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Summary. We continue the formalization of field theory in Mizar [3], [,
[6]. We introduce separability of polynomials and field extensions: a polynomial
is separable, if it has no multiple roots in its splitting field; an algebraic extension
FE of F is separable, if the minimal polynomial of each a € F is separable. We
prove among others that a polynomial ¢(X) is separable if and only if the ged
of ¢(X) and its (formal) derivation equals 1 — and that a irreducible polynomial
q(X) is separable if and only if its derivation is not 0 — and that g(X) is separable
if and only if the number of g(X)’s roots in some field extension equals the degree
of q(X).

A field F is called perfect if all irreducible polynomials over F' are separable,
and as a consequence every algebraic extension of F' is separable. Every field with
characteristic 0 is perfect [15]. To also consider separability in fields with prime
characteristic p we define the rings R* = { a” | a € R} and the polynomials
X" —a for a € R. Then we show that a field F' with prime characteristic p is
separable if and only if ¥ = F? and that finite fields are perfect. Finally we
prove that for fields FF C K C E where E is a separable extension of F' both E
is separable over K and K is separable over F'.
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INTRODUCTION

In this paper we formalize separability [9] using the Mizar formalism [3], [4],
[8]. A polynomial is separable, if it has no multiple roots in its splitting field;
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an algebraic extension F of F' is separable, if the minimal polynomial of each
a € F is separable [10], [12], [7].

In the first two sections we provide some technical lemmas necessary later.
They concern for example divisibility and gcds of integers, in particular we show
that a prime p divides ( b ) for 1 < m < p. We also need a number of results on
powers of polynomials among them that a polynomial ¢(X) divides (X — a)™ if
and only if ¢(X) = (X — a) for some 0 < I < n or that a is an n-fold root of
(X —a)™.

In the third section we define the ring RP = { a? | a € R} for a given ring R
with prime characteristic p. In order to do so we proved that (a + b)P = aP + bP,
also called freshman’s dream.

Then we define the polynomial ¢(X) = X™ — a necessary to describe sepa-
rability in fields with characteristic p # 0. Note that the roots of ¢(X) are the
elements b with bP = a, so that ¢(X) = (X — b)? if there exists such a b and is
irreducible otherwise.

In section five we deal with multiplicity of polynomials. We show among
others that a polynomial ¢(X) has a multiple root (in a field extension where
q(X) splits) if and only if the ged of ¢(X) and its (formal) derivation is not
1. For irreducible ¢(X) this can be sharpend to ¢(X)’s derivition being 0. We
also prove that in fields with characteristic p # 0 the derivation of a polynomial
q(X) is 0 if and only if there exists a polynomial r(X) such that ¢(X) = r(XP).

The next two sections are devoted to separability of polynomials. We define
a polynomial ¢(X) to be separable, if it has no multiple roots in its splitting
field. Note that the splitting field of ¢(X) is unique only up to isomorphism, so
that we had to prove that the definition indeed is independent of a particular
splitting field. We prove a number of characterizations of separability found in
the literature, for example that ¢(X) is separable if and only if the number of
q(X)’s roots equals the degree of ¢(X) in some field extension if and only if ¢(X)
is square free in every field extension in which ¢ splits. Then we introduce perfect
fields, e.g. fields in which every irreducible polynomial is separable. Fields with
characteristic 0 are perfect (see [15]). Fields F' with characteristic p # 0 are
perfect if and only if F' = FP. This is shown using the polynomial X? — a, which
is inseparable and irreducible if there is no b with b = a. Because in finite fields
the multiplicative group is cyclic in finite fields such a b always exists and so
finite field are perfect.

In the last section we define separable extensions: an algebraic extension
is separable if the minimal polynomial of every a € E is separable. As an
easy consequence we get that for p(X) € F[X]\F, where F' is perfect, the
splitting field of p(X) is both normal and separable. We also show that for
fields F' C K C F where F is a separable extension of F' both F is a separable
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extension of K and K is a separable extension of F.

1. PRELIMINARIES

Let R be a ring and k be a non zero natural number. One can check that
(0r)" reduces to 0.

Let k be a natural number. Note that (1z)* reduces to 15.

Let p be a prime number. Observe that there exists a field which is finite
and has characteristic p.

Let F be a finite field. Let us observe that char(F') is prime.

Let R be a non degenerated ring. One can verify that every element of
the carrier of Polynom-Ring R which is monic is also non zero.

Let F' be a field, p be a non constant element of the carrier of Polynom-Ring F/,
and a be a non zero element of F. One can verify that the functor a - p yields
a non constant element of the carrier of Polynom-Ring F'. Now we state the
propositions:

(1) Let us consider a natural number n, and a non zero natural number m.
Then - is a natural number if and only if m | n.

