant p$. The theorem is a consequence of (15).

Let us consider *k*. Let us note that primesFinS(*k*) is positive yielding and primesFin $S(k)$ is increasing.

Let *R* be an extended real-valued binary relation. We say that *R* has values greater or equal one if and only if

(Def. 2) for every extended real *r* such that $r \in \text{rng } R$ holds $r \geqslant 1$.

Observe that $\langle 1 \rangle$ has values greater or equal one and there exists a naturalvalued finite sequence which has values greater or equal one.

Let *f* be an extended real-valued function. Let us observe that *f* has values greater or equal one if and only if the condition (Def. 3) is satisfied.

(Def. 3) for every object *x* such that $x \in \text{dom } f$ holds $f(x) \geq 1$.

Let *f* be an extended real-valued finite sequence. One can verify that *f* has values greater or equal one if and only if the condition (Def. 4) is satisfied.

(Def. 4) for every natural number *n* such that $1 \leq n \leq \text{len } f$ holds $f(n) \geq 1$.

One can verify that every extended real-valued binary relation which is empty has also values greater or equal one and every extended real-valued binary relation which has values greater or equal one is also positive yielding.

Now we state the propositions:

- (17) If $m \leq n$, then primes $\text{FinS}(n)$ $\mid m = \text{primes}\text{FinS}(m)$.
- (18) Let us consider extended real-valued binary relations *P*, *R*. Suppose rng *P ⊆* rng *R* and *R* has values greater or equal one. Then *P* has values greater or equal one.
- (19) Let us consider extended real-valued finite sequences f, g . Suppose $f \cap g$ has values greater or equal one. Then
	- (i) *f* has values greater or equal one, and
	- (ii) *g* has values greater or equal one.
- (20) Let us consider an extended real r. If $\langle r \rangle$ has values greater or equal one, then $r \geqslant 1$.

Let us consider a real-valued finite sequence f with values greater or equal one. Now we state the propositions:

 (21) $\prod f \geqslant 1$.

PROOF: Define P [finite sequence of elements of \mathbb{R}] \equiv for every real-valued finite sequence *g* with values greater or equal one such that $g = \hat{s}_1$ holds \prod \$₁ \geq 1. For every finite sequence *p* of elements of R and for every element *x* of R such that $P[p]$ holds $P[p \cap \langle x \rangle]$. For every finite sequence *p* of elements of $\mathbb{R}, \mathcal{P}[p]$. \Box

(22) $\Pi(f \mid n) \leq \Pi f$. The theorem is a consequence of (19) and (20).

Let us consider k . One can verify that primes $\text{FinS}(k)$ has values greater or equal one.

Now we state the proposition:

(23) If $3 \le k$, then $pr(k) + pr(k+1) \le \prod \text{primesFin}(k)$. The theorem is a consequence of (8) and (16).

4. Problem 121

Let *k*, *n* be natural numbers. We say that *n* satisfies Sierpiński Problem 121 for *k* if and only if

(Def. 5) $k \cdot 2^{2^n} + 1$ is composite and for every positive natural number *m* such that $m < n$ holds $k \cdot 2^{2^m} + 1$ is not composite.

Now we state the propositions:

- (24) 5 satisfies Sierpiński Problem 121 for 1. The theorem is a consequence of (3).
- (25) 1 satisfies Sierpiński Problem 121 for 2.
- (26) 2 satisfies Sierpiński Problem 121 for 3.
- (27) 2 satisfies Sierpiński Problem 121 for 4.
- (28) 1 satisfies Sierpiński Problem 121 for 5.
- (29) 1 satisfies Sierpiński Problem 121 for 6.
- (30) 3 satisfies Sierpiński Problem 121 for 7. The theorem is a consequence of (1).
- (31) 1 satisfies Sierpiński Problem 121 for 8.
- (32) 2 satisfies Sierpiński Problem 121 for 9.
- (33) 2 satisfies Sierpiński Problem 121 for 10.

5. Problem 122

Let us consider a positive natural number *n*.

Now we state the propositions:

- (34) $3 | (3 \cdot a + 2) \cdot 2^{2^n} + 1.$
- (35) $2 \cdot 2^{2^n} + 1$ is composite.
- (36) $5 \cdot 2^{2^n} + 1$ is composite. The theorem is a consequence of (34).
- (37) $8 \cdot 2^{2^n} + 1$ is composite. The theorem is a consequence of (34).
- (38) Let us consider a positive natural number *k*. Then $k \leq 10$ and for every positive natural number *n*, $k \cdot 2^{2^n} + 1$ is composite if and only if $k \in \{2, 5, 8\}$. The theorem is a consequence of (24), (26), (27), (30), (32), (33), (35), (36), and (37).

6. Problem 123

Now we state the propositions:

- (39) $2^{2^{n+1}} + 2^{2^n} + 1 \ge 7.$
- (40) If $n > 0$, then $2^{2^{n+1}} + 2^{2^n} + 1 \ge 21$.
- (41) If $n > 1$, then $2^{2^{n+1}} + 2^{2^n} + 1 \ge 273$.
- (42) If *m* is even or $m = 2 \cdot n$, then 2^m mod $3 = 1$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv 2^{2 \cdot \$_1} \mod 3 = 1$. For every *k* such that $P[k]$ holds $P[k+1]$. For every $k, P[k]$. \Box
- (43) If *m* is odd or $m = 2 \cdot n + 1$, then 2^m mod $3 = 2$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv 2^{2 \cdot 3}$ ¹⁺¹ mod 3 = 2. For every *k* such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every $k, \mathcal{P}[k]$. \Box
- (44) Let us consider a non zero natural number *n*. Then $3 \mid 2^{2^{n+1}} + 2^{2^n} + 1$. The theorem is a consequence of (42).
- (45) 7 | $2^{2^{n+1}} + 2^{2^n} + 1$. The theorem is a consequence of (42) and (43). Let *n* be a non zero natural number. Note that $\frac{1}{3} \cdot (2^{2^{n+1}} + 2^{2^n} + 1)$ is natural. Now we state the proposition:
- (46) Let us consider a non zero natural number *n*. If $n > 1$, then $\frac{1}{3} \cdot (2^{2^{n+1}} +$ $2^{2^n} + 1$) is composite. The theorem is a consequence of (39) , (45) , (44) , and (41).

7. Problem 172

Now we state the proposition:

(47) Let us consider positive natural numbers *n*, *x*, *y*, *z*. Then $n^x + n^y = n^z$ if and only if $n = 2$ and $y = x$ and $z = x + 1$.

8. Problem 182

Now we state the proposition:

(48) Let us consider real numbers *a*, *b*, *c*. If $c > 1$ and $c^a = c^b$, then $a = b$.

Let us consider positive natural numbers n, x, y, z, t . Now we state the propositions:

(49) If $x \le y \le z$, then $n^x + n^y + n^z = n^t$ iff $n = 2$ and $y = x$ and $z = x + 1$ and $t = x + 2$ or $n = 3$ and $y = x$ and $z = x$ and $t = x + 1$.

(50) $n^x + n^y + n^z = n^t$ if and only if $n = 2$ and $y = x$ and $z = x + 1$ and $t = x + 2$ or $n = 2$ and $y = x + 1$ and $z = x$ and $t = x + 2$ or $n = 2$ and $z = y$ and $x = y + 1$ and $t = y + 2$ or $n = 3$ and $y = x$ and $z = x$ and $t = x + 1$. The theorem is a consequence of (49).

9. Problem 183

Now we state the proposition:

(51) Let us consider positive natural numbers x, y, z, t . Then $4^x + 4^y + 4^z \neq 4^t$.

10. Problem 191

Now we state the proposition:

(52) Let us consider non zero integers
$$
x, y, z, t
$$
. Then

- (i) $x^2 + 5 \cdot y^2 \neq z^2$, or
- (ii) $5 \cdot x^2 + y^2 \neq t^2$.

11. Problem 192

Now we state the propositions:

- (53) Let us consider non zero integers *x*, *y*, *z*, *t*. Then
	- (i) $x^2 + 6 \cdot y^2 \neq z^2$, or

(ii)
$$
6 \cdot x^2 + y^2 \neq t^2
$$
.

 (54) (i) $3^2 + 7 \cdot 1^2 = 4^2$, and (ii) $7 \cdot 3^2 + 1^2 = 8^2$.

REFERENCES

- [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. [Mizar: State-of-the-art and](http://dx.doi.org/10.1007/978-3-319-20615-8_17) [beyond.](http://dx.doi.org/10.1007/978-3-319-20615-8_17) In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3- 319-20614-1. doi[:10.1007/978-3-319-20615-8](http://dx.doi.org/10.1007/978-3-319-20615-8_17) 17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. [The role of the Mizar Mathematical Library](https://doi.org/10.1007/s10817-017-9440-6) [for interactive proof development in Mizar.](https://doi.org/10.1007/s10817-017-9440-6) *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi[:10.1007/s10817-017-9440-6.](http://dx.doi.org/10.1007/s10817-017-9440-6)
- [3] Adam Grabowski. Elementary number theory problems. Part XII – primes in arithmetic progression. *Formalized Mathematics*, 31(1):277–286, 2023. doi[:10.2478/forma-2023-0022.](http://dx.doi.org/10.2478/forma-2023-0022)
- [4] Artur Korniłowicz. Elementary number theory problems. Part IX. *Formalized Mathematics*, 31(1):161–169, 2023. doi[:10.2478/forma-2023-0015.](http://dx.doi.org/10.2478/forma-2023-0015)
- [5] Artur Korniłowicz. Elementary number theory problems. Part X – Diophantine equations. *Formalized Mathematics*, 31(1):171–180, 2023. doi[:10.2478/forma-2023-0016.](http://dx.doi.org/10.2478/forma-2023-0016)
- [6] Adam Naumowicz. Elementary number theory problems. Part XI. *Formalized Mathematics*, 31(1):229–275, 2023. doi[:10.2478/forma-2023-0021.](http://dx.doi.org/10.2478/forma-2023-0021)
- [7] Adam Naumowicz. [Dataset description: Formalization of elementary number theory in](https://doi.org/10.1007/978-3-030-53518-6_22) [Mizar.](https://doi.org/10.1007/978-3-030-53518-6_22) In Christoph Benzmüller and Bruce R. Miller, editors, *Intelligent Computer Mathematics – 13th International Conference, CICM 2020, Bertinoro, Italy, July 26–31, 2020, Proceedings*, volume 12236 of *Lecture Notes in Computer Science*, pages 303–308. Springer, 2020. doi[:10.1007/978-3-030-53518-6](http://dx.doi.org/10.1007/978-3-030-53518-6_22) 22.
- [8] Wacław Sierpiński. *250 Problems in Elementary Number Theory*. Elsevier, 1970.

Accepted June 18, 2024

Integral of Continuous Three Variable Functions[1](#page-2-1)

Nobor[u](https://orcid.org/0000-0002-5922-2332) Endou^t National Institute of Technology, Gifu College 2236-2 Kamimakuwa, Motosu, Gifu, Japan

> Yasunari Shidama Karuizawa Hotch 244-1 Nagano, Japan

Summary. In this article we continue our proofs on integrals of continuous functions of three variables in Mizar. In fact, we use similar techniques as in the case of two variables: we deal with projections of continuous function, the continuity of three variable functions in general, aiming at pure real-valued functions (not necessarily extended real-valued functions), concluding with integrability and iterated integrals of continuous functions of three variables.

MSC: [26B15](http://zbmath.org/classification/?q=cc:26B15) [97I50](http://zbmath.org/classification/?q=cc:97I50) [68V20](http://zbmath.org/classification/?q=cc:68V20)

Keywords: triple integral; iterated integral MML identifier: [MESFUN17](http://fm.mizar.org/miz/mesfun17.miz), version: [8.1.14 5.79.1465](http://ftp.mizar.org/)

INTRODUCTION

In this article, following the previous article [\[9\]](#page-32-0), we continue our proofs on integrals of continuous functions of three variables in Mizar [\[2\]](#page-8-1), [\[3\]](#page-8-0); for a survey of formalizations of real analysis in another proof-assistants like ACL2 [\[11\]](#page-32-1), Isabelle/HOL [\[10\]](#page-32-2), Coq [\[4\]](#page-32-3), see [\[5\]](#page-32-4).

In the first section, continuity of functions of three variables is shown. These are used in the proofs of the later sections.

¹This work was supported by JSPS KAKENHI 23K11242.

The second section summarizes the basic properties of the projection of a continuous function in three variables, a result that is almost as obvious as in two variables, but is used to transform [\[8\]](#page-32-5) Riemann and Lebesgue integrals for real-valued functions (not extended real-valued functions).

In the last section, we prove integrability and iterated integrals of continuous functions of three variables. Throughout the paper, the basic proof steps follow [\[1\]](#page-32-6), [\[16\]](#page-32-7), and [\[12\]](#page-32-8).

1. Preliminaries

Now we state the propositions:

- (1) Let us consider real normed spaces *X*, *Y*, *Z*, a point *u* of $X \times Y \times Z$, a point *x* of *X*, a point *y* of *Y*, and a point *z* of *Z*. Suppose $u = \langle x, y, z \rangle$. Then
	- $\|u\| \leqslant \|x\| + \|y\| + \|z\|$, and
	- $\|x\| \leqslant \|u\|$, and
	- (iii) $\|y\| \leq \|u\|$, and
	- (ix) $||z|| \le ||u||.$
- (2) Let us consider closed interval subsets I, J, K of \mathbb{R} , and a subset E of ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}). If $E = (I \times J) \times K$, then *E* is compact.
- (3) Let us consider a partial function *f* from ((the real normed space of R)*×* (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and a set *E*.

Suppose $f = g$ and $E \subseteq \text{dom } f$. Then f is uniformly continuous on E if and only if for every real number *e* such that 0 *< e* there exists a real number *r* such that $0 < r$ and for every real numbers $x_1, x_2, y_1, y_2, z_1, z_2$ such that $\langle x_1, y_1, z_1 \rangle, \langle x_2, y_2, z_2 \rangle \in E$ and $|x_2 - x_1| < r$ and $|y_2 - y_1| < r$ $|g(\langle x_2, y_2, z_2 \rangle) - g(\langle x_1, y_1, z_1 \rangle)| < \epsilon$.

