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Summary. In this article, we formalize the theorems about orthogonal
decomposition of Hilbert spaces, using the Mizar system [1], [2]. For any subspace
S of a Hilbert space H, any vector can be represented by the sum of a vector
in S and a vector orthogonal to S. The formalization of orthogonal complements
of Hilbert spaces has been stored in the Mizar Mathematical Library [4]. We
referred to [5] and [6] in the formalization.
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1. Preliminaries

From now on X denotes a real unitary space and x, y, y1, y2 denote points
of X. Now we state the proposition:

(1) Let us consider a real unitary space X, points x, y of X, and points z,
t of MetricSpaceNorm(the real normed space of X). If x = z and y = t,
then ‖x− y‖ = ρ(z, t).

Let us consider a real unitary spaceX, an element z of MetricSpaceNorm(the
real normed space of X), and a real number r. Now we state the propositions:

(2) There exists a point x of X such that

(i) x = z, and

(ii) Ball(z, r) = {y, where y is a point of X : ‖x− y‖ < r}.
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The theorem is a consequence of (1).

(3) There exists a point x of X such that

(i) x = z, and

(ii) Ball(z, r) = {y, where y is a point of X : ‖x− y‖ ¬ r}.

The theorem is a consequence of (1).

(4) Let us consider a real unitary space X, a sequence S of X, a sequence
S1 of MetricSpaceNorm(the real normed space of X), a point x of X, and
a point x2 of MetricSpaceNorm(the real normed space of X). Suppose
S = S1 and x = x2. Then S1 is convergent to x2 if and only if for every
real number r such that 0 < r there exists a natural number m such that
for every natural number n such that m ¬ n holds ‖S(n) − x‖ < r. The
theorem is a consequence of (1).

Let us consider a real unitary space X, a sequence S of X, and a sequ-
ence S1 of MetricSpaceNorm(the real normed space of X). Now we state the
propositions:

(5) If S = S1, then S1 is convergent iff S is convergent. The theorem is
a consequence of (4).

(6) If S = S1 and S1 is convergent, then limS1 = limS. The theorem is
a consequence of (5) and (4).

2. Topological Space Generated from Real Unitary Space

Now we state the proposition:

(7) Let us consider a real unitary space X, and a subset V of TopSpaceNorm
(the real normed space of X). Then V is open if and only if for every
point x of X such that x ∈ V there exists a real number r such that
r > 0 and {y, where y is a point of X : ‖x− y‖ < r} ⊆ V . The theorem is
a consequence of (2).

Let us consider a real unitary space X, a point x of X, and a real number
r. Now we state the propositions:

(8) {y, where y is a point of X : ‖x − y‖ < r} is an open subset of
TopSpaceNorm(the real normed space of X). The theorem is a consequ-
ence of (2).

(9) {y, where y is a point of X : ‖x − y‖ ¬ r} is a closed subset of
TopSpaceNorm(the real normed space of X). The theorem is a consequ-
ence of (3).
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(10) Let us consider a real unitary spaceM , a subsetX of TopSpaceNorm(the
real normed space of M), and an object x. Then x ∈ X if and only if there
exists a sequence S of M such that for every natural number n, S(n) ∈ X
and S is convergent and limS = x. The theorem is a consequence of (5)
and (6).

(11) Let us consider a real unitary space M , and a subset X of TopSpaceNorm
(the real normed space of M). Then X is closed if and only if for every
sequence S of M such that for every natural number n, S(n) ∈ X and S

is convergent holds limS ∈ X. The theorem is a consequence of (5) and
(6).

(12) Let us consider a real unitary space S, and a subset X of S. Then X is
a closed subset of TopSpaceNorm(the real normed space of S) if and only
if for every sequence s1 of S such that rng s1 ⊆ X and s1 is convergent
holds lim s1 ∈ X. The theorem is a consequence of (11).

(13) Let us consider a real unitary space S, a point x of S, a point y of
MetricSpaceNorm(the real normed space of S), and a real number r. If
x = y, then Ball(x, r) = Ball(y, r). The theorem is a consequence of (1).

(14) Let us consider a real unitary space S. Then TopSpaceNorm(the real
normed space of S) = TopUnitSpaceS. The theorem is a consequence of
(13).

Let us consider a real unitary space S, a subset U of S, and a subset V of
TopSpaceNorm(the real normed space of S). Now we state the propositions:

(15) If U = V , then U is closed iff V is closed.

(16) If U = V , then U is open iff V is open.

