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Summary. We continue the formalization of field theory in Mizar [3], [4],
[6]. We introduce separability of polynomials and field extensions: a polynomial
is separable, if it has no multiple roots in its splitting field; an algebraic extension
E of F is separable, if the minimal polynomial of each a ∈ E is separable. We
prove among others that a polynomial q(X) is separable if and only if the gcd
of q(X) and its (formal) derivation equals 1 – and that a irreducible polynomial
q(X) is separable if and only if its derivation is not 0 – and that q(X) is separable
if and only if the number of q(X)’s roots in some field extension equals the degree
of q(X).

A field F is called perfect if all irreducible polynomials over F are separable,
and as a consequence every algebraic extension of F is separable. Every field with
characteristic 0 is perfect [15]. To also consider separability in fields with prime
characteristic p we define the rings Rp = { ap | a ∈ R} and the polynomials
Xn − a for a ∈ R. Then we show that a field F with prime characteristic p is
separable if and only if F = F p and that finite fields are perfect. Finally we
prove that for fields F ⊆ K ⊆ E where E is a separable extension of F both E
is separable over K and K is separable over F .
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Introduction

In this paper we formalize separability [9] using the Mizar formalism [3], [4],
[8]. A polynomial is separable, if it has no multiple roots in its splitting field;

c© 2024 The Author(s) / AMU
(Association of Mizar Users)
under CC BY-SA 3.0 license33

https://sciendo.com/journal/forma
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/field_15.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


34 christoph schwarzweller

an algebraic extension E of F is separable, if the minimal polynomial of each
a ∈ E is separable [10], [12], [7].

In the first two sections we provide some technical lemmas necessary later.
They concern for example divisibility and gcds of integers, in particular we show
that a prime p divides

( p
m

)
for 1 ¬ m < p. We also need a number of results on

powers of polynomials among them that a polynomial q(X) divides (X − a)n if
and only if q(X) = (X − a)‘l for some 0 ¬ l ¬ n or that a is an n-fold root of
(X − a)n.

In the third section we define the ring Rp = { ap | a ∈ R} for a given ring R
with prime characteristic p. In order to do so we proved that (a+ b)p = ap+ bp,
also called freshman’s dream.

Then we define the polynomial q(X) = Xn − a necessary to describe sepa-
rability in fields with characteristic p 6= 0. Note that the roots of q(X) are the
elements b with bp = a, so that q(X) = (X − b)p if there exists such a b and is
irreducible otherwise.

In section five we deal with multiplicity of polynomials. We show among
others that a polynomial q(X) has a multiple root (in a field extension where
q(X) splits) if and only if the gcd of q(X) and its (formal) derivation is not
1. For irreducible q(X) this can be sharpend to q(X)’s derivition being 0. We
also prove that in fields with characteristic p 6= 0 the derivation of a polynomial
q(X) is 0 if and only if there exists a polynomial r(X) such that q(X) = r(Xp).

The next two sections are devoted to separability of polynomials. We define
a polynomial q(X) to be separable, if it has no multiple roots in its splitting
field. Note that the splitting field of q(X) is unique only up to isomorphism, so
that we had to prove that the definition indeed is independent of a particular
splitting field. We prove a number of characterizations of separability found in
the literature, for example that q(X) is separable if and only if the number of
q(X)’s roots equals the degree of q(X) in some field extension if and only if q(X)
is square free in every field extension in which q splits. Then we introduce perfect
fields, e.g. fields in which every irreducible polynomial is separable. Fields with
characteristic 0 are perfect (see [15]). Fields F with characteristic p 6= 0 are
perfect if and only if F = F p. This is shown using the polynomial Xp−a, which
is inseparable and irreducible if there is no b with bp = a. Because in finite fields
the multiplicative group is cyclic in finite fields such a b always exists and so
finite field are perfect.

In the last section we define separable extensions: an algebraic extension
is separable if the minimal polynomial of every a ∈ E is separable. As an
easy consequence we get that for p(X) ∈ F [X]\F , where F is perfect, the
splitting field of p(X) is both normal and separable. We also show that for
fields F ⊆ K ⊆ E where E is a separable extension of F both E is a separable
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extension of K and K is a separable extension of F .