Proof: For every real number *e* such that 0 *< e* there exists a real number *r* such that $0 < r$ and for every points p_1 , p_2 of ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) such that *p*₁, *p*₂ ∈ *E* and $||p_1 - p_2|| < r$ holds $||f_{/p_1} - f_{/p_2}|| < e$. □

- (4) Let us consider intervals *I*, *J*, *K*. Then
	- (i) $(I \times J) \times K$ is a subset of ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}), and
	- (ii) $(I \times J) \times K \in \sigma(\text{MeasRect}(\sigma(\text{MeasRect}(L\text{-Field}, L\text{-Field})), L\text{-Field})).$
- (5) Let us consider a point *u* of (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}), and a real number *r*. Suppose $0 < r$. Then there exist real numbers *s*, *x*, *y*, *z* such that
	- (i) $0 < s < r$, and
	- (ii) $u = \langle x, y, z \rangle$, and

(iii)
$$
]x - s, x + s[\times]y - s, y + s[\times]z - s, z + s[\subseteq \text{Ball}(u, r).
$$

Let us consider a subset A of (the real normed space of $\mathbb{R}\times$ (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}). Now we state the propositions:

(6) Suppose for every real numbers *a*, *b*, *c* such that $\langle a, b, c \rangle \in A$ there exists a real-membered set R_{12} such that R_{12} is non empty and upper bounded and $R_{12} = \{r, \text{ where } r \text{ is a real number : } 0 < r \text{ and } |a-r, a+r| \times \}$ *|b* − *r*, *b* + *r*[\times |*c* − *r*, *c* + *r*[\subseteq *A*}. Then there exists a function *F* from *A* into R such that for every real numbers *a*, *b*, *c* such that $\langle a, b, c \rangle \in A$ there exists a real-membered set R_{12} such that R_{12} is non empty and upper bounded and $R_{12} = \{r, \text{ where } r \text{ is a real number : } 0 < r \text{ and } |a-r, a+r| \times \}$ $\left[b - r, b + r \right[\times \left] c - r, c + r \right[\subseteq A \} \text{ and } F(\langle a, b, c \rangle) = \frac{\sup R_{12}}{2}.$

PROOF: Define $\mathcal{P}[\text{object}, \text{object}] \equiv \text{there exist real numbers } a, b, c \text{ and }$ there exists a real-membered set R_{12} such that $\$_1 = \langle a, b, c \rangle$ and R_{12} is non empty and upper bounded and $R_{12} = \{r, \text{ where } r \text{ is a real number } :$ $0 < r$ and $]a - r, a + r[\times]b - r, b + r[\times]c - r, c + r[\subseteq A]$ and $\$_{2} = \frac{\sup R_{12}}{2}$.

For every object x such that $x \in A$ there exists an object y such that $y \in \mathbb{R}$ and $\mathcal{P}[x, y]$. Consider *F* being a function from *A* into \mathbb{R} such that for every object *x* such that $x \in A$ holds $\mathcal{P}[x, F(x)]$. For every real numbers *a*, *b*, *c* such that $\langle a, b, c \rangle \in A$ there exists a real-membered set R_{12} such that R_{12} is non empty and upper bounded and $R_{12} = \{r, \text{ where } r \text{ is a real}\}\$ number : $0 < r$ and $[a - r, a + r] \times [b - r, b + r] \times [c - r, c + r] \subseteq A$ and $F(\langle a, b, c \rangle) = \frac{\sup R_{12}}{2}. \ \Box$

- (7) If *A* is open, then $A \in \sigma(\text{MeasRect}(\sigma(\text{MeasRect}(L\text{-Field}, L\text{-Field}))),$ L-Field)). The theorem is a consequence of (5), (6), and (1).
- (8) Let us consider closed interval subsets *I*, *J*, *K* of R, a partial function *f* from ((the real normed space of R) *×* (the real normed space of R)) *×* (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , and a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} . Suppose *f* is continuous on $(I \times J) \times$ *K* and $f = g$. Let us consider a real number *e*. Suppose $0 < e$. Then there exists a real number *r* such that
	- (i) 0 \lt r, and
	- (ii) for every real numbers $x_1, x_2, y_1, y_2, z_1, z_2$ such that $x_1, x_2 \in I$ and *y*₁, *y*₂ \in *J* and *z*₁, *z*₂ \in *K* and $|x_2 - x_1|$ $\lt r$ and $|y_2 - y_1|$ $\lt r$ and

 $|z_2 - z_1| < r$ holds $|g(\langle x_2, y_2, z_2 \rangle) - g(\langle x_1, y_1, z_1 \rangle)| < \epsilon$.

PROOF: Set $E = (I \times J) \times K$. *f* is uniformly continuous on *E*. Consider *r* being a real number such that $0 < r$ and for every real numbers x_1, x_2 , *y*₁*, y*₂*, z*₁*, z*₂ such that $\langle x_1, y_1, z_1 \rangle$, $\langle x_2, y_2, z_2 \rangle \in E$ and $|x_2 - x_1| < r$ and $|y_2-y_1| < r$ and $|z_2-z_1| < r$ holds $|g(\langle x_2, y_2, z_2 \rangle) - g(\langle x_1, y_1, z_1 \rangle)| < \epsilon$. For every real numbers x_1 , x_2 , y_1 , y_2 , z_1 , z_2 such that x_1 , $x_2 \in I$ and y_1 , $y_2 \in J$ and $z_1, z_2 \in K$ and $|x_2 - x_1| < r$ and $|y_2 - y_1| < r$ and $|z_2 - z_1| < r$ $\text{holds } |g(\langle x_2, y_2, z_2 \rangle) - g(\langle x_1, y_1, z_1 \rangle)| < e$. □

- (9) Let us consider a partial function f from ((the real normed space of $\mathbb{R}\times$ (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of R, and a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to R. If $f = g$, then $||f|| = |g|$.
- (10) Let us consider closed interval subsets I, J, K of \mathbb{R} , a partial function *f* from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , and a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} . Suppose *f* is continuous on $(I \times J) \times$ *K* and $f = q$. Let us consider a real number *e*. Suppose $0 \lt e$. Then there exists a real number *r* such that
	- (i) $0 < r$, and
	- (ii) for every real numbers $x_1, x_2, y_1, y_2, z_1, z_2$ such that $x_1, x_2 \in I$ and *y*₁, *y*₂ \in *J* and *z*₁, *z*₂ \in *K* and $|x_2 - x_1|$ $\lt r$ and $|y_2 - y_1|$ $\lt r$ and $|z_2 - z_1| < r$ holds $||g|(\langle x_2, y_2, z_2 \rangle) - |g|(\langle x_1, y_1, z_1 \rangle)| < \epsilon$.

The theorem is a consequence of (9) and (8).

2. Properties on the Projective Function of a Three Variable FUNCTION

Now we state the propositions:

(11) Let us consider a partial function *f* from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and elements x, y of R. Suppose f is continuous on dom f and $f = g$. Then $\text{ProjPMap1}(g, \langle x, y \rangle)$ is continuous.

PROOF: For every real number z_0 such that $z_0 \in \text{dom}(\text{ProjPMap1}(g, \{x,$ *y*^{*j*})) holds ProjPMap1 $(g, \langle x, y \rangle)$ is continuous in z_0 by [\[13,](#page-32-9) (4)]. \Box

(12) Let us consider a partial function f from ((the real normed space of $\mathbb{R}\times$ (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , a partial function p_2 from (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , and an element z of \mathbb{R} . Suppose f is continuous on dom *f* and $f = g$ and $p_2 = \text{ProjPMap2}(g, z)$. Then p_2 is continuous on dom *p*2.

PROOF: For every point x_4 of (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) such that $x_4 \in \text{dom } p_2$ holds $p_2 \restriction \text{dom } p_2$ is continuous in x_4 by [\[15,](#page-32-10) (18)], [\[14,](#page-32-11) (9)]. \square

- (13) Let us consider a partial function *f* from ((the real normed space of \mathbb{R}) *×* (the real normed space of \mathbb{R})) *×* (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and elements x, y of R. Suppose f is continuous on dom f and $f = g$. Then ProjPMap1 $(|g|, \langle x, y \rangle)$ is continuous. The theorem is a consequence of (11).
- (14) Let us consider a partial function f from ((the real normed space of $\mathbb{R}\times$ (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , a partial function p_2 from (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , and an element *z* of \mathbb{R} . Suppose *f* is continuous on dom *f* and $f = g$ and $p_2 = \text{ProjPMap2}(|g|, z)$. Then p_2 is continuous on dom p_2 . The theorem is a consequence of (12) .
- (15) Let us consider a partial function f from ((the real normed space of $\mathbb{R}\times$ (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and elements x, y of R. Suppose f is uniformly continuous on dom f and $f = g$. Then Proj $\text{PMap1}(g, \langle x, y \rangle)$ is uniformly continuous.

PROOF: For every real number r such that $0 < r$ there exists a real number *s* such that $0 < s$ and for every real numbers z_1 , z_2 such that z_1 , $z_2 \in$ dom(ProjPMap1($g, \langle x, y \rangle$)) and $|z_1 - z_2| < s$ holds $|$ (ProjPMap1($g, \langle x, \rangle$ *y***)**)(*z*₁) − (ProjPMap1(*g*, $\langle x, y \rangle$))(*z*₂)| < *r*. □

- (16) Let us consider a partial function f from ((the real normed space of $\mathbb{R}\times$ (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , a partial function p_2 from (the real normed space of \mathbb{R}) \times (the real normed space of R) to the real normed space of R, and an element *z* of R. Suppose *f* is uniformly continuous on dom *f* and $f = g$ and $p_2 = \text{ProjPMap}(q, z)$. Then p_2 is uniformly continuous on dom p_2 .
- (17) Let us consider elements x, y of \mathbb{R} , a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from

 $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and a partial function P_8 from \mathbb{R} to \mathbb{R} . Suppose f is continuous on dom *f* and $f = g$ and $P_8 = \text{Proj} \text{P}\text{Map1}(\mathbb{R}(g), \langle x, y \rangle)$. Then *P*⁸ is continuous. The theorem is a consequence of (11).

- (18) Let us consider an element z of \mathbb{R} , a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times$ \mathbb{R} \times R to R, and a partial function P_7 from (the real normed space of \mathbb{R} \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} . Suppose *f* is continuous on dom *f* and $f = g$ and $P_7 = \text{ProjPMap2}(\overline{\mathbb{R}}(g), z)$. Then P_7 is continuous on dom P_7 . The theorem is a consequence of (12).
- (19) Let us consider elements x, y of R, a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and a partial function P_8 from \mathbb{R} to \mathbb{R} . Suppose f is continuous on dom *f* and $f = g$ and $P_8 = \text{ProjPMap1}(\mathbb{R}(g), \langle x, y \rangle)$. Then P_8 is continuous. The theorem is a consequence of (13) .
- (20) Let us consider an element z of \mathbb{R} , a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times$ \mathbb{R} \times R to R, and a partial function P_7 from (the real normed space of R) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} . Suppose f is continuous on dom *f* and $f = g$ and $P_7 = \text{Proj} \text{PMap2}(|\overline{R}(g)|, z)$. Then P_7 is continuous on dom P_7 . The theorem is a consequence of (14) .

3. Integral of Continuous Three Variable Function

Let us consider subsets *I*, *J* of R, a non empty, closed interval subset *K* of R, elements x, y of R, a partial function f from ((the real normed space of R) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of R, a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to R, and a partial function P_8 from $\mathbb R$ to $\mathbb R$. Now we state the propositions:

- (21) Suppose $x \in I$ and $y \in J$ and dom $f = (I \times J) \times K$ and f is continuous on $(I \times J) \times K$ and $f = g$ and $P_8 = \text{ProjPMap1}(\overline{\mathbb{R}}(g), \langle x, y \rangle)$. Then
	- (i) P_8 ^K is bounded, and
	- (ii) P_8 is integrable on K .

The theorem is a consequence of (17).

(22) Suppose $x \in I$ and $y \in J$ and dom $f = (I \times J) \times K$ and f is continuous on $(I \times J) \times K$ and $f = g$ and $P_8 = \text{ProjPMap1}(\overline{\mathbb{R}}(g), \langle x, y \rangle)$. Then

(i) *P*⁸ is integrable on L-Meas, and

(ii)
$$
\int_K P_8(x)dx = \int P_8 dL
$$
-Meas, and
\n(iii) $\int_K P_8(x)dx = \int \text{ProjPMap1}(\overline{\mathbb{R}}(g), \langle x, y \rangle) dL$ -Meas, and
\n(iv) $\int_K P_8(x)dx = (\text{Integral2}(L\text{-Meas}, \overline{\mathbb{R}}(g)))(\langle x, y \rangle).$

The theorem is a consequence of (21).

- (23) Let us consider non empty, closed interval subsets I, J of \mathbb{R} , a subset *K* of \mathbb{R} , an element *z* of \mathbb{R} , a partial function *f* from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times$ R to R, and a partial function P_9 from R \times R to R. Suppose $z \in K$ and $dom f = (I \times J) \times K$ and f is continuous on $(I \times J) \times K$ and $f = g$ and $P_9 = \text{ProjPMap2}(\overline{\mathbb{R}}(g), z)$. Then
	- (i) *P*⁹ is integrable on ProdMeas(L-Meas*,* L-Meas), and
	- (i) $\int P_9 d$ ProdMeas(L-Meas, L-Meas) = \int ProjPMap2($\overline{\mathbb{R}}(g)$, *z*) d ProdMeas(L-Meas, L-Meas), and
	- (iii) $\int P_9 d$ ProdMeas(L-Meas, L-Meas) = $(Integral1(ProduMeas(L-Meas, L-Meas), \overline{\mathbb{R}}(g)))(z).$

The theorem is a consequence of (18).

- (24) Let us consider subsets I, J of \mathbb{R} , a non empty, closed interval subset *K* of \mathbb{R} , elements *x*, *y* of \mathbb{R} , a partial function *f* from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to R, and a partial function P_8 from ℝ to ℝ. Suppose $x \in I$ and $y \in J$ and $dom f = (I \times J) \times K$ and f is continuous on $(I \times J) \times K$ and $f = g$ and $P_8 = \text{ProjPMap1}(|\overline{\mathbb{R}}(g)|, \langle x, y \rangle)$. Then
	- (i) P_8 ^{\upharpoonright}*K* is bounded, and
	- (ii) P_8 is integrable on K .

The theorem is a consequence of (19).

(25) Let us consider subsets I, J of \mathbb{R} , a non empty, closed interval subset *K* of R, elements *x*, *y* of R, a partial function *f* from ((the real normed space of $\mathbb{R}\times$ (the real normed space of $\mathbb{R}\times$) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , a partial function P_8 from $\mathbb R$ to $\mathbb R$, and an element E of L-Field. Suppose $x \in I$ and $y \in J$ and dom $f = (I \times J) \times K$ and f is continuous on $(I \times J)$ $J) \times K$ and $f = g$ and $P_8 = \text{ProjPMap1}(\vert \overline{\mathbb{R}}(g) \vert, \langle x, y \rangle)$ and $E = K$. Then *P*⁸ is *E*-measurable. The theorem is a consequence of (24).