(17) Let us consider a real unitary space X, a subspace M of X, and points
x, m0 of X. Suppose m0 ∈ M . Then for every point m of X such that
m ∈ M holds ‖x −m0‖ ¬ ‖x −m‖ if and only if for every point m of X
such that m ∈M holds ((x−m0)|m) = 0.

(18) Let us consider a real unitary space X, a subspace M of X, and points
x, m1, m2 of X. Suppose m1, m2 ∈ M and for every point m of X such
that m ∈M holds ‖x−m1‖ ¬ ‖x−m‖ and for every point m of X such
that m ∈M holds ‖x−m2‖ ¬ ‖x−m‖. Then m1 = m2.

(19) Let us consider a real Hilbert space of X, a subspace M of X, and a point
x of X. Suppose the carrier of M is a closed subset of TopSpaceNorm(the
real normed space of X). Then there exists a point m0 of X such that

(i) m0 ∈M , and

(ii) for every point m of X such that m ∈M holds ‖x−m0‖ ¬ ‖x−m‖.
The theorem is a consequence of (12).
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Let X be a real unitary space and M be a subset of X. The functor
OrtCompSet(M) yielding a non empty subset of X is defined by

(Def. 1) for every point x of X, x ∈ it iff for every point y of X such that y ∈M
holds (y|x) = 0.

Now we state the propositions:

(20) Let us consider a real unitary space X, and a subset M of X. Then
OrtCompSet(M) is linearly closed.
Proof: For every vectors v, u of X such that v, u ∈ OrtCompSet(M)
holds v+u ∈ OrtCompSet(M). For every real number a and for every vec-
tor v of X such that v ∈ OrtCompSet(M) holds a · v ∈ OrtCompSet(M).
�

(21) Let us consider a real unitary space X, a non empty subset M of X, and
a sequence s2 of X. Suppose rng s2 ⊆ the carrier of OrtComp(M) and s2
is convergent. Then lim s2 ∈ the carrier of OrtComp(M).

(22) Let us consider a real unitary space S, a non empty subset M of S,
and a subset L of S. Suppose L = the carrier of OrtComp(M). Then
L is a closed subset of TopSpaceNorm(the real normed space of S). The
theorem is a consequence of (21) and (12).

(23) Let us consider a real unitary space X. Then every non empty subset of
X is a subset of OrtComp(OrtComp(M)).

(24) Let us consider a real unitary space X, and non empty subsets S, T of
X. Suppose S ⊆ T . Then OrtComp(T ) is a subspace of OrtComp(S).

(25) Let us consider a real Hilbert space of X, and a subspace M of X. Suppo-
se X is strict and the carrier of M is a closed subset of TopSpaceNorm(the
real normed space ofX). ThenX is the direct sum ofM and OrtComp(M).
Proof: For every object z, z ∈ the carrier of M + OrtComp(M) iff z ∈
the carrier of X. For every object z, z ∈ the carrier of M ∩OrtComp(M)
iff z ∈ {0X}. �

(26) Let us consider a real Hilbert space of X, and a strict subspace M

of X. Suppose X is strict and the carrier of M is a closed subset of
TopSpaceNorm(the real normed space of X).
Then M = OrtComp(OrtComp(M)).
Proof: Reconsider N = the carrier of M as a subset of X. N is a subset of
OrtComp(OrtComp(N)). The carrier of OrtComp(OrtComp(M)) ⊆ N .
�

(27) Let us consider a real unitary space X, a subspace M of X, a subset
K of X, and a subset L of TopSpaceNorm(the real normed space of X).
Suppose the carrier of M = L and K = L. Then K is linearly closed.
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Proof: For every vectors v, u of X such that v, u ∈ K holds v + u ∈ K.
For every real number a and for every vector v of X such that v ∈ K holds
a · v ∈ K by (10), [3, (15)]. �

(28) Let us consider a real Hilbert space of X, and a non empty subset M of
X. Suppose X is strict. Then

(i) the carrier of OrtComp(OrtComp(M)) is a closed subset of TopSpace-
Norm(the real normed space of X), and

(ii) there exists a subset L of TopSpaceNorm(the real normed space of X)
such that L = the carrier of Lin(M) and the carrier of OrtComp(Ort-
Comp(M)) = L, and

(iii) Lin(M) is a subspace of OrtComp(OrtComp(M)).

(29) Let us consider a real Hilbert space of X, a strict subspace K of X,
and a non empty subset M of X. Suppose X is strict and the carrier of
K is a closed subset of TopSpaceNorm(the real normed space of X) and
Lin(M) is a subspace of K. Then OrtComp(OrtComp(M)) is a subspace
of K.
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