1. Preliminaries

Let R be a ring and k be a non zero natural number. One can check that
(0R)k reduces to 0R.

Let k be a natural number. Note that (1R)k reduces to 1R.
Let p be a prime number. Observe that there exists a field which is finite

and has characteristic p.
Let F be a finite field. Let us observe that char(F ) is prime.
Let R be a non degenerated ring. One can verify that every element of

the carrier of Polynom-RingR which is monic is also non zero.
Let F be a field, p be a non constant element of the carrier of Polynom-RingF ,

and a be a non zero element of F . One can verify that the functor a · p yields
a non constant element of the carrier of Polynom-RingF . Now we state the
propositions:

(1) Let us consider a natural number n, and a non zero natural number m.
Then n

m is a natural number if and only if m | n.
(2) Let us consider a prime number p, and natural numbers n, a, b. If p | a

and p - b and n = a
b , then p | n. The theorem is a consequence of (1).

(3) Let us consider a prime number p, and a non zero natural number n. If
n < p, then gcd(n, p) = 1.

(4) Let us consider a non zero natural number n, and a prime number p.
Then there exist natural numbers k, m such that

(i) n = m · pk, and

(ii) p - m.

The theorem is a consequence of (1).

Let R be an integral domain, a be a non zero element of R, and n be a natural
number. One can check that an is non zero.

Now we state the propositions:

(5) Let us consider a ring R, an element a of R, and an even natural number
n. Then (−a)n = an.
Proof: Define P[natural number] ≡ if $1 is even, then (−a)$1 = a$1 . For
every natural number k, P[k] from [2, Sch. 4]. �

(6) Let us consider a ring R, an element a of R, and an odd natural number
n. Then (−a)n = −an.
Proof: Define P[natural number] ≡ if $1 is odd, then (−a)$1 = −a$1 . For
every natural number k, P[k] from [2, Sch. 4]. �
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(7) Let us consider a ring R with characteristic 2, and an element a of R.
Then −a = a.

(8) Let us consider an add-associative, right zeroed, right complementable,
Abelian, non empty double loop structure R, and an integer i. Then
i ? 0R = 0R.
Proof: Define P[integer] ≡ $1 ? 0R = 0R. For every integer u such that
P[u] holds P[u−1] and P[u+ 1] by [14, (64), (60), (62)]. For every integer
i, P[i] from [17, Sch. 4]. �

Let F be a finite field. Let us observe that MultGroup(F ) is cyclic.
Now we state the propositions:

(9) Let us consider a field F , and an extension E of F . Then MultGroup(F )
is a subgroup of MultGroup(E).

(10) Let us consider a skew field R, a natural number n, an element a of R,
and an element b of MultGroup(R). If a = b, then an = bn.
Proof: Set M = MultGroup(R). Define P[natural number] ≡ for every
element a of R for every element b of M such that a = b holds a$1 = b$1 .
P[0] by [13, (8)], [1, (17)], [18, (25)]. For every natural number k, P[k]
from [2, Sch. 2]. �

Let us consider a ring R, a polynomial p over R, and elements a, b of R.
Now we state the propositions:

(11) (a+ b) · p = a · p+ b · p.
(12) (a · b) · p = a · (b · p).

Now we state the propositions:

(13) Let us consider a ring R, an element q of the carrier of Polynom-RingR,
a polynomial p over R, and a natural number n. If p = q, then n ·(1R) ·p =
n · q.
Proof: Define P[natural number] ≡ for every element q of the carrier
of Polynom-RingR for every polynomial p over R such that p = q holds
$1 · (1R) · p = $1 · q. P[0] by [13, (12)], [11, (26)]. For every natural number
k, P[k] from [2, Sch. 2]. �

(14) Let us consider a ring R, an element q of the carrier of Polynom-RingR,
a polynomial p over R, and natural numbers n, j. If p = n · q, then
p(j) = n · q(j).
Proof: Define P[natural number] ≡ for every element q of the carrier of
Polynom-RingR for every polynomial p over R for every natural number
j such that p = $1 · q holds p(j) = $1 · q(j). P[0] by [13, (12)], [16, (7)].
For every natural number k, P[k] from [2, Sch. 2]. �

(15) Let us consider a field F , an element a of F , a polynomial p over F ,
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an extension E of F , an element b of E, and a polynomial q over E. If
a = b and p = q, then a · p = b · q.