- (26) Let us consider subsets I, J of \mathbb{R} , a non empty, closed interval subset *K* of \mathbb{R} , elements *x*, *y* of \mathbb{R} , a partial function *f* from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to R, and a partial function P_8 from R to R. Suppose $x \in I$ and $y \in J$ and $dom f = (I \times J) \times K$ and f is continuous on $(I \times J) \times K$ and $f = g$ and $P_8 = \text{ProjPMap1}(\overline{\mathbb{R}}(g), \langle x, y \rangle)$. Then
	- (i) P_8 is integrable on L-Meas, and

(ii)
$$
\int_{K} P_8(x)dx = \int P_8 dL
$$
-Meas, and
(iii) $\int_{K} P_8(x)dx = \int \text{ProjPMap1}(|\overline{\mathbb{R}}(g)|, \langle x, y \rangle) dL$ -Meas, and
(iv) $\int_{K} P_8(x)dx = (\text{Integral2}(L-Meas, |\overline{\mathbb{R}}(g)|))(\langle x, y \rangle).$

The theorem is a consequence of (24).

- (27) Let us consider non empty, closed interval subsets I, J of \mathbb{R} , a subset K of \mathbb{R} , an element z of \mathbb{R} , a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times$ \mathbb{R} \times R to R, a partial function P_9 from $\mathbb{R} \times \mathbb{R}$ to R, and an element *E* of σ (MeasRect(L-Field, L-Field)). Suppose $z \in K$ and dom $f = (I \times I)$ $J) \times K$ and f is continuous on $(I \times J) \times K$ and $f = g$ and $P_9 =$ ProjPMap2($|\overline{\mathbb{R}}(g)|, z$) and $E = I \times J$. Then P_9 is *E*-measurable. The theorem is a consequence of (20).
- (28) Let us consider non empty, closed interval subsets I, J of \mathbb{R} , a subset *K* of \mathbb{R} , an element *z* of \mathbb{R} , a partial function *f* from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times$ R to R, and a partial function P_9 from R $× \mathbb{R}$ to R. Suppose $z ∈ K$ and $dom f = (I \times J) \times K$ and f is continuous on $(I \times J) \times K$ and $f = g$ and $P_9 = \text{ProjPMap2}(|\overline{R}(g)|, z)$. Then
	- (i) *P*⁹ is integrable on ProdMeas(L-Meas*,* L-Meas), and
	- (i) $\int P_9 d$ ProdMeas(L-Meas, L-Meas) = \int ProjPMap2($|\overline{\mathbb{R}}(g)|, z$) d ProdMeas(L-Meas, L-Meas), and

 (iii) $\int P_9 d$ ProdMeas(L-Meas, L-Meas) = $(Integral1(ProduMeas(L-Meas, L-Meas), |\mathbb{R}(q)|))(z).$

The theorem is a consequence of (20).

(29) Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of R, a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to R, and an element *E* of *σ*(MeasRect(*σ*(MeasRect(L-Field*,* L-Field))*,* L-Field)). Suppose (*I × J*) *×* $K =$ dom *f* and *f* is continuous on $(I \times J) \times K$ and $f = g$ and $E = (I \times I)$ $J \times K$. Then *g* is *E*-measurable. PROOF: For every real number *r*, $E \cap \text{LE-dom}(g, r) \in \sigma(\text{MeasRect}(\sigma(\text{Meas}$ Rect(L-Field*,* L-Field))*,* L-Field)).

Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , elements *x*, *y* of R, a partial function *f* from ((the real normed space of R) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of R, a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to R, and a real number *e*. Now we state the propositions:

- (30) Suppose $(I \times J) \times K =$ dom *f* and *f* is continuous on $(I \times J) \times K$ and $f = q$. Then suppose $0 \leq e$. Then there exists a real number *r* such that
	- (i) 0 \lt r, and
	- (ii) for every elements u_1, u_2 of $\mathbb{R} \times \mathbb{R}$ and for every real numbers x_1, y_1 , *x*₂, *y*₂ such that $u_1 = \langle x_1, y_1 \rangle$ and $u_2 = \langle x_2, y_2 \rangle$ and $|x_2 - x_1| < r$ and *|y*2*−y*1*| < r* and *u*1, *u*² *∈ I ×J* for every element *z* of R such that *z ∈* K holds $|$ (ProjPMap1($|\overline{\mathbb{R}}(g)|, u_2$))(*z*)*–*(ProjPMap1($|\overline{\mathbb{R}}(g)|, u_1$))(*z*)| < *e*.

PROOF: For every element x of $\mathbb{R} \times \mathbb{R}$ and for every element y of \mathbb{R} such that $x \in I \times J$ and $y \in K$ holds $(ProjPMap1(|\overline{R}(g)|, x))(y) = |\overline{R}(g)|(x, y)$ and $\mathbb{R}(g)(x,y) = |g|(\langle x, y \rangle)$. Consider r being a real number such that $0 < r$ and for every real numbers $x_1, x_2, y_1, y_2, z_1, z_2$ such that $x_1, x_2 \in I$ and $y_1, y_2 \in J$ and $z_1, z_2 \in K$ and $|x_2 - x_1| < r$ and $|y_2 - y_1| < r$ and $|z_2 - z_1| < r$ holds $||g|(\langle x_2, y_2, z_2 \rangle) - |g|(\langle x_1, y_1, z_1 \rangle)| < e$.

- (31) Suppose $(I \times J) \times K =$ dom f and f is continuous on $(I \times J) \times K$ and $f = g$. Then suppose $0 \lt e$. Then there exists a real number *r* such that
	- (i) 0 $<$ r , and
	- (ii) for every elements u_1, u_2 of $\mathbb{R} \times \mathbb{R}$ and for every real numbers x_1, y_1 , *x*₂, *y*₂ such that $u_1 = \langle x_1, y_1 \rangle$ and $u_2 = \langle x_2, y_2 \rangle$ and $|x_2 - x_1| < r$ and *|y*2*−y*1*| < r* and *u*1, *u*² *∈ I ×J* for every element *z* of R such that *z ∈*

K holds $|({\rm ProjPMap1}(\overline{\mathbb{R}}(q), u_2))(z) - ({\rm ProjPMap1}(\overline{\mathbb{R}}(q), u_1))(z)|$ *e*.

The theorem is a consequence of (8).

- (32) Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , and a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} . Suppose $(I \times J) \times K = \text{dom } f$ and f is continuous on $(I \times J) \times K$ and $f = g$. Then
	- (i) Integral2(L-Meas, $|\overline{\mathbb{R}}(g)|$) is a function from $\mathbb{R} \times \mathbb{R}$ into \mathbb{R} , and
	- (ii) Integral2(L-Meas, $|\overline{\mathbb{R}}(q)|$) $|(I \times J)$ is a partial function from $\mathbb{R} \times \mathbb{R}$ to R, and
	- (iii) Integral2(L-Meas, $\overline{\mathbb{R}}(q)$) is a function from $\mathbb{R} \times \mathbb{R}$ into \mathbb{R} , and
	- (iv) Integral2(L-Meas, $\overline{\mathbb{R}}(g)$))($I \times J$) is a partial function from $\mathbb{R} \times \mathbb{R}$ to R.

The theorem is a consequence of (26) and (22).

Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function *f* from ((the real normed space of $\mathbb{R}\times$) (the real normed space of $\mathbb{R}\times$)) (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and a partial function F_4 from (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} . Now we state the propositions:

- (33) Suppose $(I \times J) \times K =$ dom f and f is continuous on $(I \times J) \times K$ and $f = g$ and $F_4 = \text{Integral2}(L\text{-Meas}, |\overline{R}(g)|)[(I \times J)]$. Then F_4 is uniformly continuous on $I \times J$. The theorem is a consequence of (30), (19), and (24).
- (34) Suppose $(I \times J) \times K = \text{dom } f$ and *f* is continuous on $(I \times J) \times K$ and $f = g$ and $F_4 = \text{Integral2}(L\text{-Meas}, \overline{R}(g))[(I \times J)]$. Then F_4 is uniformly continuous on $I \times J$. The theorem is a consequence of (31) , (17) , (21) , and (22).
- (35) Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , and a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} . Suppose $(I \times J) \times K = \text{dom } f$ and *f* is continuous on $(I \times J) \times K$ and $f = g$. Then
	- (i) Integral1(ProdMeas(L-Meas, L-Meas), $|\overline{\mathbb{R}}(g)|$) is a function from \mathbb{R} into R, and
	- (ii) Integral1(ProdMeas(L-Meas, L-Meas), $|\mathbb{R}(g)|$) $|K$ is a partial function from R to R, and
- (iii) Integral1(ProdMeas(L-Meas, L-Meas), $\overline{\mathbb{R}}(q)$) is a function from $\mathbb R$ into R, and
- (iv) Integral1(ProdMeas(L-Meas, L-Meas), $\overline{\mathbb{R}}(q)$)*K* is a partial function from $\mathbb R$ to $\mathbb R$.

The theorem is a consequence of (20) , (28) , (18) , and (23) .

Let us consider non empty, closed interval subsets *I*, *J*, *K* of R, a partial function *f* from ((the real normed space of $\mathbb{R}\times$) (the real normed space of $\mathbb{R}\times$)) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function g from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and a partial function G_3 from \mathbb{R} to \mathbb{R} . Now we state the propositions:

(36) Suppose $(I \times J) \times K =$ dom *f* and *f* is continuous on $(I \times J) \times K$ and $f = g$ and $G_3 = \text{Integral}(ProdMeas(L-Meas, L-Meas), |\overline{R}(g)|)[K]$. Then G_3 is continuous.

PROOF: Consider *a*, *b* being real numbers such that $I = [a, b]$. Consider *c*, *d* being real numbers such that $J = [c, d]$. For every real number *e* such that $0 < e$ there exists a real number r such that $0 < r$ and for every real numbers z_1 , z_2 such that $|z_2 - z_1| < r$ and $z_1, z_2 \in K$ for every real numbers *x*, *y* such that $x \in I$ and $y \in J$ holds $||g||(x, y,$ $|z_2\rangle$) $-|q|(\langle x, y, z_1 \rangle)| < e$. Set $R_{11} = \overline{\mathbb{R}}(q)$. For every elements *x*, *y*, *z* of \mathbb{R} such that $x \in I$ and $y \in J$ and $z \in K$ holds $(ProjPMap2(|R_{11}|, z))(x, y) =$ $|R_{11}|(\langle x, y \rangle, z)$ and $|R_{11}|(\langle x, y \rangle, z) = |g(\langle x, y, z \rangle)|$ and $|R_{11}|(\langle x, y \rangle, z) =$ $|g|(\langle x, y, z \rangle)$. For every real number *e* such that $0 < e$ there exists a real number *r* such that $0 < r$ and for every elements z_1 , z_2 of R such that $|z_2 - z_1| < r$ and $z_1, z_2 \in K$ for every elements x, y of R such that $x \in I$ and $y \in J$ holds $|$ (ProjPMap1(ProjPMap2($|R_{11}|, z_2|, x$))(y) – $(ProjPMap1(ProjPMap2(|R_{11}|, z_1), x))(y)| < e$. For every real numbers *z*₀, *r* such that $z_0 \in K$ and $0 < r$ there exists a real number *s* such that $0 < s$ and for every real number z_1 such that $z_1 \in K$ and $|z_1 - z_0| < s$ holds $|G_3(z_1) - G_3(z_0)| < r$. □

(37) Suppose $(I \times J) \times K =$ dom f and f is continuous on $(I \times J) \times K$ and $f = g$ and G_3 = Integral1(ProdMeas(L-Meas, L-Meas), $\mathbb{R}(g)$)*K*. Then G_3 is continuous.

PROOF: Consider *a*, *b* being real numbers such that $I = [a, b]$. Consider *c*, *d* being real numbers such that $J = [c, d]$. For every real number *e* such that $0 \leq e$ there exists a real number r such that $0 \leq r$ and for every real numbers z_1 , z_2 such that $|z_2 - z_1| < r$ and $z_1, z_2 \in K$ for every real numbers *x*, *y* such that $x \in I$ and $y \in J$ holds $|g(\langle x, y, z_2 \rangle) - g(\langle x, y, z_2 \rangle) - g(\langle x, y, z_2 \rangle)$ $|z_1\rangle$) $\langle e, \text{Set } R_{11} = \overline{\mathbb{R}}(g)$. For every elements *x*, *y*, *z* of \mathbb{R} such that $x \in I$ and $y \in J$ and $z \in K$ holds $(ProjPMap2(R_{11}, z))(x, y) = R_{11}(\langle x, y \rangle, z)$

and $R_{11}(\langle x, y \rangle, z) = g(\langle x, y, z \rangle)$ and $R_{11}(\langle x, y \rangle, z) = g(\langle x, y, z \rangle)$.

For every real number e such that $0 \leq e$ there exists a real number r such that $0 < r$ and for every elements z_1 , z_2 of R such that $|z_2 - z_1| < r$ and $z_1, z_2 \in K$ for every elements x, y of \mathbb{R} such that $x \in I$ and $y \in J$ holds *|*(ProjPMap1(ProjPMap2(*R*11*, z*2)*, x*))(*y*)*−*(ProjPMap1(ProjPMap2(*R*11*,* (z_1) , (x))(y)| $\lt e$. For every real numbers z_0 , *r* such that $z_0 \in K$ and $0 \lt r$ there exists a real number *s* such that $0 < s$ and for every real number z_1 such that $z_1 \in K$ and $|z_1 - z_0| < s$ holds $|G_3(z_1) - G_3(z_0)| < r$. □

Let us consider non empty, closed interval subsets *I*, *J*, *K* of R, a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of $(\mathbb{R}) \times$ (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , and a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} . Now we state the propositions:

- (38) Suppose $(I \times J) \times K =$ dom *f* and *f* is continuous on $(I \times J) \times K$ and $f = g$. Then Integral 2(L-Meas, $|\overline{R}(g)|$) is non-negative. The theorem is a consequence of (24) and (25).
- (39) Suppose $(I \times J) \times K =$ dom *f* and *f* is continuous on $(I \times J) \times K$ and $f = g$. Then Integral1(ProdMeas(L-Meas, L-Meas), $\mathbb{R}(g)$) is nonnegative. The theorem is a consequence of (20) and (27).
- (40) Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , an element *u* of $\mathbb{R} \times \mathbb{R}$, a partial function *f* from ((the real normed space of $\mathbb{R} \times$) (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of R, and a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to R. Suppose $(I \times J) \times K =$ dom *f* and *f* is continuous on $(I \times J) \times K$ and $f = g$. Then $(Integral2(L-Meas, |\mathbb{R}(g)|))(u) < +\infty$. The theorem is a consequence of (32).
- (41) Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , an element *z* of R, a partial function *f* from ((the real normed space of R) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of R, and a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to R. Suppose $(I \times J) \times K =$ dom *f* and *f* is continuous on $(I \times J) \times K$ and $f = g$. Then $(Integral1(ProduMeas(L-Meas, L-Meas), |\overline{R}(g)|)(z) < +\infty$. The theorem is a consequence of (35).
- (42) Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of R, a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to R, and an element *E* of σ (MeasRect(L-Field, L-Field)). Suppose $(I \times J) \times K = \text{dom } f$ and *f* is continuous on $(I \times J) \times K$ and $f = g$. Then Integral2(L-Meas, $|\mathbb{R}(g)|$) is *E*-measurable.

