

Formalization of Orthogonal Decomposition for Hilbert Spaces

Hiroyuki Okazaki Shinshu University Nagano, Japan

Summary. In this article, we formalize the theorems about orthogonal decomposition of Hilbert spaces, using the Mizar system [1], [2]. For any subspace S of a Hilbert space H, any vector can be represented by the sum of a vector in S and a vector orthogonal to S. The formalization of orthogonal complements of Hilbert spaces has been stored in the Mizar Mathematical Library [4]. We referred to [5] and [6] in the formalization.

MSC: 46Bxx 68V20

Keywords: Hilbert space; orthogonal decomposition; topological space

MML identifier: $RUSUB_7$, version: 8.1.12 5.72.1435

1. Preliminaries

From now on X denotes a real unitary space and x, y, y_1, y_2 denote points of X. Now we state the proposition:

(1) Let us consider a real unitary space X, points x, y of X, and points z, t of MetricSpaceNorm(the real normed space of X). If x = z and y = t, then $||x - y|| = \rho(z, t)$.

Let us consider a real unitary space X, an element z of MetricSpaceNorm(the real normed space of X), and a real number r. Now we state the propositions:

- (2) There exists a point x of X such that
 - (i) x = z, and
 - (ii) $Ball(z,r) = \{y, where y \text{ is a point of } X : ||x y|| < r\}.$

The theorem is a consequence of (1).

- (3) There exists a point x of X such that
 - (i) x = z, and
 - (ii) $\overline{\text{Ball}}(z,r) = \{y, \text{ where } y \text{ is a point of } X : ||x y|| \leq r\}.$

The theorem is a consequence of (1).

(4) Let us consider a real unitary space X, a sequence S of X, a sequence S_1 of MetricSpaceNorm(the real normed space of X), a point x of X, and a point x_2 of MetricSpaceNorm(the real normed space of X). Suppose $S = S_1$ and $x = x_2$. Then S_1 is convergent to x_2 if and only if for every real number r such that 0 < r there exists a natural number m such that for every natural number n such that $m \leq n$ holds ||S(n) - x|| < r. The theorem is a consequence of (1).

Let us consider a real unitary space X, a sequence S of X, and a sequence S_1 of MetricSpaceNorm(the real normed space of X). Now we state the propositions:

- (5) If $S = S_1$, then S_1 is convergent iff S is convergent. The theorem is a consequence of (4).
- (6) If $S = S_1$ and S_1 is convergent, then $\lim S_1 = \lim S$. The theorem is a consequence of (5) and (4).

2. TOPOLOGICAL SPACE GENERATED FROM REAL UNITARY SPACE

Now we state the proposition:

(7) Let us consider a real unitary space X, and a subset V of TopSpaceNorm (the real normed space of X). Then V is open if and only if for every point x of X such that $x \in V$ there exists a real number r such that r > 0 and $\{y, where y \text{ is a point of } X : ||x - y|| < r\} \subseteq V$. The theorem is a consequence of (2).

Let us consider a real unitary space X, a point x of X, and a real number r. Now we state the propositions:

- (8) {y, where y is a point of X : ||x y|| < r} is an open subset of TopSpaceNorm(the real normed space of X). The theorem is a consequence of (2).
- (9) {y, where y is a point of $X : ||x y|| \leq r$ } is a closed subset of TopSpaceNorm(the real normed space of X). The theorem is a consequence of (3).

- (10) Let us consider a real unitary space M, a subset X of TopSpaceNorm(the real normed space of M), and an object x. Then $x \in \overline{X}$ if and only if there exists a sequence S of M such that for every natural number $n, S(n) \in X$ and S is convergent and $\lim S = x$. The theorem is a consequence of (5) and (6).
- (11) Let us consider a real unitary space M, and a subset X of TopSpaceNorm (the real normed space of M). Then X is closed if and only if for every sequence S of M such that for every natural number $n, S(n) \in X$ and S is convergent holds $\lim S \in X$. The theorem is a consequence of (5) and (6).
- (12) Let us consider a real unitary space S, and a subset X of S. Then X is a closed subset of TopSpaceNorm(the real normed space of S) if and only if for every sequence s_1 of S such that $\operatorname{rng} s_1 \subseteq X$ and s_1 is convergent holds $\lim s_1 \in X$. The theorem is a consequence of (11).
- (13) Let us consider a real unitary space S, a point x of S, a point y of MetricSpaceNorm(the real normed space of S), and a real number r. If x = y, then Ball(x, r) = Ball(y, r). The theorem is a consequence of (1).
- (14) Let us consider a real unitary space S. Then TopSpaceNorm(the real normed space of S) = TopUnitSpace S. The theorem is a consequence of (13).