(16) Let us consider a field F , an irreducible element p of the carrier of
Polynom-RingF , and an element q of the carrier of Polynom-RingF . If
q | p, then q is unital or associated to p.

(17) Let us consider a field F , an irreducible element p of the carrier of
Polynom-RingF , and a monic element q of the carrier of Polynom-RingF .
If q | p, then q = 1.F or q = NormPoly p.

Let us consider a field F and a non zero element p of the carrier of Polynom-RingF .
Now we state the propositions:

(18) p is reducible if and only if p is a unit of Polynom-RingF or there exists
a monic element q of the carrier of Polynom-RingF such that q | p and
1 ¬ deg(q) < deg(p).

(19) p is reducible if and only if there exists a monic element q of the carrier
of Polynom-RingF such that q | p and 1 ¬ deg(q) < deg(p).

2. On Powers of Polynomials

Let R be an integral domain, p be a non zero polynomial over R, and n be
a natural number. Observe that pn is non zero.

Let F be a field, p be a non constant polynomial over F , and n be a non
zero natural number. One can verify that pn is non constant.

Let p be a non constant element of the carrier of Polynom-RingF . Let us
note that pn is non constant.

Let p be a constant element of the carrier of Polynom-RingF . One can check
that pn is constant and pn is constant.

Now we state the propositions:

(20) Let us consider an integral domain R, a polynomial p over R, and a na-
tural number n. Then LC pn = (LC p)n.

(21) Let us consider an integral domain R, a non zero polynomial p over R,
and a natural number n. Then deg(pn) = n · (deg(p)).

(22) Let us consider a commutative ring R, a polynomial p over R, and a non
zero natural number n. Then (pn)(0) = p(0)n.
Proof: Define P[natural number] ≡ (p$1)(0) = p(0)$1 . For every natural
number k such that k ­ 1 holds P[k] from [2, Sch. 8]. �

(23) Let us consider an integral domain R, a non zero element a of R, and
a natural number n. Then 〈0R, a〉n = an · (〈0R, 1R〉n).
Proof: Define P[natural number] ≡ 〈0R, a〉$1 = a$1 · (〈0R, 1R〉$1). For
every natural number k, P[k] from [2, Sch. 2]. �
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(24) Let us consider a field F , an element a of F , and a natural number n.
Then (a�F )n = an�F .
Proof: Define P[natural number] ≡ (a�F )$1 = a$1�F . For every natural
number k, P[k] from [2, Sch. 2]. �

(25) Let us consider a field F , a non zero element a of F , and natural numbers
n, m. Then (anpoly(a,m))n = anpoly(an, n ·m).
Proof: Define P[natural number] ≡ for every natural numberm, (anpoly(a,m))$1 =
anpoly(a$1 , $1 ·m). For every natural number k, P[k] from [2, Sch. 2]. �

(26) Let us consider a field F , an element a of F , and a natural number n.
Then deg((X− a)n) = n.
Proof: Define P[natural number] ≡ deg((X− a)$1) = $1. For every natu-
ral number k, P[k] from [2, Sch. 2]. �

(27) Let us consider a field F , an element a of F , and a non zero natural
number n. Then Roots((X− a)n) = {a}.
Proof: Define P[natural number] ≡ Roots((X− a)$1) = {a}. For every
natural number k such that k ­ 1 holds P[k] from [2, Sch. 8]. �

Let us consider a field F , an element a of F , and a natural number n. Now
we state the propositions:

(28) multiplicity((X− a)n, a) = n. The theorem is a consequence of (26).

(29) BRoots((X− a)n) = n.