PROOF: Set $F = \text{Integral2}(L\text{-Meas}, |\overline{R}(g)|)$. Set $I_1 = I \times J$. Reconsider *G* = Integral2(L-Meas, $\vert \overline{\mathbb{R}}(g) \vert \vert I_1$ as a partial function from $\mathbb{R} \times \mathbb{R}$ to \mathbb{R} . Reconsider $R_4 = \text{Integral2}(L\text{-Meas}, \overline{R}(g))$ I_1 as a partial function from $R \times I_2$ R to R. Reconsider $G_1 = G$ as a partial function from (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} .

Reconsider $R_6 = R_4$ as a partial function from (the real normed space of \mathbb{R} \times (the real normed space of \mathbb{R}) to the real normed space of R. G_1 is uniformly continuous on $I \times J$. R_6 is uniformly continuous on $I \times J$. F is non-negative. Reconsider $H = \mathbb{R} \times \mathbb{R}$ as an element of *σ*(MeasRect(L-Field*,* L-Field)). For every real number *r*, *H ∩* LE-dom(*F*, *r*) \in *σ*(MeasRect(L-Field, L-Field)). □

Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function *f* from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , and a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} . Now we state the propositions:

- (43) Suppose $(I \times J) \times K =$ dom f and f is continuous on $(I \times J) \times K$ and $f = g$. Then
	- (i) *g* is integrable on ProdMeas(ProdMeas(L-Meas*,* L-Meas)*,* L-Meas), and
	- (ii) for every element *u* of $\mathbb{R} \times \mathbb{R}$, ProjPMap1($\overline{\mathbb{R}}(q)$ *, u*) is integrable on L-Meas, and
	- (iii) for every element *U* of σ (MeasRect(L-Field, L-Field)), Integral2(L-Meas, $\overline{\mathbb{R}}(g)$) is *U*-measurable, and
	- (iv) Integral2(L-Meas, $\overline{\mathbb{R}}(g)$) is integrable on ProdMeas(L-Meas, L-Meas), and
	- (v) $\int g d$ ProdMeas(ProdMeas(L-Meas, L-Meas)*,* L-Meas) = \int Integral2(L-Meas, $\overline{\mathbb{R}}(g)$) d ProdMeas(L-Meas, L-Meas).

PROOF: Set $F = \text{Integral2}(L\text{-Meas}, |\overline{R}(q)|)$. Set $I_1 = I \times J$. Reconsider $G =$ Integral2(L-Meas, $|\overline{\mathbb{R}}(g)|$) $|I_1|$ as a partial function from $\mathbb{R} \times \mathbb{R}$ to \mathbb{R} . Reconsider $R_4 = \text{Integral2}(L\text{-Meas}, \overline{R}(g))|I_1$ as a partial function from $R \times R$ to R. Reconsider $A_1 = I \times J$ as an element of σ (MeasRect(L-Field, L-Field)). Reconsider $G_1 = G$ as a partial function from (the real normed space of $\mathbb{R}\times$ (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} . Reconsider $R_6 = R_4$ as a partial function from (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} . G_1 is uniformly continuous on $I \times J$. R_6 is uniformly continuous on $I \times J$. Reconsider $N_1 = (\mathbb{R} \times$ \mathbb{R}) \ A_1 as an element of σ (MeasRect(L-Field, L-Field)). *F* is non-negative. Reconsider $H = \mathbb{R} \times \mathbb{R}$ as an element of σ (MeasRect(L-Field, L-Field)).

F is *H*-measurable. Set $F_1 = F\vert N_1$. For every object *x* such that $x \in$ dom F_1 holds $F_1(x) = 0$. Reconsider $K_1 = (I \times J) \times K$ as an element of *σ*(MeasRect(*σ*(MeasRect(L-Field*,* L-Field))*,* L-Field)). *g* is *K*1-measurable. For every element *x* of $\mathbb{R} \times \mathbb{R}$, (Integral2(L-Meas, $|\mathbb{R}(q)|$))(*x*) $\lt +\infty$.

- (44) Suppose $(I \times J) \times K =$ dom *f* and *f* is continuous on $(I \times J) \times K$ and $f = g$. Then
	- (i) for every element *z* of \mathbb{R} , ProjPMap2($\overline{\mathbb{R}}(q), z$) is integrable on ProdMeas(L-Meas*,* L-Meas), and
	- (ii) for every element *V* of L-Field, Integral1(ProdMeas(L-Meas*,* L-Meas)*,* $\overline{\mathbb{R}}(q)$) is *V*-measurable, and
	- (iii) Integral1(ProdMeas(L-Meas, L-Meas), $\overline{\mathbb{R}}(g)$) is integrable on L-Meas, and
	- (iv) $\int g d$ ProdMeas(ProdMeas(L-Meas, L-Meas)*,* L-Meas) = \int Integral1(ProdMeas(L-Meas, L-Meas), $\overline{\mathbb{R}}(g)$) d L-Meas.

The theorem is a consequence of (43) and (41).

(45) Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function *f* from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , an element *x* of \mathbb{R} , and an element *E* of L-Field. Suppose $(I \times J) \times K =$ dom *f* and *f* is continuous on $(I \times J) \times K$ *K* and $f = g$ and $x \in I$. Then ProjPMap1(|Integral2(L-Meas, $\overline{\mathbb{R}}(g)$)|*, x*) is *E*-measurable.

PROOF: Set F_4 = Integral2(L-Meas, $\overline{\mathbb{R}}(q)$). Reconsider G_4 = Integral2(L-Meas, $\overline{\mathbb{R}}(g)$ as a function from $\mathbb{R} \times \mathbb{R}$ into \mathbb{R} . Reconsider $G = G_4 \mid (I \times$ *J*) as a partial function from $\mathbb{R} \times \mathbb{R}$ to R. Reconsider $F = G$ as a partial function from (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} . *F* is uniformly continuous on $I \times J$. Set $F_5 = \text{ProjPMap1}(|F_4|, x)$. Set $L_0 = F_5 | J$. For every element *t* of R such that *t* ∈ *J* holds $0 \le L_0(t)$. Reconsider *H* = ℝ as an element of L-Field. For every real number *r*, *H* ∩ LE-dom(F_5 , *r*) \in L-Field. \Box

- (46) Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , and a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} . Suppose $(I \times J) \times K = \text{dom } f$ and *f* is continuous on $(I \times J) \times K$ and $f = g$. Then
	- (i) for every element x of \mathbb{R} , (Integral2(L-Meas, Integral2(L-Meas, $\overline{\mathbb{R}}(q))|f(x)<+\infty$, and

(ii) for every element *x* of R, ProjPMap1(Integral2(L-Meas, $\overline{\mathbb{R}}(g)$), *x*) is integrable on L-Meas.

PROOF: Reconsider $G_4 = \text{Integral2}(L\text{-Meas}, \overline{R}(g))$ as a function from $R \times$ R into R. Reconsider $G = G_4 \mid (I \times J)$ as a partial function from $\mathbb{R} \times \mathbb{R}$ to R. Reconsider $F = G$ as a partial function from (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of R. *F* is uniformly continuous on $I \times J$. For every element x of R, $(\text{Integral2}(L-Meas, \text{[Integral2}(L-Meas, \mathbb{R}(q))|))(x) < +\infty$ by [\[6,](#page-32-12) (5)], [\[7,](#page-32-13) (75) . Integral2(L-Meas, $\mathbb{R}(g)$) is integrable on ProdMeas(L-Meas, L-Meas). \Box

(47) Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function *f* from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , an element *y* of \mathbb{R} , and an element *E* of L-Field. Suppose $(I \times J) \times K = \text{dom } f$ and f is continuous on $(I \times J) \times$ *K* and $f = g$ and $y \in J$. Then ProjPMap2(|Integral2(L-Meas, $\mathbb{R}(g)$)|, *y*) is *E*-measurable.

PROOF: Set F_4 = Integral2(L-Meas, $\overline{\mathbb{R}}(g)$). Reconsider G_4 = Integral2(L-Meas, $\overline{\mathbb{R}}(g)$ as a function from $\mathbb{R} \times \mathbb{R}$ into \mathbb{R} . Reconsider $G = G_4 \mid (I \times$ *J*) as a partial function from $\mathbb{R} \times \mathbb{R}$ to \mathbb{R} . Reconsider $F = G$ as a partial function from (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} . *F* is uniformly continuous on $I \times J$. Set F_6 = ProjPMap2(| F_4 |, y). Set $L_0 = F_6$ |*I*. For every element *t* of R such that $t \in I$ holds $0 \le L_0(t)$. For every element r of $\mathbb{R}, 0_{\overline{\mathbb{R}}} \le F_6(r)$. Reconsider $H = \mathbb{R}$ as an element of L-Field. For every real number *r*, *H* ∩ LE-dom $(F_6, r) \in$ L-Field. \Box

- (48) Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function *f* from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , and a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} . Suppose $(I \times J) \times K = \text{dom } f$ and f is continuous on $(I \times J) \times K$ and $f = g$. Then
	- (i) for every element *y* of R, (Integral1(L-Meas*, |*Integral2(L-Meas*,* $\overline{\mathbb{R}}(q))|)(y) < +\infty$, and
	- (ii) for every element *y* of R, ProjPMap2(Integral2(L-Meas, $\overline{\mathbb{R}}(g)$), *y*) is integrable on L-Meas.

PROOF: Reconsider G_4 = Integral2(L-Meas, $\mathbb{R}(g)$) as a function from $\mathbb{R} \times$ R into R. Reconsider $G = G_4 \mid (I \times J)$ as a partial function from $\mathbb{R} \times \mathbb{R}$ to R. Reconsider $F = G$ as a partial function from (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of R. *F* is uniformly continuous on $I \times J$. For every element *y* of R, $(Integral1(L-Meas, |Integral2(L-Meas, \overline{R}(g))|)(y) < +\infty$. Integral2(L- $Meas, \overline{\mathbb{R}}(q)$ is integrable on ProdMeas(L-Meas, L-Meas). \Box

(49) Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of R, a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to R, and an element *E* of σ (MeasRect(L-Field, L-Field)). Suppose $(I \times J) \times K =$ dom *f* and *f* is continuous on $(I \times J) \times K$ and $f = g$. Then Integral 2(L-Meas, $|\overline{\mathbb{R}}(g)|$) is *E*-measurable.

PROOF: Set $F = \text{Integral2}(L\text{-Meas}, |\mathbb{R}(g)|)$. Set $F_0 = F|(I \times J)$. Reconsider $G = F_0$ as a partial function from $\mathbb{R} \times \mathbb{R}$ to \mathbb{R} . Reconsider $G_1 = G$ as a partial function from (the real normed space of R)*×*(the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} . G_1 is uniformly continuous on $I \times J$. Reconsider $R_2 = \mathbb{R} \times \mathbb{R}$ as an element of σ (MeasRect(L-Field, L-Field)). *F* is non-negative. For every real number *r*, $R_2 \cap \text{LE-dom}(F, r) \in \sigma(\text{MeasRect}(L Field, L-Field)$. \square

(50) Let us consider non empty, closed interval subsets *I*, *J*, *K* of R, a partial function *f* from ((the real normed space of \mathbb{R}) × (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and an element *E* of L-Field. Suppose $(I \times J) \times K =$ dom *f* and *f* is continuous on $(I \times J) \times K$ and $f = g$. Then Integral1(ProdMeas(L-Meas, L-Meas), $|\overline{R}(g)|$) is *E*-measurable.

PROOF: Set $F =$ Integral1(ProdMeas(L-Meas, L-Meas), $\mathbb{R}(q)$). Set $F_0 =$ *F*^{K}. Reconsider *G* = *F*₀ as a partial function from R to R. *G*^{K} is bounded and *G* is integrable on *K*. Reconsider $R = \mathbb{R}$ as an element of L-Field. *F* is non-negative. For every real number *r*, $R \cap \text{LE-down}(F, r) \in$ L -Field. \Box

- (51) Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function *f* from ((the real normed space of \mathbb{R}) × (the real normed space of \mathbb{R})) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and an element *x* of \mathbb{R} . Suppose $(I \times$ $J \times K =$ dom f and f is continuous on $(I \times J) \times K$ and $f = g$. Then
	- (i) ProjPMap1(Integral2(L-Meas, $\overline{\mathbb{R}}(g)$), x) is a function from $\mathbb R$ into $\mathbb R$, and
	- (ii) ProjPMap1(*|*Integral2(L-Meas, $\mathbb{R}(q)$ *)|, x)* is a function from \mathbb{R} into R.

The theorem is a consequence of (32).

- (52) Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of $(\mathbb{R})\times$ (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and an element *y* of \mathbb{R} . Suppose $(I \times$ $J \times K =$ dom f and f is continuous on $(I \times J) \times K$ and $f = g$. Then
	- (i) ProjPMap2(Integral2(L-Meas, $\overline{\mathbb{R}}(g)$), y) is a function from $\mathbb R$ into $\mathbb R$, and
	- (ii) ProjPMap2(*|*Integral2(L-Meas, $\mathbb{R}(q)$ *)|, y*) is a function from \mathbb{R} into R.

The theorem is a consequence of (32).