Let us consider a real unitary space S, a subset U of S, and a subset V of TopSpaceNorm(the real normed space of S). Now we state the propositions:

- (15) If U = V, then U is closed iff V is closed.
- (16) If U = V, then U is open iff V is open.
- (17) Let us consider a real unitary space X, a subspace M of X, and points x, m_0 of X. Suppose $m_0 \in M$. Then for every point m of X such that $m \in M$ holds $||x m_0|| \leq ||x m||$ if and only if for every point m of X such that $m \in M$ holds $((x m_0)|m) = 0$.
- (18) Let us consider a real unitary space X, a subspace M of X, and points x, m_1, m_2 of X. Suppose $m_1, m_2 \in M$ and for every point m of X such that $m \in M$ holds $||x m_1|| \leq ||x m||$ and for every point m of X such that $m \in M$ holds $||x m_2|| \leq ||x m||$. Then $m_1 = m_2$.
- (19) Let us consider a real Hilbert space of X, a subspace M of X, and a point x of X. Suppose the carrier of M is a closed subset of TopSpaceNorm(the real normed space of X). Then there exists a point m_0 of X such that
 - (i) $m_0 \in M$, and

(ii) for every point m of X such that $m \in M$ holds $||x - m_0|| \leq ||x - m||$. The theorem is a consequence of (12). Let X be a real unitary space and M be a subset of X. The functor OrtCompSet(M) yielding a non empty subset of X is defined by

(Def. 1) for every point x of X, $x \in it$ iff for every point y of X such that $y \in M$ holds (y|x) = 0.

Now we state the propositions:

- (20) Let us consider a real unitary space X, and a subset M of X. Then OrtCompSet(M) is linearly closed. PROOF: For every vectors v, u of X such that $v, u \in OrtCompSet(M)$ holds $v+u \in OrtCompSet(M)$. For every real number a and for every vector v of X such that $v \in OrtCompSet(M)$ holds $a \cdot v \in OrtCompSet(M)$. \Box
- (21) Let us consider a real unitary space X, a non empty subset M of X, and a sequence s_2 of X. Suppose rng $s_2 \subseteq$ the carrier of OrtComp(M) and s_2 is convergent. Then $\lim s_2 \in$ the carrier of OrtComp(M).
- (22) Let us consider a real unitary space S, a non empty subset M of S, and a subset L of S. Suppose L = the carrier of OrtComp(M). Then L is a closed subset of TopSpaceNorm(the real normed space of S). The theorem is a consequence of (21) and (12).
- (23) Let us consider a real unitary space X. Then every non empty subset of X is a subset of OrtComp(OrtComp(M)).
- (24) Let us consider a real unitary space X, and non empty subsets S, T of X. Suppose $S \subseteq T$. Then OrtComp(T) is a subspace of OrtComp(S).
- (25) Let us consider a real Hilbert space of X, and a subspace M of X. Suppose X is strict and the carrier of M is a closed subset of TopSpaceNorm(the real normed space of X). Then X is the direct sum of M and OrtComp(M). PROOF: For every object z, $z \in$ the carrier of M + OrtComp(M) iff $z \in$ the carrier of X. For every object z, $z \in$ the carrier of $M \cap OrtComp(M)$ iff $z \in \{0_X\}$. \Box
- (26) Let us consider a real Hilbert space of X, and a strict subspace M of X. Suppose X is strict and the carrier of M is a closed subset of TopSpaceNorm(the real normed space of X). Then M = OrtComp(OrtComp(M)).

PROOF: Reconsider N = the carrier of M as a subset of X. N is a subset of OrtComp(OrtComp(N)). The carrier of OrtComp(OrtComp(M)) $\subseteq N$. \Box

(27) Let us consider a real unitary space X, a subspace M of X, a subset K of X, and a subset L of TopSpaceNorm(the real normed space of X). Suppose the carrier of M = L and $K = \overline{L}$. Then K is linearly closed.

PROOF: For every vectors v, u of X such that $v, u \in K$ holds $v + u \in K$. For every real number a and for every vector v of X such that $v \in K$ holds $a \cdot v \in K$ by (10), [3, (15)]. \Box

- (28) Let us consider a real Hilbert space of X, and a non empty subset M of X. Suppose X is strict. Then
 - (i) the carrier of OrtComp(OrtComp(M)) is a closed subset of TopSpace-Norm(the real normed space of X), and
 - (ii) there exists a subset L of TopSpaceNorm(the real normed space of X) such that L = the carrier of Lin(M) and the carrier of OrtComp(Ort-Comp(M)) = \overline{L} , and
 - (iii) $\operatorname{Lin}(M)$ is a subspace of $\operatorname{OrtComp}(\operatorname{OrtComp}(M))$.
- (29) Let us consider a real Hilbert space of X, a strict subspace K of X, and a non empty subset M of X. Suppose X is strict and the carrier of K is a closed subset of TopSpaceNorm(the real normed space of X) and Lin(M) is a subspace of K. Then OrtComp(OrtComp(M)) is a subspace of K.

ACKNOWLEDGEMENT: The authors would also like to express our gratitude to Prof. Yasunari Shidama for his support and encouragement.

References

- Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Subspaces and cosets of subspace of real unitary space. *Formalized Mathematics*, 11(1):1–7, 2003.
- [4] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Topology of real unitary space. Formalized Mathematics, 11(1):33–38, 2003.
- [5] David G. Luenberger. Optimization by Vector Space Methods. John Wiley and Sons, 1969.
- [6] Kôsaku Yosida. Functional Analysis. Springer, 1980.

Accepted December 27, 2022