Proof: Define P[natural number] ≡ BRoots((X− a)$1) = $1. 0 = deg((X− a)0).
For every natural number k, P[k] from [2, Sch. 2]. �

Now we state the propositions:

(30) Let us consider a non degenerated commutative ring R, a commutative
ring extension S of R, an element a of R, an element b of S, and an element
n of N. If a = b, then (X− b)n = (X− a)n.
Proof: Define P[natural number] ≡ (X− b)$1 = (X− a)$1 . For every na-
tural number k, P[k] from [2, Sch. 2]. �

(31) Let us consider a field F , a monic polynomial p over F , an element a of
F , and a natural number n. Then p | (X− a)n if and only if there exists
a natural number l such that l ¬ n and p = (X− a)l. The theorem is
a consequence of (27), (28), and (26).

(32) Let us consider a non degenerated commutative ring R, elements a, b of
R, and a natural number n. Then eval((X+ a)n, b) = (a+ b)n.
Proof: Define P[natural number] ≡ eval((X+ a)$1 , b) = (a+ b)$1 . For
every natural number k, P[k] from [2, Sch. 2]. �

(33) Let us consider a field F , an element a of F , and a non zero natural
number n. Then (X− a)n splits in F .
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Proof: Define P[natural number] ≡ (X− a)$1 splits in F . For every na-
tural number k such that k ­ 1 holds P[k] from [2, Sch. 8]. �

(34) Let us consider a field F1, an F1-homomorphic field F2, a homomorphism
h from F1 to F2, an element a of F1, and a natural number n. Then
(PolyHom(h))((X− a)n) = (X−h(a))n.
Proof: Define P[natural number] ≡ (PolyHom(h))((X− a)$1) = (X−h(a))$1 .
For every natural number k, P[k] from [2, Sch. 2]. �

3. The Rings Rp for Primes p

Let p be a prime number. One can verify that every commutative ring with
characteristic p is non degenerated.

Now we state the propositions:

(35) Let us consider a prime number p, a commutative ring R with characte-
ristic p, and an element a of R. Then p · a = 0R.

(36) Let us consider a prime number p, a commutative ring R with charac-
teristic p, a non zero element a of R, and a non zero natural number n. If
n < p, then n · a 6= 0R.
Proof: Define P[natural number] ≡ $1 6= 0 and $1 ·a = 0R. P[p]. Consider
u being a natural number such that P[u] and for every natural number v
such that P[v] holds u ¬ v from [2, Sch. 5]. P[p]. �

Let us consider a prime number p, a commutative ring R with characteri-
stic p, an element a of R, and a natural number n. Now we state the propositions:

(37) n · p · a = 0R.
Proof: Define P[natural number] ≡ $1 · p · a = 0R. For every natural
number k, P[k] from [2, Sch. 2]. �

(38) If p | n, then n · a = 0R. The theorem is a consequence of (37).

Now we state the propositions:

(39) Let us consider a prime number p, a commutative ring R with characte-
ristic p, a non zero element a of R, and a natural number n. Then p | n if
and only if n · a = 0R. The theorem is a consequence of (37) and (36).

(40) Let us consider a prime number p, a commutative ring R with characte-
ristic p, and elements a, b of R. Then (a+ b)p = ap + bp.
Proof: Set F = 〈

(p
0

)
a0bp, . . . ,

(p
p

)
apb0〉. Consider f1 being a sequence of

the carrier of R such that
∑
F = f1(lenF ) and f1(0) = 0R and for every

natural number j and for every element v of R such that j < lenF and
v = F (j + 1) holds f1(j + 1) = f1(j) + v. Define P[element of N] ≡ $1 = 0
and f1($1) = 0R or 0 < $1 < lenF and f1($1) = ap or $1 = lenF and
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f1($1) = ap + bp. For every element j of N such that 0 ¬ j ¬ lenF holds
P[j] from [17, Sch. 7]. �

(41) Let us consider a prime number p, a commutative ring R with characteri-
stic p, elements a, b ofR, and a natural number i. Then (a+ b)p

i

= ap
i
+bp

i
.

Proof: Define P[natural number] ≡ (a+ b)p
$1 = ap

$1 + bp
$1 . For every

natural number k, P[k] from [2, Sch. 2]. �

(42) Let us consider a prime number p, a commutative ring R with charac-
teristic p, and an element a of R. Then −ap = (−a)p. The theorem is
a consequence of (40).