- (53) Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of R, and a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to R. Suppose $(I \times$ $J \times K =$ dom *f* and *f* is continuous on $(I \times J) \times K$ and $f = g$. Then $|Integral1(ProduMeas(L-Meas, L-Meas), \mathbb{R}(q))|$ is a function from $\mathbb R$ into $\mathbb R$. The theorem is a consequence of (35).
- (54) Let us consider an element *x* of R, non empty, closed interval subsets *I*, *J*, *K* of R, and a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to R. Suppose $(I \times J) \times K = \text{dom } g$. Then $\int \text{ProjPMap1}(\text{Integral2}(L\text{-Meas}, \overline{R}(g)), x) \mid \mathbb{R} \setminus$ $J \, \mathrm{d}$ L-Meas = 0.
- (55) Let us consider an element y of \mathbb{R} , non empty, closed interval subsets *I*, *J*, *K* of R, and a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to R. Suppose $(I \times J) \times K = \text{dom } g$. Then $\int \text{ProjPMap2}(\text{Integral2}(L\text{-Meas}, \overline{\mathbb{R}}(g)), y) \upharpoonright \mathbb{R} \setminus$ $I d$ L-Meas = 0.
- (56) Let us consider non empty, closed interval subsets *I*, *J*, *K* of R, and a partial function *q* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} . Suppose $(I \times J) \times K = \text{dom } q$. Then \int Integral1(ProdMeas(L-Meas, L-Meas), $\overline{\mathbb{R}}(g)$) $\vert \mathbb{R} \setminus K$ d L-Meas = 0.
- (57) Let us consider an element x of \mathbb{R} , non empty, closed interval subsets I, J , *K* of \mathbb{R} , a partial function *f* from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and a partial function P_1 from $\mathbb R$ to $\mathbb R$. Suppose $x \in I$ and $(I \times J) \times K =$ dom f and f is continuous on $(I \times J) \times K$ and $f = g$ and $P_1 = \text{ProjPMap1}(\text{Integral2}(L\text{-Meas}, \overline{R}(g)), x) \upharpoonright J$. Then P_1 is continuous. The theorem is a consequence of (32) and (34) .
- (58) Let us consider an element *y* of \mathbb{R} , non empty, closed interval subsets I, J , K of R, a partial function f from ((the real normed space of $\mathbb{R}\times$) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of R, a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to R, and a partial function P_2

from $\mathbb R$ to $\mathbb R$. Suppose $y \in J$ and $(I \times J) \times K =$ dom f and f is continuous on $(I \times J) \times K$ and $f = g$ and $P_2 = \text{Proj} \text{PMap2}(\text{Integral2}(L\text{-Meas}, \overline{\mathbb{R}}(g)), y)[I].$ Then P_2 is continuous. The theorem is a consequence of (32) and (34) .

- (59) Let us consider an element x of \mathbb{R} , non empty, closed interval subsets I, J , *K* of \mathbb{R} , a partial function *f* from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and a partial function P_1 from $\mathbb R$ to $\mathbb R$. Suppose $x \in I$ and $(I \times J) \times K =$ dom f and f is continuous on $(I \times J) \times K$ and $f = g$ and $P_1 = \text{ProjPMap1}(\text{Integral2}(L\text{-Meas}, \overline{\mathbb{R}}(g)), x) \upharpoonright J$. Then
	- (i) $P_1 \upharpoonright J$ is bounded, and
	- (ii) P_1 is integrable on J .

The theorem is a consequence of (32) and (34).

- (60) Let us consider an element *y* of \mathbb{R} , non empty, closed interval subsets I, J , *K* of \mathbb{R} , a partial function *f* from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and a partial function P_2 from $\mathbb R$ to $\mathbb R$. Suppose $y \in J$ and $(I \times J) \times K = \text{dom } f$ and f is continuous on $(I \times J) \times K$ and $f = g$ and $P_2 = \text{Proj} \text{PMap2}(\text{Integral2}(L\text{-Meas}, \overline{R}(g)), y) | I.$ Then
	- (i) $P_2 \restriction I$ is bounded, and
	- (ii) P_2 is integrable on I .

The theorem is a consequence of (32) and (34).

- (61) Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and a partial function G_3 from \mathbb{R} to R. Suppose $(I \times J) \times K =$ dom *f* and *f* is continuous on $(I \times J) \times K$ and $f = g$ and $G_3 = \text{Integral1}(\text{ProdMeas}(L-Meas, L-Meas), \overline{\mathbb{R}}(g))$ *K*. Then
	- (i) $G_3 \restriction K$ is bounded, and
	- (ii) *G*³ is integrable on *K*.

The theorem is a consequence of (37).

(62) Let us consider an element x of \mathbb{R} , non empty, closed interval subsets I, J , K of R, a partial function f from ((the real normed space of $\mathbb{R}\times$) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and a partial function P_1 from $\mathbb R$ to $\mathbb R$. Suppose $x \in I$ and $(I \times J) \times K =$ dom f and f is continuous on $(I \times J) \times K$ and $f = g$ and $P_1 = \text{ProjPMap1}(\text{Integral2}(L\text{-Meas}, \overline{R}(g)), x) \upharpoonright J$. Then

(i) ProjPMap1(Integral2(L-Meas, $\overline{\mathbb{R}}(q)$), x)*|J* is integrable on L-Meas, and

(ii)
$$
\int_{J} P_1(x)dx = \int \text{ProjPMap1}(\text{Integral2}(L\text{-Meas}, \overline{\mathbb{R}}(g)), x) \upharpoonright J dL\text{-Meas},
$$
 and

(iii)
$$
\int_{J} P_1(x)dx = \int \text{ProjPMap1}(\text{Integral2}(L\text{-Meas}, \overline{\mathbb{R}}(g)), x) dL\text{-Meas, and}
$$

(iv)
$$
\int_{J} P_1(x)dx = (\text{Integral2}(L\text{-Meas}, \text{Integral2}(L\text{-Meas}, \overline{\mathbb{R}}(g))))(x).
$$

The theorem is a consequence of (46), (59), and (54).

(63) Let us consider an element *y* of \mathbb{R} , non empty, closed interval subsets I, J , K of R, a partial function f from ((the real normed space of $\mathbb{R}\times$) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of R, a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to R, and a partial function P_2 from $\mathbb R$ to $\mathbb R$. Suppose $y \in J$ and $(I \times J) \times K =$ dom f and f is continuous on $(I \times J) \times K$ and $f = g$ and $P_2 = \text{Proj} \text{PMap2}(\text{Integral2}(L\text{-Meas}, \overline{R}(g)), y) | I.$ Then

(i) ProjPMap2(Integral2(L-Meas,
$$
\overline{\mathbb{R}}(g)
$$
), y)|*I* is integrable on L-Meas, and

(ii)
$$
\int_{I} P_2(x) dx = \int \text{ProjPMap2}(\text{Integral2}(\text{L-Meas}, \overline{\mathbb{R}}(g)), y) \upharpoonright I d \text{L-Meas},
$$
 and

(iii)
$$
\int_{I} P_2(x)dx = \int \text{ProjPMap2}(\text{Integral2}(L\text{-Meas}, \overline{\mathbb{R}}(g)), y) dL\text{-Meas}
$$
, and
(iv) $\int_{I} P_2(x)dx = (\text{Integral1}(L\text{-Meas}, \text{Integral2}(L\text{-Meas}, \overline{\mathbb{R}}(g))))(y).$

The theorem is a consequence of (48) , (60) , and (55) .

Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function *f* from ((the real normed space of \mathbb{R}) \times (the real normed space of $(\mathbb{R}) \times$ (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , and a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} . Now we state the propositions:

- (64) Suppose $(I \times J) \times K =$ dom *f* and *f* is continuous on $(I \times J) \times K$ and $f = q$. Then
	- (i) for every element *U* of L-Field, Integral2(L-Meas*,*Integral2(L-Meas*,* $\overline{\mathbb{R}}(q)$) is *U*-measurable, and
- (ii) Integral2(L-Meas, Integral2(L-Meas, $\overline{\mathbb{R}}(q)$)) is integrable on L-Meas, and
- (iii) \int Integral2(L-Meas, $\overline{\mathbb{R}}(g)$) d ProdMeas(L-Meas, L-Meas) = \int Integral2(L-Meas, Integral2(L-Meas, $\overline{\mathbb{R}}(g)$)) d L-Meas, and
- (iv) $\int g d$ ProdMeas(ProdMeas(L-Meas, L-Meas)*,* L-Meas) = \int Integral2(L-Meas, Integral2(L-Meas, $\overline{\mathbb{R}}(g)$)) d L-Meas, and
- (v) Integral2(L-Meas, $\overline{\mathbb{R}}(g)$) \upharpoonright $(I \times J)$ is integrable on ProdMeas(L-Meas, L-Meas), and
- (vi) \int Integral2(L-Meas, $\overline{\mathbb{R}}(g)$) $\left[\left(I \times J\right)$ d ProdMeas(L-Meas, L-Meas) = \int Integral2(L-Meas, Integral2(L-Meas, $\overline{\mathbb{R}}(g)$) $\left[\left(I \times J\right)\right]$ d L-Meas.
- The theorem is a consequence of (32) , (43) , (46) , (40) , and (34) .
- (65) Suppose $(I \times J) \times K = \text{dom } f$ and *f* is continuous on $(I \times J) \times K$ and $f = g$. Then
	- (i) for every element *V* of L-Field, Integral1(L-Meas*,*Integral2(L-Meas*,* $\mathbb{R}(q)$) is *V*-measurable, and
	- (ii) Integral1(L-Meas, Integral2(L-Meas, $\overline{\mathbb{R}}(q)$)) is integrable on L-Meas, and
	- (iii) \int Integral2(L-Meas, $\overline{\mathbb{R}}(g)$) d ProdMeas(L-Meas, L-Meas) = \int Integral1(L-Meas, Integral2(L-Meas, $\overline{\mathbb{R}}(g)$)) d L-Meas, and
	- (iv) $\int g d$ ProdMeas(ProdMeas(L-Meas, L-Meas)*,* L-Meas) = \int Integral1(L-Meas, Integral2(L-Meas, $\overline{\mathbb{R}}(g)$)) d L-Meas, and
	- (v) \int Integral2(L-Meas, $\overline{\mathbb{R}}(g)$) $\left[\left(I \times J\right)$ d ProdMeas(L-Meas, L-Meas) = \int Integral1(L-Meas, Integral2(L-Meas, $\overline{\mathbb{R}}(g)$) $\left[\left(I \times J\right)\right]$ d L-Meas.

The theorem is a consequence of (32) , (43) , (48) , (40) , and (34) .

- (66) Let us consider an element x of \mathbb{R} , non empty, closed interval subsets I, J , K of R, a partial function f from ((the real normed space of $\mathbb{R}\times$) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *q* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and a partial function P_1 from $\mathbb R$ to $\mathbb R$. Suppose $x \in I$ and $(I \times J) \times K =$ dom f and f is continuous on $(I \times J) \times K$ and $f = g$ and $P_1 = \text{ProjPMap1}(\text{Integral2}(L\text{-Meas}, \overline{R}(g)))[I \times K]$ *J*)*, x*). Then
	- (i) P_1 is continuous, and
	- (ii) dom(ProjPMap1(Integral2(L-Meas, $\overline{\mathbb{R}}(q)$) $\upharpoonright (I \times J), x$)) = *J*, and
	- (iii) $P_1 \upharpoonright J$ is bounded, and
	- (iv) P_1 is integrable on J , and

(v)
$$
\int_{J} P_1(x)dx = \int \text{ProjPMap1}(\text{Integral2}(L\text{-Meas}, \overline{\mathbb{R}}(g))[(I \times J), x) dL
$$

Meas, and

- (vi) *J* $P_1(x)dx = (Integral2(L-Meas,Integral2(L-Meas,\overline{\mathbb{R}}(g))[(I \times J)))(x),$ and
- (vii) ProjPMap1(Integral2(L-Meas, $\overline{\mathbb{R}}(g)$) \upharpoonright $(I \times J)$ *, x*) is integrable on L-Meas.

The theorem is a consequence of (32) and (34).

- (67) Let us consider an element *y* of \mathbb{R} , non empty, closed interval subsets I, J , K of \mathbb{R} , a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *q* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and a partial function P_2 from $\mathbb R$ to $\mathbb R$. Suppose $y \in J$ and $(I \times J) \times K =$ dom f and f is continuous on $(I \times J) \times K$ and $f = g$ and $P_2 = \text{ProjPMap2}(\text{Integral2}(L\text{-Meas}, \overline{R}(g)))[I \times K]$ *J*)*, y*). Then
	- (i) P_2 is continuous, and
	- (ii) dom(ProjPMap2(Integral2(L-Meas, $\mathbb{R}(g)$) $\mid (I \times J), y)$) = *I*, and
	- (iii) $P_2 \upharpoonright I$ is bounded, and
	- (iv) P_2 is integrable on *I*, and

(v)
$$
\int_{I} P_2(x)dx = \int \text{ProjPMap2}(\text{Integral2}(L-Meas, \overline{\mathbb{R}}(g)) \cap (I \times J), y) dL
$$

Meas, and

- (vi) *I* $P_2(x)dx = (Integral (L-Meas,Integral2(L-Meas, \overline{R}(g))[(I \times J)))(y),$ and
- (vii) ProjPMap2(Integral2(L-Meas, $\overline{\mathbb{R}}(g)$)) $($ I \times *J*), *y*) is integrable on L-Meas.

The theorem is a consequence of (32) and (34).

- (68) Let us consider non empty, closed interval subsets I, J, K of \mathbb{R} , a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and a partial function G_8 from \mathbb{R} to \mathbb{R} . Suppose $(I \times J) \times K =$ dom *f* and *f* is continuous on $(I \times J) \times K$ and $f = g$ and G_8 = Integral2(L-Meas, Integral2(L-Meas, $\overline{\mathbb{R}}(g)$)) $(I \times J)$)*I*. Then
	- (i) dom $G_8 = I$, and
- (ii) *G*⁸ is continuous, and
- (iii) $G_8 \upharpoonright I$ is bounded, and
- (iv) G_8 is integrable on *I*, and
- (v) Integral2(L-Meas, Integral2(L-Meas, $\overline{\mathbb{R}}(g)$) $\left[\left(I \times J\right)\right]$ *I* is integrable on L-Meas, and
- (vi) \int Integral2(L-Meas, Integral2(L-Meas, $\overline{\mathbb{R}}(g)$)) $\left[\left(I \times J\right)\right]$ I d L-Meas = $\int G_8(x)dx$, and *I*
- (vii) \int Integral2(L-Meas, $\overline{\mathbb{R}}(g)$))($I \times J$) d ProdMeas(L-Meas, L-Meas) = $\int G_8(x)dx$. *I*

The theorem is a consequence of (32) and (34).