Let p be a prime number and R be a commutative ring with characteristic p.
The functor Rp yielding a strict double loop structure is defined by

(Def. 1) the carrier of it = the set of all ap where a is an element ofR and the addition
of it = (the addition of R) � (the carrier of it) and the multiplication of
it = (the multiplication of R) � (the carrier of it) and 1it = 1R and
0it = 0R.

Let us observe that Rp is non degenerated.
Let us consider a prime number p, a commutative ring R with characteri-

stic p, elements a, b of R, and elements x, y of Rp. Now we state the propositions:

(43) If a = x and b = y, then a+ b = x+ y.

(44) If a = x and b = y, then a · b = x · y.
Let p be a prime number and R be a commutative ring with characteristic p.

Note that Rp is Abelian, add-associative, right zeroed, and right complementable
and Rp is commutative, associative, well unital, and distributive.

Let F be a field with characteristic p. One can verify that F p is almost left
invertible.

Let R be a commutative ring with characteristic p. Observe that Rp has
characteristic p.

Let F be a field with characteristic p. One can verify that the functor F p

yields a strict subfield of F .

4. The Polynomials Xn − a

Let R be a unital, non empty double loop structure, a be an element of R,

and n be a non zero natural number. The functor X(n,a) yielding a sequence
of R is defined by the term

(Def. 2) 0.R+·[0 7−→ −a, n 7−→ 1R].

Let us observe that X(n,a) is finite-Support.
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Let R be a unital, non degenerated double loop structure. One can verify
that X(n,a) is non constant and monic.

Let R be a non degenerated ring. One can verify that the functor X(n,a)

yields a non constant, monic element of the carrier of Polynom-RingR. Now we
state the proposition:

(45) Let us consider a unital, non degenerated double loop structure L, an ele-
ment a of L, and a non zero natural number n. Then

(i) (X(n,a))(0) = −a, and

(ii) (X(n,a))(n) = 1L, and

(iii) for every natural number m such that m 6= 0 and m 6= n holds
(X(n,a))(m) = 0L.

Let us consider a unital, non degenerated double loop structure R, a non
zero natural number n, and an element a of R. Now we state the propositions:

(46) deg(X(n,a)) = n.

(47) LCX(n,a) = 1R.

Now we state the propositions:

(48) Let us consider a non degenerated ring R, a non zero natural number n,
and elements a, x of R. Then eval(X(n,a), x) = xn − a.
Proof: Set q = X(n,a). Consider F being a finite sequence of elements
of R such that eval(q, x) =

∑
F and lenF = len q and for every element

j of N such that j ∈ domF holds F (j) = q(j −′ 1) · powerR(x, j −′ 1).
n = deg(q). Consider f1 being a sequence of the carrier of R such that∑
F = f1(lenF ) and f1(0) = 0R and for every natural number j and

for every element v of R such that j < lenF and v = F (j + 1) holds
f1(j + 1) = f1(j) + v. Define P[element of N] ≡ $1 = 0 and f1($1) = 0R
or 0 < $1 < lenF and f1($1) = −a or $1 = lenF and f1($1) = xn− a. For
every element j of N such that 0 ¬ j ¬ lenF holds P[j] from [17, Sch. 7].
�

(49) Let us consider a field F , a non zero natural number n, and elements a,
b of F . Then b is a root of X(n,a) if and only if bn = a. The theorem is
a consequence of (48).

(50) Let us consider a field F , an extension E of F , a non zero natural number
n, an element a of F , and an element b of E. If b = a, then X(n,a) = X(n,b).
The theorem is a consequence of (43).

(51) Let us consider a non degenerated, commutative ring R, a non trivial
natural number n, and an element a of R. Then (Deriv(R))(X(n,a)) =
n · (X(n−1,0R)). The theorem is a consequence of (43) and (14).
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(52) Let us consider a prime number p, a commutative ring R with charac-
teristic p, and an element a of R. Then (Deriv(R))(X(p,a)) = 0.R. The
theorem is a consequence of (43) and (38).

(53) Let us consider a prime number p, a field F with characteristic p, and
elements a, b of F . If bp = a, then X(p,a) = (X− b)p. The theorem is
a consequence of (7), (43), (40), (22), and (6).

(54) Let us consider a prime number p, a field F with characteristic p, and
an element a of F . Suppose there exists no element b of F such that
bp = a. Then X(p,a) is irreducible. The theorem is a consequence of (50),
(49), (53), (18), (31), (22), (5), (6), (3), (9), and (10).

5. More on Multiplicity of Roots

Now we state the propositions:

(55) Let us consider a field F , a non zero polynomial p over F , and an element
a of F . Then deg(p) ­ multiplicity(p, a).

(56) Let us consider a field F , a non zero polynomial p over F , an ele-
ment a of F , and an element n of N. Then (X− a)n | p if and only if
multiplicity(p, a) ­ n.

(57) Let us consider a field F , an extension E of F , a non zero element p of
the carrier of Polynom-RingF , and an element a of E. Then a is a root of
p in E if and only if multiplicity(p, a) ­ 1. The theorem is a consequence
of (56).

(58) Let us consider a field F , a non zero polynomial p over F , an extension
E of F , and a non zero polynomial q over E. Suppose q = p. Let us
consider an E-extending extension K of F , and an element a of K. Then
multiplicity(q, a) = multiplicity(p, a).

(59) Let us consider a field F , a non zero polynomial p over F , an extension
E of F , and a non zero polynomial q over E. Suppose q = p. Let us
consider an element a of E. Then multiplicity(q, a) = multiplicity(p, a).
The theorem is a consequence of (58).

(60) Let us consider a field F , a non zero polynomial p over F , a non ze-
ro element c of F , and an element a of F . Then multiplicity(c · p, a) =
multiplicity(p, a).

(61) Let us consider a field F , an extension E of F , a non zero polyno-
mial p over F , a non zero element c of F , and an element a of E. Then
multiplicity(c · p, a) = multiplicity(p, a). The theorem is a consequence of
(15) and (59).
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(62) Let us consider a field F , an extension E of F , non zero polynomials p, q
over F , and an element a of E. Then multiplicity(p∗q, a) = multiplicity(p, a)+
multiplicity(q, a). The theorem is a consequence of (59).

(63) Let us consider a field F , a non zero polynomial p over F , extensions
E1, E2 of F , and a function i from E1 into E2. Suppose i is F -fixing and
isomorphism. Let us consider an element a of E1. Then multiplicity(p, a) =
multiplicity(p, i(a)).
Proof: Set n = multiplicity(p, a). Reconsider E3 = E2 as an E1-homomorphic
field. Reconsider h = i as an additive function from E1 into E3. Reconsider
X1 = (X− a)n as an element of the carrier of Polynom-RingE1. Recon-
sider X2 = (X− a)n+1 as an element of the carrier of Polynom-RingE1.
(PolyHom(h))(X1) = (X−h(a))n and (PolyHom(h))(X2) = (X−h(a))n+1.
(PolyHom(h))(p) = p by [5, (6), (12)]. �

(64) Let us consider a field F , a non zero polynomial p over F , an exten-
sion E of F , and an element a of F . Then multiplicity(p,@(a,E)) =
multiplicity(p, a).

(65) Let us consider a field F , a non zero polynomial p over F , an extension
E of F , an E-extending extension K of F , and an element a of E. Then
multiplicity(p,@(a,K)) = multiplicity(p, a).

(66) Let us consider a field F , a non zero polynomial p over F , a polynomial
q over F , and an element a of F . Suppose p = (X− a)multiplicity(p,a) ∗ q.
Then eval(q, a) 6= 0F .

(67) Let us consider a field F , and a non zero polynomial p over F . Then

Roots(p) < BRoots(p) if and only if there exists an element a of F such
that multiplicity(p, a) > 1.

(68) Let us consider a field F , a non zero polynomial p over F , and an element
a of F . Then multiplicity(NormPoly p, a) = multiplicity(p, a).

(69) Let us consider a field F , and a non constant polynomial p over F . Then

deg(p) = Roots(p) if and only if p splits in F and for every element a of
F , multiplicity(p, a) ¬ 1. The theorem is a consequence of (67) and (68).