- (69) Let us consider non empty, closed interval subsets *I*, *J*, *K* of R, a partial function f from ((the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) \times (the real normed space of \mathbb{R}) to the real normed space of \mathbb{R} , a partial function *g* from $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ to \mathbb{R} , and a partial function G_7 from \mathbb{R} to \mathbb{R} . Suppose $(I \times J) \times K =$ dom *f* and *f* is continuous on $(I \times J) \times K$ and $f = g$ and G_7 = Integral1(L-Meas, Integral2(L-Meas, $\overline{\mathbb{R}}(g)$) $\left[\left(I \times J\right)\right]$ *j*. Then
	- (i) dom $G_7 = J$, and
	- (ii) *G*⁷ is continuous, and
	- (iii) $G_7 \restriction J$ is bounded, and
	- (iv) *G*⁷ is integrable on *J*, and
	- (v) Integral1(L-Meas, Integral2(L-Meas, $\overline{\mathbb{R}}(g)$) $\left[\frac{I \times J}{J}\right]$) $\left[J \text{ is integrable on}$ L-Meas, and
	- (vi) \int Integral1(L-Meas, Integral2(L-Meas, $\overline{\mathbb{R}}(g)$) \int $(I \times J)$ J d L-Meas = $\int G_7(x)dx$, and *J*
	- (vii) \int Integral2(L-Meas, $\overline{\mathbb{R}}(g)$))($I \times J$) d ProdMeas(L-Meas, L-Meas) = $\int G_7(x)dx$. *J*

The theorem is a consequence of (32) and (34).

REFERENCES

- [1] Tom M. Apostol. *Calculus*, volume II. Wiley, second edition, 1969.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. [Mizar: State-of-the-art and](http://dx.doi.org/10.1007/978-3-319-20615-8_17) [beyond.](http://dx.doi.org/10.1007/978-3-319-20615-8_17) In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3- 319-20614-1. doi[:10.1007/978-3-319-20615-8](http://dx.doi.org/10.1007/978-3-319-20615-8_17) 17.
- [3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. [The role of the Mizar Mathematical Library](https://doi.org/10.1007/s10817-017-9440-6) [for interactive proof development in Mizar.](https://doi.org/10.1007/s10817-017-9440-6) *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi[:10.1007/s10817-017-9440-6.](http://dx.doi.org/10.1007/s10817-017-9440-6)
- [4] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. [Improving real analysis in](https://doi.org/10.1007/978-3-642-35308-6_22) [Coq: A user-friendly approach to integrals and derivatives.](https://doi.org/10.1007/978-3-642-35308-6_22) In Chris Hawblitzel and Dale Miller, editors, *Certified Programs and Proofs – Second International Conference, CPP 2012, Kyoto, Japan, December 13–15, 2012. Proceedings*, volume 7679 of *Lecture Notes in Computer Science*, pages 289–304. Springer, 2012. doi[:10.1007/978-3-642-35308-6](http://dx.doi.org/10.1007/978-3-642-35308-6_22) 22.
- [5] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. [Formalization of real analysis:](https://api.semanticscholar.org/CorpusID:13018804) [A survey of proof assistants and libraries.](https://api.semanticscholar.org/CorpusID:13018804) *Mathematical Structures in Computer Science*, 26:1196–1233, 2015.
- [6] Noboru Endou. Product pre-measure. *Formalized Mathematics*, 24(**1**):69–79, 2016. doi[:10.1515/forma-2016-0006.](http://dx.doi.org/10.1515/forma-2016-0006)
- [7] Noboru Endou. Reconstruction of the one-dimensional Lebesgue measure. *Formalized Mathematics*, 28(**1**):93–104, 2020. doi[:10.2478/forma-2020-0008.](http://dx.doi.org/10.2478/forma-2020-0008)
- [8] Noboru Endou. Relationship between the Riemann and Lebesgue integrals. *Formalized Mathematics*, 29(**4**):185–199, 2021. doi[:10.2478/forma-2021-0018.](http://dx.doi.org/10.2478/forma-2021-0018)
- [9] Noboru Endou and Yasunari Shidama. Integral of continuous functions of two variables. *Formalized Mathematics*, 31(1):309–324, 2023. doi[:10.2478/forma-2023-0025.](http://dx.doi.org/10.2478/forma-2023-0025)
- [10] Jacques D. Fleuriot. On the mechanization of real analysis in Isabelle/HOL. In Mark Aagaard and John Harrison, editors, *Theorem Proving in Higher Order Logics*, pages 145–161. Springer Berlin Heidelberg, 2000. ISBN 978-3-540-44659-0.
- [11] Ruben Gamboa. *Continuity and Differentiability*, pages 301–315. Springer US, 2000. ISBN 978-1-4757-3188-0. doi[:10.1007/978-1-4757-3188-0](http://dx.doi.org/10.1007/978-1-4757-3188-0_18) 18.
- [12] Serge Lang. *Calculus of Several Variables*. Springer, third edition, 2012.
- [13] Keiko Narita, Noboru Endou, and Yasunari Shidama. Weak convergence and weak* convergence. *Formalized Mathematics*, 23(**3**):231–241, 2015. doi[:10.1515/forma-2015-0019.](http://dx.doi.org/10.1515/forma-2015-0019)
- [14] Hiroyuki Okazaki and Kazuhisa Nakasho. The 3-fold product space of real normed spaces and its properties. *Formalized Mathematics*, 29(**4**):241–248, 2021. doi[:10.2478/forma-](http://dx.doi.org/10.2478/forma-2021-0022)[2021-0022.](http://dx.doi.org/10.2478/forma-2021-0022)
- [15] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. *Formalized Mathematics*, 19(**1**):51–59, 2011. doi[:10.2478/v10037-](http://dx.doi.org/10.2478/v10037-011-0009-2) [011-0009-2.](http://dx.doi.org/10.2478/v10037-011-0009-2)
- [16] Edward Staples Smith, Salkover Meyer, and Howard K. Justice. *Calculus*. John Wiley and Sons, second edition, 1958.

Accepted June 18, 2024

Separable Polynomials and Separable Extensions

Christoph Schwarzwelle[r](https://orcid.org/0000-0001-9587-8737) Institute of Informatics University of Gdańsk Poland

Summary. We continue the formalization of field theory in Mizar [\[2\]](#page-8-1), [\[3\]](#page-8-0), [\[4\]](#page-47-0). We introduce separability of polynomials and field extensions: a polynomial is separable, if it has no multiple roots in its splitting field; an algebraic extension *E* of *F* is separable, if the minimal polynomial of each $a \in E$ is separable. We prove among others that a polynomial $q(X)$ is separable if and only if the gcd of $q(X)$ and its (formal) derivation equals 1 – and that a irreducible polynomial $q(X)$ is separable if and only if its derivation is not 0 – and that $q(X)$ is separable if and only if the number of $q(X)$'s roots in some field extension equals the degree of $q(X)$.

A field *F* is called perfect if all irreducible polynomials over *F* are separable, and as a consequence every algebraic extension of *F* is separable. Every field with characteristic 0 is perfect [\[13\]](#page-47-1). To also consider separability in fields with prime characteristic *p* we define the rings $R^p = \{ a^p | a \in R \}$ and the polynomials $X^n - a$ for $a \in R$. Then we show that a field *F* with prime characteristic *p* is separable if and only if $F = F^p$ and that finite fields are perfect. Finally we prove that for fields $F \subseteq K \subseteq E$ where *E* is a separable extension of *F* both *E* is separable over *K* and *K* is separable over *F*.

MSC: [12F10](http://zbmath.org/classification/?q=cc:12F10) [68V20](http://zbmath.org/classification/?q=cc:68V20)

Keywords: separable polynomials; perfect fields; separable extensions

MML identifier: [FIELD](http://fm.mizar.org/miz/field_15.miz) 15, version: [8.1.14 5.79.1465](http://ftp.mizar.org/)

INTRODUCTION

In this paper we formalize separability $[7]$ using the Mizar formalism $[2]$, $[3]$, [\[6\]](#page-47-3). A polynomial is separable, if it has no multiple roots in its splitting field; an algebraic extension *E* of *F* is separable, if the minimal polynomial of each $a \in E$ is separable [\[8\]](#page-47-4), [\[10\]](#page-47-5), [\[5\]](#page-47-6).

In the first two sections we provide some technical lemmas necessary later. They concern for example divisibility and gcds of integers, in particular we show that a prime *p* divides $\binom{p}{m}$ $\binom{p}{m}$ for $1 \leq m < p$. We also need a number of results on powers of polynomials among them that a polynomial $q(X)$ divides $(X – a)ⁿ$ if and only if $q(X) = (X - a)^{l}$ for some $0 \leq l \leq n$ or that *a* is an *n*-fold root of $(X - a)^n$.

In the third section we define the ring $R^p = \{ a^p | a \in R \}$ for a given ring R with prime characteristic p. In order to do so we proved that $(a+b)^p = a^p + b^p$, also called freshman's dream.

Then we define the polynomial $q(X) = X^n - a$ necessary to describe separability in fields with characteristic $p \neq 0$. Note that the roots of $q(X)$ are the elements *b* with $b^p = a$, so that $q(X) = (X - b)^p$ if there exists such a *b* and is irreducible otherwise.

In section five we deal with multiplicity of polynomials. We show among others that a polynomial $q(X)$ has a multiple root (in a field extension where $q(X)$ splits) if and only if the gcd of $q(X)$ and its (formal) derivation is not 1. For irreducible $q(X)$ this can be sharpened to $q(X)$'s derivation being 0. We also prove that in fields with characteristic $p \neq 0$ the derivation of a polynomial $q(X)$ is 0 if and only if there exists a polynomial $r(X)$ such that $q(X) = r(X^p)$.

The next two sections are devoted to separability of polynomials. We define a polynomial $q(X)$ to be separable, if it has no multiple roots in its splitting field. Note that the splitting field of $q(X)$ is unique only up to isomorphism, so that we had to prove that the definition indeed is independent of a particular splitting field. We prove a number of characterizations of separability found in the literature, for example that $q(X)$ is separable if and only if the number of $q(X)$'s roots equals the degree of $q(X)$ in some field extension if and only if $q(X)$ is square free in every field extension in which *q* splits. Then we introduce perfect fields, e.g. fields in which every irreducible polynomial is separable. Fields with characteristic 0 are perfect (see [\[13\]](#page-47-1)). Fields F with characteristic $p \neq 0$ are perfect if and only if $F = F^p$. This is shown using the polynomial $X^p - a$, which is inseparable and irreducible if there is no *b* with $b^p = a$. Because in finite fields the multiplicative group is cyclic in finite fields such a *b* always exists and so finite field are perfect.

In the last section we define separable extensions: an algebraic extension is separable if the minimal polynomial of every $a \in E$ is separable. As an easy consequence we get that for $p(X) \in F[X] \backslash F$, where *F* is perfect, the splitting field of $p(X)$ is both normal and separable. We also show that for fields $F \subseteq K \subseteq E$ where E is a separable extension of F both E is a separable extension of *K* and *K* is a separable extension of *F*.

1. Preliminaries

Let *R* be a ring and *k* be a non zero natural number. One can check that $(0_R)^k$ reduces to 0_R .

Let *k* be a natural number. Note that $(1_R)^k$ reduces to 1_R .

Let p be a prime number. Observe that there exists a field which is finite and has characteristic *p*.

Let F be a finite field. Let us observe that $char(F)$ is prime.

Let R be a non degenerated ring. One can verify that every element of the carrier of Polynom-Ring *R* which is monic is also non zero.

Let *F* be a field, *p* be a non constant element of the carrier of Polynom-Ring *F*, and *a* be a non zero element of *F*. One can verify that the functor $a \cdot p$ yields a non constant element of the carrier of Polynom-Ring *F*. Now we state the propositions:

- (1) Let us consider a natural number *n*, and a non zero natural number *m*. Then $\frac{n}{m}$ is a natural number if and only if $m \mid n$.
- (2) Let us consider a prime number p, and natural numbers n, a, b. If $p \mid a$ and $p \nmid b$ and $n = \frac{a}{b}$ $\frac{a}{b}$, then $p \mid n$. The theorem is a consequence of (1).
- (3) Let us consider a prime number *p*, and a non zero natural number *n*. If $n < p$, then $gcd(n, p) = 1$.
- (4) Let us consider a non zero natural number *n*, and a prime number *p*. Then there exist natural numbers *k*, *m* such that
	- (i) $n = m \cdot p^k$, and
	- (ii) $p \nmid m$.

The theorem is a consequence of (1) .

Let *R* be an integral domain, *a* be a non zero element of *R*, and *n* be a natural number. One can check that a^n is non zero.

Now we state the propositions:

- (5) Let us consider a ring *R*, an element *a* of *R*, and an even natural number $n.$ Then $(-a)^n = a^n$.
- (6) Let us consider a ring *R*, an element *a* of *R*, and an odd natural number $n.$ Then $(-a)^n = -a^n$.
- (7) Let us consider a ring *R* with characteristic 2, and an element *a* of *R*. Then $-a = a$.
- (8) Let us consider an add-associative, right zeroed, right complementable, Abelian, non empty double loop structure *R*, and an integer *i*. Then $i \star 0_R = 0_R$.

PROOF: Define $\mathcal{P}[\text{integer}] \equiv \$_1 \star 0_R = 0_R$. For every integer *u* such that $\mathcal{P}[u]$ holds $\mathcal{P}[u-1]$ and $\mathcal{P}[u+1]$ by [\[12,](#page-47-7) (64), (60), (62)]. For every integer $i, \mathcal{P}[i]$. \Box

Let *F* be a finite field. Let us observe that $MultGroup(F)$ is cyclic. Now we state the propositions:

- (9) Let us consider a field F , and an extension E of F . Then MultGroup(F) is a subgroup of MultGroup(*E*).
- (10) Let us consider a skew field *R*, a natural number *n*, an element *a* of *R*, and an element *b* of MultGroup(*R*). If $a = b$, then $a^n = b^n$ by [\[1,](#page-47-8) (17)], $[11, (8)].$ $[11, (8)].$

Let us consider a ring *R*, a polynomial *p* over *R*, and elements *a*, *b* of *R*. Now we state the propositions:

 (11) $(a + b) \cdot p = a \cdot p + b \cdot p$.

$$
(12) \quad (a \cdot b) \cdot p = a \cdot (b \cdot p).
$$

- (13) Let us consider a ring *R*, an element *q* of the carrier of Polynom-Ring *R*, a polynomial p over R, and a natural number n. If $p = q$, then $n \cdot (1_R) \cdot p =$ $n \cdot q$ by [\[9,](#page-47-10) (26)].
- (14) Let us consider a ring *R*, an element *q* of the carrier of Polynom-Ring *R*, a polynomial *p* over *R*, and natural numbers *n*, *j*. If $p = n \cdot q$, then $p(j) = n \cdot q(j).$
- (15) Let us consider a field F , an element a of F , a polynomial p over F , an extension E of F , an element b of E , and a polynomial q over E . If $a = b$ and $p = q$, then $a \cdot p = b \cdot q$.
- (16) Let us consider a field *F*, an irreducible element *p* of the carrier of Polynom-Ring *F*, and an element *q* of the carrier of Polynom-Ring *F*. If $q \mid p$, then *q* is unital or associated to *p*.
- (17) Let us consider a field *F*, an irreducible element *p* of the carrier of Polynom-Ring *F*, and a monic element *q* of the carrier of Polynom-Ring *F*. If $q \mid p$, then $q = 1.F$ or $q = \text{NormPoly } p$.

Let us consider a field F and a non zero element p of the carrier of Polynom-Ring *F*. Now we state the propositions:

- (18) *p* is reducible if and only if *p* is a unit of Polynom-Ring *F* or there exists a monic element *q* of the carrier of Polynom-Ring *F* such that *q | p* and $1 \leqslant \deg(q) < \deg(p)$.
- (19) *p* is reducible if and only if there exists a monic element *q* of the carrier of Polynom-Ring *F* such that $q | p$ and $1 \leq \deg(q) < \deg(p)$.

2. On Powers of Polynomials

Let *R* be an integral domain, *p* be a non zero polynomial over *R*, and *n* be a natural number. Observe that p^n is non zero. Let F be a field, p be a non constant polynomial over *F*, and *n* be a non zero natural number. One can verify that p^n is non constant.

Let *p* be a non constant element of the carrier of Polynom-Ring *F*. Let us note that p^n is non constant. Let p be a constant element of the carrier of Polynom-Ring *F*. One can check that p^n is constant and p^n is constant. Now we state the propositions:

- (20) Let us consider an integral domain *R*, a polynomial *p* over *R*, and a natural number *n*. Then $LC p^n = (LC p)^n$.
- (21) Let us consider an integral domain *R*, a non zero polynomial *p* over *R*, and a natural number *n*. Then $\deg(p^n) = n \cdot (\deg(p))$.
- (22) Let us consider a commutative ring *R*, a polynomial *p* over *R*, and a non zero natural number *n*. Then $(p^n)(0) = p(0)^n$.
- (23) Let us consider an integral domain *R*, a non zero element *a* of *R*, and a natural number *n*. Then $\langle 0_R, a \rangle^n = a^n \cdot (\langle 0_R, 1_R \rangle^n)$.
- (24) Let us consider a field F , an element a of F , and a natural number n . Then $(a \upharpoonright F)^n = a^n \upharpoonright F$.
- (25) Let us consider a field F , a non zero element a of F , and natural numbers n, m . Then $(\text{anpoly}(a, m))^n = \text{anpoly}(a^n, n \cdot m)$.
- (26) Let us consider a field F , an element a of F , and a natural number n . Then deg($(X – a)ⁿ$) = *n*.
- (27) Let us consider a field *F*, an element *a* of *F*, and a non zero natural number *n*. Then $Roots((X-a)^n) = \{a\}.$

Let us consider a field *F*, an element *a* of *F*, and a natural number *n*. Now we state the propositions:

(28) multiplicity($(X – a)ⁿ$, *a*) = *n*. The theorem is a consequence of (26).

(29)
$$
\overline{\text{BRoots}((X-a)^n)} = n.
$$

- (30) Let us consider a non degenerated commutative ring *R*, a commutative ring extension *S* of *R*, an element *a* of *R*, an element *b* of *S*, and an element *n* of N. If $a = b$, then $(X - b)^n = (X - a)^n$.
- (31) Let us consider a field *F*, a monic polynomial *p* over *F*, an element *a* of *F*, and a natural number *n*. Then $p \mid (X - a)^n$ if and only if there exists a natural number *l* such that $l \leq n$ and $p = (X - a)^l$. The theorem is a consequence of (27), (28), and (26).
- (32) Let us consider a non degenerated commutative ring *R*, elements *a*, *b* of *R*, and a natural number *n*. Then $eval((X+a)^n, b) = (a+b)^n$.
- (33) Let us consider a field *F*, an element *a* of *F*, and a non zero natural number *n*. Then $(X – a)ⁿ$ splits in *F*. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv (X - a)^{\$_1}$ splits in *F*. For every natural number *k* such that $k \geq 1$ holds $\mathcal{P}[k]$. \Box
- (34) Let us consider a field F_1 , an F_1 -homomorphic field F_2 , a homomorphism *h* from F_1 to F_2 , an element *a* of F_1 , and a natural number *n*. Then $(PolyHom(h))((X – a)ⁿ) = (X – h(a))ⁿ$.

3. The Rings *R^p* for Primes *p*

Let p be a prime number. One can verify that every commutative ring with characteristic *p* is non degenerated. Now we state the propositions:

- (35) Let us consider a prime number *p*, a commutative ring *R* with characteristic *p*, and an element *a* of *R*. Then $p \cdot a = 0_R$.
- (36) Let us consider a prime number *p*, a commutative ring *R* with characteristic *p*, a non zero element *a* of *R*, and a non zero natural number *n*. If $n < p$, then $n \cdot a \neq 0_R$.

Let us consider a prime number p, a commutative ring R with characteristic *p*, an element *a* of *R*, and a natural number *n*. Now we state the propositions:

- (37) $n \cdot p \cdot a = 0_R$.
- (38) If $p \mid n$, then $n \cdot a = 0_R$. The theorem is a consequence of (37).
- (39) Let us consider a prime number p , a commutative ring R with characteristic *p*, a non zero element *a* of *R*, and a natural number *n*. Then $p \mid n$ if and only if $n \cdot a = 0_R$. The theorem is a consequence of (37) and (36).
- (40) Let us consider a prime number *p*, a commutative ring *R* with characteristic p, and elements a, b of R. Then $(a + b)^p = a^p + b^p$. PROOF: Set $F = \langle \begin{pmatrix} p \\ 0 \end{pmatrix} \rangle$ $\binom{p}{0}a^{0}b^{p}, \ldots, \binom{p}{p}$ $p_p(p)$ *a*^{*p*} $)$. Consider *f*₁ being a sequence of the carrier of *R* such that $\sum F = f_1(\text{len } F)$ and $f_1(0) = 0_R$ and for every natural number *j* and for every element *v* of *R* such that $j < \text{len } F$ and $v = F(j + 1)$ holds $f_1(j + 1) = f_1(j) + v$. Define P [element of N] \equiv \$₁ = 0 and $f_1(\$_1) = 0_R$ or $0 < \$_1 < \text{len } F$ and $f_1(\$_1) = a^p$ or $\$_1 = \text{len } F$ and $f_1(\$_1) = a^p + b^p$. For every element *j* of N such that $0 \leqslant j \leqslant \text{len } F$ holds $P[j]$. \Box
- (41) Let us consider a prime number *p*, a commutative ring *R* with characteristic *p*, elements *a*, *b* of *R*, and a natural number *i*. Then $(a + b)^{p^i} = a^{p^i} + b^{p^i}$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv (a+b)^{p^{s_1}} = a^{p^{s_1}} + b^{p^{s_1}}$. For every natural number k , $\mathcal{P}[k]$. \square

(42) Let us consider a prime number *p*, a commutative ring *R* with characteristic *p*, and an element *a* of *R*. Then $-a^p = (-a)^p$. The theorem is a consequence of (40).

Let p be a prime number and R be a commutative ring with characteristic p . The functor *R^p* yielding a strict double loop structure is defined by

(Def. 1) the carrier of $it =$ the set of all a^p where a is an element of R and the addition of $it =$ (the addition of R) \upharpoonright (the carrier of *it*) and the multiplication of $it =$ (the multiplication of *R*) \upharpoonright (the carrier of *it*) and $1_{it} = 1_R$ and $0_{it} = 0_R$.

Let us observe that R^p is non degenerated.

Let us consider a prime number p, a commutative ring R with characteristic p , elements a , b of R , and elements x , y of R^p . Now we state the propositions:

- (43) If $a = x$ and $b = y$, then $a + b = x + y$.
- (44) If $a = x$ and $b = y$, then $a \cdot b = x \cdot y$.

Let p be a prime number and R be a commutative ring with characteristic p . Note that R^p is Abelian, add-associative, right zeroed, and right complementable and R^p is commutative, associative, well unital, and distributive.

Let F be a field with characteristic p . One can verify that F^p is almost left invertible. Let R be a commutative ring with characteristic p. Observe that R^p has characteristic *p*. Let *F* be a field with characteristic *p*. One can verify that the functor F^p yields a strict subfield of F .

4. THE POLYNOMIALS $X^n - a$

Let R be a unital, non empty double loop structure, a be an element of R , and *n* be a non zero natural number. The functor $X^n - a$ yielding a sequence of *R* is defined by the term

 (Def. 2) **0***.R*+ \cdot [0 $\longrightarrow -a, n \longmapsto 1_R$].

Let us observe that $X^n - a$ is finite-Support.

Let R be a unital, non degenerated double loop structure. One can verify that $X^n - a$ is non constant and monic.

Let *R* be a non degenerated ring. One can verify that the functor $X^n - a$ yields a non constant, monic element of the carrier of Polynom-Ring *R*. Now we state the proposition:

(45) Let us consider a unital, non degenerated double loop structure *L*, an element *a* of *L*, and a non zero natural number *n*. Then

- (i) $(X^n a)(0) = -a$, and
- (ii) $(X^n a)(n) = 1_L$, and
- (iii) for every natural number *m* such that $m \neq 0$ and $m \neq n$ holds $(X^n - a)(m) = 0_L.$

Let us consider a unital, non degenerated double loop structure *R*, a non zero natural number *n*, and an element *a* of *R*. Now we state the propositions:

- (46) $deg(X^n a) = n$.
- (47) LC $X^n a = 1_R$.
- (48) Let us consider a non degenerated ring R , a non zero natural number n , and elements *a*, *x* of *R*. Then $eval(X^n - a, x) = x^n - a$. PROOF: Set $q = X^n - a$. Consider *F* being a finite sequence of elements of *R* such that $eval(q, x) = \sum F$ and len $F = \text{len } q$ and for every element *j* of N such that $j \in \text{dom } F$ holds $F(j) = q(j - 1) \cdot \text{power}_R(x, j - 1)$. $n = \deg(q)$. Consider f_1 being a sequence of the carrier of *R* such that $\sum F = f_1(\text{len } F)$ and $f_1(0) = 0_R$ and for every natural number *j* and for every element *v* of *R* such that $j < \text{len } F$ and $v = F(j + 1)$ holds $f_1(j + 1) = f_1(j) + v$. Define P [element of N] \equiv \$₁ = 0 and f_1 (\$₁) = 0*R* or $0 < \$_{1} < \text{len } F$ and $f_1(\$_{1}) = -a$ or $\$_{1} = \text{len } F$ and $f_1(\$_{1}) = x^n - a$. For every element *j* of N such that $0 \leq j \leq \text{len } F$ holds $\mathcal{P}[j]$. \Box
- (49) Let us consider a field *F*, a non zero natural number *n*, and elements *a*, *b* of *F*. Then *b* is a root of $X^n - a$ if and only if $b^n = a$. The theorem is a consequence of (48).
- (50) Let us consider a field *F*, an extension *E* of *F*, a non zero natural number *n*, an element *a* of *F*, and an element *b* of *E*. If $b = a$, then $X^n - a = X^n - b$. The theorem is a consequence of (43).
- (51) Let us consider a non degenerated, commutative ring *R*, a non trivial natural number *n*, and an element *a* of *R*. Then $(Deriv(R))(X^n - a) =$ $n \cdot (X^{(n-1)} - (0_R))$. The theorem is a consequence of (43) and (14).
- (52) Let us consider a prime number p, a commutative ring R with characteristic *p*, and an element *a* of *R*. Then $(Deriv(R))(X^p - a) = 0.R$. The theorem is a consequence of (43) and (38).
- (53) Let us consider a prime number *p*, a field *F* with characteristic *p*, and elements *a*, *b* of *F*. If $b^p = a$, then $X^p - a = (X - b)^p$. The theorem is a consequence of (7) , (43) , (40) , (22) , and (6) .
- (54) Let us consider a prime number *p*, a field *F* with characteristic *p*, and an element *a* of *F*. Suppose there exists no element *b* of *F* such that $b^p = a$. Then $X^p - a$ is irreducible. The theorem is a consequence of (50), (49), (53) , (18) , (31) , (22) , (5) , (6) , (3) , (9) , and (10) .

5. More on Multiplicity of Roots

Now we state the propositions:

- (55) Let us consider a field *F*, a non zero polynomial *p* over *F*, and an element *a* of *F*. Then $deg(p) \geq \text{multiplicity}(p, a)$.
- (56) Let us consider a field *F*, a non zero polynomial *p* over *F*, an element *a* of *F*, and an element *n* of N. Then $(X-a)^n | p$ if and only if multiplicity $(p, a) \geqslant n$.
- (57) Let us consider a field F , an extension E of F , a non zero element p of the carrier of Polynom-Ring *F*, and an element *a* of *E*. Then *a* is a root of *p* in *E* if and only if multiplicity $(p, a) \geq 1$. The theorem is a consequence of (56).
- (58) Let us consider a field *F*, a non zero polynomial *p* over *F*, an extension *E* of *F*, and a non zero polynomial *q* over *E*. Suppose $q = p$. Let us consider an *E*-extending extension *K* of *F*, and an element *a* of *K*. Then multiplicity (q, a) = multiplicity (p, a) .
- (59) Let us consider a field *F*, a non zero polynomial *p* over *F*, an extension *E* of *F*, and a non zero polynomial *q* over *E*. Suppose $q = p$. Let us consider an element *a* of *E*. Then multiplicity(q, a) = multiplicity(p, a). The theorem is a consequence of (58).
- (60) Let us consider a field F , a non zero polynomial p over F , a non zero element *c* of *F*, and an element *a* of *F*. Then multiplicity($c \cdot p, a$) = multiplicity(*p, a*).
- (61) Let us consider a field F , an extension E of F , a non zero polynomial p over F , a non zero element c of F , and an element a of E . Then multiplicity($c \cdot p, a$) = multiplicity(p, a). The theorem is a consequence of (15) and (59).
- (62) Let us consider a field F , an extension E of F , non zero polynomials p, q over *F*, and an element *a* of *E*. Then multiplicity($p * q$, a) = multiplicity(p , a) $+$ multiplicity(*q, a*). The theorem is a consequence of (59).
- (63) Let us consider a field *F*, a non zero polynomial *p* over *F*, extensions E_1, E_2 of *F*, and a function *i* from E_1 into E_2 . Suppose *i* is *F*-fixing and isomorphism. Let us consider an element *a* of E_1 . Then multiplicity(p, a) = multiplicity $(p, i(a))$.