(70) Let us consider a field F , a non zero element p of the carrier of Polynom-RingF ,
and an element a of F . Suppose a is a root of p. Then

(i) multiplicity(p, a) = 1 iff eval((Deriv(F ))(p), a) 6= 0F , and

(ii) multiplicity(p, a) > 1 iff eval((Deriv(F ))(p), a) = 0F .

The theorem is a consequence of (66).

(71) Let us consider a field F , and a non zero element p of the carrier of
Polynom-RingF . Then there exists an element a of F such that multiplicity(p, a) >
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1 if and only if gcd(p, (Deriv(F ))(p)) has roots. The theorem is a conse-
quence of (70).

(72) Let us consider a field F , a non zero element p of the carrier of Polynom-RingF ,
and an extension E of F . Suppose p splits in E. Then there exists an ele-
ment a of E such that multiplicity(p, a) > 1 if and only if gcd(p, (Deriv(F ))(p)) 6=
1.F . The theorem is a consequence of (70).

(73) Let us consider a field F , an irreducible element p of the carrier of
Polynom-RingF , and an extension E of F . Suppose p splits in E. Then
there exists an element a of E such that multiplicity(p, a) > 1 if and only
if (Deriv(F ))(p) = 0.F . The theorem is a consequence of (17) and (72).

(74) Let us consider a prime number p, a commutative ring R with cha-
racteristic p, and an element f of the carrier of Polynom-RingR. Then
(Deriv(R))(f) = 0.R if and only if for every natural number i such that
i ∈ Support f holds p | i. The theorem is a consequence of (38) and (39).

6. Separable Polynomials

Let F be a field and p be a non constant element of the carrier of Polynom-RingF .
We say that p is separable if and only if

(Def. 3) for every element a of the splitting field of p such that a is a root of p in
the splitting field of p holds multiplicity(p, a) = 1.

We introduce the notation p is inseparable as an antonym for p is separable.
Let us observe that there exists a non constant, monic element of the carrier

of Polynom-RingF which is separable and there exists a non constant, monic
element of the carrier of Polynom-RingF which is inseparable.

Let us consider a field F and a non constant element p of the carrier of
Polynom-RingF . Now we state the propositions:

(75) p is separable if and only if for every extension E of F such that p
splits in E for every element a of E such that a is a root of p in E holds
multiplicity(p, a) = 1. The theorem is a consequence of (63).

(76) p is separable if and only if there exists an extension E of F such that
p splits in E and for every element a of E such that a is a root of p in E
holds multiplicity(p, a) = 1. The theorem is a consequence of (63).

(77) p is separable if and only if for every extension E of F and for every
element a of E, multiplicity(p, a) ¬ 1. The theorem is a consequence of
(58), (57), (75), and (76).

(78) p is separable if and only if there exists an extension E of F such that
p splits in E and for every element a of E, multiplicity(p, a) ¬ 1. The
theorem is a consequence of (57) and (76).
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Now we state the propositions:

(79) Let us consider a field F , and a separable, non constant element p of

the carrier of Polynom-RingF . Then deg(p) = Roots(p) if and only if p
splits in F . The theorem is a consequence of (75), (60), and (69).

(80) Let us consider a field F , and a non constant element p of the carrier of
Polynom-RingF . Then p is separable if and only if gcd(p, (Deriv(F ))(p)) =
1.F . The theorem is a consequence of (77) and (72).

(81) Let us consider a field F , and a non constant, irreducible element p of
the carrier of Polynom-RingF . Then p is separable if and only if (Deriv(F ))(p) 6=
0.F . The theorem is a consequence of (77) and (73).

(82) Let us consider a field F , and a non constant element p of the carrier of
Polynom-RingF . Then p is separable if and only if for every splitting field
E of p, there exists an element a of E and there exists a product of linear
polynomials q of E and Roots(E, p) such that p = a · q. The theorem is
a consequence of (75), (59), and (60).

(83) Let us consider a field F , and a non constant, monic element p of the car-
rier of Polynom-RingF . Then p is separable if and only if for every splitting
field E of p, p is a product of linear polynomials of E and Roots(E, p).
The theorem is a consequence of (82).

Let us consider a field F and a non constant element p of the carrier of
Polynom-RingF . Now we state the propositions:

(84) p is separable if and only if for every extension E of F such that p splits
in E holds p is square-free over E. The theorem is a consequence of (60),
(75), and (56).

(85) p is separable if and only if there exists an extension E of F such that

Roots(E, p) = deg(p). The theorem is a consequence of (77), (58), (79),
(69), and (78).

Now we state the propositions:

(86) Let us consider a field F , a non constant element p of the carrier of
Polynom-RingF , and a non zero element a of F . Then a · p is separable
if and only if p is separable. The theorem is a consequence of (15), (75),
and (61).

(87) Let us consider a field F , non constant elements p, q of the carrier of
Polynom-RingF , and an element r of the carrier of Polynom-RingF . If
p = q ∗ r, then if p is separable, then q is separable. The theorem is
a consequence of (77) and (62).

(88) Let us consider a field F , an extension E of F , a non constant element p of
the carrier of Polynom-RingF , and a non constant element q of the carrier
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of Polynom-RingE. If p = q, then p is separable iff q is separable. The
theorem is a consequence of (80).

Let F be a field and a be an element of F . One can verify that X− a is
separable and irreducible.

Let n be a non trivial natural number. Note that (X− a)n is inseparable and
reducible.

Let F be a field with characteristic 0. One can check that every irreducible
element of the carrier of Polynom-RingF is separable.

Now we state the proposition:

(89) Let us consider a prime number p, a field F with characteristic p, and
an element a of F . If a /∈ F p, then X(p,a) is irreducible and inseparable.
The theorem is a consequence of (54), (50), (49), (53), (28), and (77).

7. Perfect Fields

Let F be a field. We say that F is perfect if and only if

(Def. 4) every irreducible element of the carrier of Polynom-RingF is separable.

Let us note that every field with characteristic 0 is perfect.
Now we state the propositions:

(90) Let us consider a prime number p, a field F with characteristic p, and
an element q of the carrier of Polynom-RingF . Suppose for every natural
number i such that i ∈ Support q holds p | i and there exists an element a
of F such that ap = q(i). Then there exists an element r of the carrier of
Polynom-RingF such that rp = q. The theorem is a consequence of (25)
and (40).

(91) Let us consider a prime number p, and a field F with characteristic p.
Then F is perfect if and only if F ≈ F p. The theorem is a consequence of
(89), (75), (57), (73), (74), and (90).

(92) Let us consider a field F . Then F is finite if and only if there exists
a non zero natural number n such that F = (char(F ))n. The theorem is
a consequence of (39) and (4).

(93) Let us consider a prime number p, a finite field F with characteristic p,
and an element a of F . Then there exists an element b of F such that
bp = a. The theorem is a consequence of (92) and (10).

Observe that every finite field is perfect and every algebraic closed field is
perfect.
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8. Separable Extensions

Let F be a field, E be an extension of F , and a be an element of E. We say
that a is F -separable if and only if

(Def. 5) there exists an F-algebraic element b of E such that b = a and MinPoly(b, F )
is separable.

One can verify that there exists an element of E which is non zero and
F -separable and every element of E which is F -separable is also F-algebraic.

Let a be a F -separable element of E. Observe that MinPoly(a, F ) is separa-
ble.

We say that E is F -separable if and only if

(Def. 6) E is F-algebraic and every element of E is F -separable.

We introduce the notation E is F -inseparable as an antonym for E is F -
separable.

Let us observe that there exists an extension of F which is F -finite and
F -separable and every extension of F which is F -separable is also F-algebraic.

Let E be a F -separable extension of F . Note that every element of E is
F -separable.

Now we state the proposition:

(94) Let us consider a field F , an extension K of F , and a K-extending
extension E of F . Suppose E is F -separable. Then

(i) E is K-separable, and

(ii) K is F -separable.

The theorem is a consequence of (88) and (87).

Let F be a perfect field. One can verify that every F-algebraic extension
of F is F -separable and there exists an extension of F which is F -normal and
F -separable.

Let p be a non constant element of the carrier of Polynom-RingF . Let us
note that every splitting field of p is F -normal and F -separable.
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