PROOF: Set $n =$ multiplicity (p, a) . Reconsider $E_3 = E_2$ as an E_1 -homomorphic field. Reconsider $h = i$ as an additive function from E_1 into E_3 . Reconsider $X_1 = (X - a)^n$ as an element of the carrier of Polynom-Ring E_1 . Reconsider $X_2 = (X - a)^{n+1}$ as an element of the carrier of Polynom-Ring E_1 .

 $(PolyHom(h))(X_1) = (X - h(a))^n$ and $(PolyHom(h))(X_2) = (X - h(a))^{n+1}$. $(PolyHom(h))(p) = p. \Box$

- (64) Let us consider a field F , a non zero polynomial p over F , an extension *E* of *F*, and an element *a* of *F*. Then multiplicity $(p, {}^@ (a, E))$ = multiplicity(*p, a*).
- (65) Let us consider a field *F*, a non zero polynomial *p* over *F*, an extension *E* of *F*, an *E*-extending extension *K* of *F*, and an element *a* of *E*. Then multiplicity($p, {}^{\circledR}(a, K)$) = multiplicity(p, a).
- (66) Let us consider a field F , a non zero polynomial p over F , a polynomial *q* over *F*, and an element *a* of *F*. Suppose $p = (X - a)^{\text{multiplicity}(p,a)} * q$. Then $eval(q, a) \neq 0_F$.
- (67) Let us consider a field *F*, and a non zero polynomial *p* over *F*. Then $\overline{\text{Roots}(p)} < \overline{\text{BRoots}(p)}$ if and only if there exists an element *a* of *F* such that multiplicity $(p, a) > 1$.
- (68) Let us consider a field *F*, a non zero polynomial *p* over *F*, and an element *a* of *F*. Then multiplicity(NormPoly p, a) = multiplicity(p, a).
- (69) Let us consider a field *F*, and a non constant polynomial *p* over *F*. Then $deg(p) = \overline{Roots(p)}$ if and only if *p* splits in *F* and for every element *a* of *F*, multiplicity $(p, a) \leq 1$. The theorem is a consequence of (67) and (68).
- (70) Let us consider a field *F*, a non zero element *p* of the carrier of Polynom-Ring *F*, and an element *a* of *F*. Suppose *a* is a root of *p*. Then
	- (i) multiplicity $(p, a) = 1$ iff eval $((Deriv(F))(p), a) \neq 0_F$, and
	- (ii) multiplicity $(p, a) > 1$ iff eval $((Deriv(F))(p), a) = 0_F$.

The theorem is a consequence of (66).

- (71) Let us consider a field *F*, and a non zero element *p* of the carrier of Polynom-Ring *F*. Then there exists an element *a* of *F* such that multiplicity $(p, a) > 1$ if and only if $gcd(p, (Deriv(F))(p))$ has roots. The theorem is a consequence of (70).
- (72) Let us consider a field *F*, a non zero element *p* of the carrier of Polynom-Ring *F*, and an extension *E* of *F*. Suppose *p* splits in *E*. Then there exists an element *a* of *E* such that multiplicity $(p, a) > 1$ if and only if $gcd(p, (Deriv(F))(p)) \neq 1.F$. The theorem is a consequence of (70).
- (73) Let us consider a field *F*, an irreducible element *p* of the carrier of Polynom-Ring *F*, and an extension *E* of *F*. Suppose *p* splits in *E*. Then there exists an element *a* of *E* such that multiplicity $(p, a) > 1$ if and only if $(Deriv(F))(p) = 0.F$. The theorem is a consequence of (17) and (72).
- (74) Let us consider a prime number *p*, a commutative ring *R* with characteristic *p*, and an element *f* of the carrier of Polynom-Ring *R*. Then

 $(Deriv(R))(f) = 0.R$ if and only if for every natural number *i* such that $i \in$ Support *f* holds $p \nvert i$. The theorem is a consequence of (38) and (39).

6. Separable Polynomials

Let F be a field and p be a non constant element of the carrier of Polynom-Ring *F*. We say that *p* is separable if and only if

(Def. 3) for every element a of the splitting field of p such that a is a root of p in the splitting field of *p* holds multiplicity $(p, a) = 1$.

We introduce the notation p is inseparable as an antonym for p is separable.

Let us observe that there exists a non constant, monic element of the carrier of Polynom-Ring *F* which is separable and there exists a non constant, monic element of the carrier of Polynom-Ring *F* which is inseparable.

Let us consider a field *F* and a non constant element *p* of the carrier of Polynom-Ring *F*. Now we state the propositions:

- (75) *p* is separable if and only if for every extension *E* of *F* such that *p* splits in E for every element a of E such that a is a root of p in E holds multiplicity $(p, a) = 1$. The theorem is a consequence of (63).
- (76) *p* is separable if and only if there exists an extension *E* of *F* such that *p* splits in *E* and for every element *a* of *E* such that *a* is a root of *p* in *E* holds multiplicity $(p, a) = 1$. The theorem is a consequence of (63).
- (77) *p* is separable if and only if for every extension *E* of *F* and for every element *a* of *E*, multiplicity $(p, a) \leq 1$. The theorem is a consequence of (58), (57), (75), and (76).
- (78) *p* is separable if and only if there exists an extension *E* of *F* such that *p* splits in *E* and for every element *a* of *E*, multiplicity $(p, a) \leq 1$. The theorem is a consequence of (57) and (76).
- (79) Let us consider a field *F*, and a separable, non constant element *p* of the carrier of Polynom-Ring *F*. Then $\deg(p) = \overline{\text{Roots}(p)}$ if and only if *p* splits in F . The theorem is a consequence of (75) , (60) , and (69) .
- (80) Let us consider a field *F*, and a non constant element *p* of the carrier of Polynom-Ring *F*. Then *p* is separable if and only if $gcd(p, (Deriv(F))(p)) =$ **1***.F*. The theorem is a consequence of (77) and (72).
- (81) Let us consider a field *F*, and a non constant, irreducible element *p* of the carrier of Polynom-Ring *F*. Then *p* is separable if and only if $(Deriv(F))$ $(p) \neq 0.F$. The theorem is a consequence of (77) and (73).
- (82) Let us consider a field *F*, and a non constant element *p* of the carrier of Polynom-Ring *F*. Then *p* is separable if and only if for every splitting field

E of *p*, there exists an element *a* of *E* and there exists a product of linear polynomials *q* of *E* and $Root(E, p)$ such that $p = a \cdot q$. The theorem is a consequence of (75), (59), and (60).

(83) Let us consider a field *F*, and a non constant, monic element *p* of the carrier of Polynom-Ring *F*. Then *p* is separable if and only if for every splitting field *E* of *p*, *p* is a product of linear polynomials of *E* and $Roots(E, p)$. The theorem is a consequence of (82).

Let us consider a field *F* and a non constant element *p* of the carrier of Polynom-Ring *F*. Now we state the propositions:

- (84) *p* is separable if and only if for every extension E of F such that p splits in E holds p is square-free over E . The theorem is a consequence of (60), (75), and (56).
- (85) *p* is separable if and only if there exists an extension *E* of *F* such that $\overline{\text{Roots}(E, p)} = \text{deg}(p)$. The theorem is a consequence of (77), (58), (79), (69), and (78).
- (86) Let us consider a field *F*, a non constant element *p* of the carrier of Polynom-Ring F , and a non zero element a of F . Then $a \cdot p$ is separable if and only if p is separable. The theorem is a consequence of (15) , (75) , and (61).
- (87) Let us consider a field *F*, non constant elements *p*, *q* of the carrier of Polynom-Ring *F*, and an element *r* of the carrier of Polynom-Ring *F*. If $p = q * r$, then if p is separable, then q is separable. The theorem is a consequence of (77) and (62).
- (88) Let us consider a field *F*, an extension *E* of *F*, a non constant element *p* of the carrier of Polynom-Ring F , and a non constant element q of the carrier of Polynom-Ring *E*. If $p = q$, then *p* is separable iff *q* is separable. The theorem is a consequence of (80).

Let *F* be a field and *a* be an element of *F*. One can verify that X*− a* is separable and irreducible. Let *n* be a non trivial natural number. Note that $(X-a)^n$ is inseparable and reducible. Let *F* be a field with characteristic 0. One can check that every irreducible element of the carrier of Polynom-Ring *F* is separable. Now we state the proposition:

(89) Let us consider a prime number *p*, a field *F* with characteristic *p*, and an element *a* of *F*. If $a \notin F^p$, then $X^p - a$ is irreducible and inseparable. The theorem is a consequence of (54) , (50) , (49) , (53) , (28) , and (77) .

7. Perfect Fields

Let F be a field. We say that F is perfect if and only if

(Def. 4) every irreducible element of the carrier of Polynom-Ring *F* is separable.

Let us note that every field with characteristic 0 is perfect. Now we state the propositions:

- (90) Let us consider a prime number p , a field F with characteristic p , and an element *q* of the carrier of Polynom-Ring *F*. Suppose for every natural number *i* such that $i \in$ Support *q* holds $p \nvert i$ and there exists an element *a* of *F* such that $a^p = q(i)$. Then there exists an element *r* of the carrier of Polynom-Ring *F* such that $r^p = q$. The theorem is a consequence of (25) and (40).
- (91) Let us consider a prime number *p*, and a field *F* with characteristic *p*. Then *F* is perfect if and only if $F \approx F^p$. The theorem is a consequence of (89), (75), (57), (73), (74), and (90).
- (92) Let us consider a field *F*. Then *F* is finite if and only if there exists a non zero natural number *n* such that $\overline{F} = (\text{char}(F))^n$. The theorem is a consequence of (39) and (4).
- (93) Let us consider a prime number p , a finite field F with characteristic p , and an element *a* of *F*. Then there exists an element *b* of *F* such that $b^p = a$. The theorem is a consequence of (92) and (10).

Observe that every finite field is perfect and every algebraic closed field is perfect.

8. Separable Extensions

Let *F* be a field, *E* be an extension of *F*, and *a* be an element of *E*. We say that *a* is *F*-separable if and only if

(Def. 5) there exists an *F*-algebraic element *b* of *E* such that $b = a$ and MinPoly(*b*, *F*) is separable.

One can verify that there exists an element of *E* which is non zero and *F*separable and every element of *E* which is *F*-separable is also *F*-algebraic. Let *a* be an *F*-separable element of *E*. Observe that MinPoly(*a, F*) is separable. We say that *E* is *F*-separable if and only if

(Def. 6) *E* is *F*-algebraic and every element of *E* is *F*-separable.

We introduce the notation *E* is *F*-inseparable as an antonym for *E* is *F*separable. Let us observe that there exists an extension of *F* which is *F*-finite and *F*-separable and every extension of *F* which is *F*-separable is also *F*-algebraic. Let *E* be an *F*-separable extension of *F*. Note that every element of *E* is *F*separable. Now we state the proposition:

- (94) Let us consider a field *F*, an extension *K* of *F*, and a *K*-extending extension *E* of *F*. Suppose *E* is *F*-separable. Then
	- (i) *E* is *K*-separable, and
	- (ii) *K* is *F*-separable.

The theorem is a consequence of (88) and (87).

Let *F* be a perfect field. One can verify that every *F*-algebraic extension of *F* is *F*-separable and there exists an extension of *F* which is *F*-normal and *F*-separable. Let *p* be a non constant element of the carrier of Polynom-Ring *F*. Let us note that every splitting field of *p* is *F*-normal and *F*-separable.

REFERENCES

- [1] Broderick Arneson and Piotr Rudnicki. [Primitive roots of unity and cyclotomic polyno](http://fm.mizar.org/2004-12/pdf12-1/uniroots.pdf)[mials.](http://fm.mizar.org/2004-12/pdf12-1/uniroots.pdf) *Formalized Mathematics*, 12(**1**):59–67, 2004.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. [Mizar: State-of-the-art and](http://dx.doi.org/10.1007/978-3-319-20615-8_17) [beyond.](http://dx.doi.org/10.1007/978-3-319-20615-8_17) In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3- 319-20614-1. doi[:10.1007/978-3-319-20615-8](http://dx.doi.org/10.1007/978-3-319-20615-8_17) 17.
- [3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. [The role of the Mizar Mathematical Library](https://doi.org/10.1007/s10817-017-9440-6) [for interactive proof development in Mizar.](https://doi.org/10.1007/s10817-017-9440-6) *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi[:10.1007/s10817-017-9440-6.](http://dx.doi.org/10.1007/s10817-017-9440-6)
- [4] Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hierarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, *Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS)*, volume 8 of *Annals of Computer Science and Information Systems*, pages 363–371, 2016. doi[:10.15439/2016F520.](http://dx.doi.org/10.15439/2016F520)
- [5] Nathan Jacobson. *Basic Algebra I*. Dover Books on Mathematics, 1985.
- [6] Artur Korniłowicz. [Flexary connectives in Mizar.](http://dx.doi.org/10.1016/j.cl.2015.07.002) *Computer Languages, Systems & Structures*, 44:238–250, December 2015. doi[:10.1016/j.cl.2015.07.002.](http://dx.doi.org/10.1016/j.cl.2015.07.002)
- [7] Serge Lang. *Algebra*. Springer Verlag, 2002 (Revised Third Edition).
- [8] Heinz L¨uneburg. *Die grundlegenden Strukturen der Algebra (in German)*. Oldenbourg Wisenschaftsverlag, 1999.
- [9] Robert Milewski. [Fundamental theorem of algebra.](http://fm.mizar.org/2001-9/pdf9-3/polynom5.pdf) *Formalized Mathematics*, 9(**3**):461– 470, 2001.
- [10] Knut Radbruch. *Algebra I*. Lecture Notes, University of Kaiserslautern, Germany, 1991.
- [11] Christoph Schwarzweller. [The binomial theorem for algebraic structures.](http://fm.mizar.org/2001-9/pdf9-3/binom.pdf) *Formalized Mathematics*, 9(**3**):559–564, 2001.
- [12] Christoph Schwarzweller and Artur Korniłowicz. Characteristic of rings. Prime fields. *Formalized Mathematics*, 23(**4**):333–349, 2015. doi[:10.1515/forma-2015-0027.](http://dx.doi.org/10.1515/forma-2015-0027)
- [13] Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Simple extensions. *Formalized Mathematics*, 31(1):287–298, 2023. doi[:10.2478/forma-2023-0023.](http://dx.doi.org/10.2478/forma-2023-0023)

Accepted June 18, 2024