(2) Let us consider a prime number p, and natural numbers n, a, b. If p | a
and p{band n = ¢, then p [ n. The theorem is a consequence of (1).
(3) Let us consider a prime number p, and a non zero natural number n. If
n < p, then ged(n,p) = 1.
(4) Let us consider a non zero natural number n, and a prime number p.
Then there exist natural numbers &, m such that
(i) n=m-p*, and

(ii)) ptm.
The theorem is a consequence of (1).
Let R be an integral domain, a be a non zero element of R, and n be a natural
number. One can check that a™ is non zero.
Now we state the propositions:
(5) Let us consider a ring R, an element a of R, and an even natural number
n. Then (—a)" = a™.
PROOF: Define P[natural number| = if $; is even, then (—a)® = a®. For
every natural number k, P[k] from [2], Sch. 4]. O
(6) Let us consider a ring R, an element a of R, and an odd natural number
n. Then (—a)" = —a™.
PROOF: Define P[natural number] = if $; is odd, then (—a)®* = —a®. For
every natural number k, P[k] from [2], Sch. 4]. O
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Let us consider a ring R with characteristic 2, and an element a of R.
Then —a = a.

Let us consider an add-associative, right zeroed, right complementable,
Abelian, non empty double loop structure R, and an integer i. Then
1%x0p = Opg.

PROOF: Define Plinteger] = $; x0r = Ogr. For every integer u such that
Plu] holds Plu — 1] and P[u+ 1] by [14, (64), (60), (62)]. For every integer
i, Pli] from [I7, Sch. 4]. O

Let F be a finite field. Let us observe that MultGroup(F) is cyclic.
Now we state the propositions:

(9)

(10)

Let us consider a field F', and an extension E of F. Then MultGroup(F')
is a subgroup of MultGroup(FE).

Let us consider a skew field R, a natural number n, an element a of R,
and an element b of MultGroup(R). If a = b, then a”™ = b".
PRrROOF: Set M = MultGroup(R). Define P[natural number] = for every
element a of R for every element b of M such that a = b holds ' = b%1.
P[0] by [13, (8)], [L, (17)], 18, (25)]. For every natural number k, P[k]
from [2], Sch. 2]. O

Let us consider a ring R, a polynomial p over R, and elements a, b of R.

Now we state the propositions:

(11)
(12)

(a+b)-p=a-p+0b-p.
(a-b)-p=a-(b-p).

Now we state the propositions:

(13)

(14)

(15)

Let us consider a ring R, an element ¢ of the carrier of Polynom-Ring R,

a polynomial p over R, and a natural number n. If p = ¢, then n-(1g)-p =
n-q.
PROOF: Define P[natural number] = for every element g of the carrier
of Polynom-Ring R for every polynomial p over R such that p = ¢ holds
$1-(1r)-p = $1-¢. P[0] by [13, (12)], [11}, (26)]. For every natural number
k, Plk] from [2 Sch. 2]. O

Let us consider a ring R, an element g of the carrier of Polynom-Ring R,

a polynomial p over R, and natural numbers n, j. If p = n - ¢, then
p(j) = n - q(j).
PROOF: Define P[natural number] = for every element ¢ of the carrier of
Polynom-Ring R for every polynomial p over R for every natural number
J such that p = $; - ¢ holds p(j) = $1 - ¢(j). P[0] by [13, (12)], [I6, (7)].
For every natural number k, P[k] from [2, Sch. 2]. O

Let us consider a field F', an element a of F, a polynomial p over F,
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an extension F of F, an element b of F/, and a polynomial ¢q over E. If
a=band p=gq,thena-p=1>b-q.

(16) Let us consider a field F', an irreducible element p of the carrier of
Polynom-Ring F', and an element ¢ of the carrier of Polynom-Ring F'. If
q | p, then ¢ is unital or associated to p.

(17) Let us consider a field F', an irreducible element p of the carrier of
Polynom-Ring F', and a monic element ¢ of the carrier of Polynom-Ring F'.
If ¢ | p, then ¢ = 1.F or ¢ = NormPoly p.
Let us consider a field F' and a non zero element p of the carrier of Polynom-Ring F'.
Now we state the propositions:

(18) pis reducible if and only if p is a unit of Polynom-Ring F’ or there exists
a monic element ¢ of the carrier of Polynom-Ring F' such that ¢ | p and
1 < deg(q) < deg(p).

(19) p is reducible if and only if there exists a monic element ¢ of the carrier
of Polynom-Ring F' such that ¢ | p and 1 < deg(q) < deg(p).

2. ON POWERS OF POLYNOMIALS

Let R be an integral domain, p be a non zero polynomial over R, and n be
a natural number. Observe that p™ is non zero.

Let F be a field, p be a non constant polynomial over F', and n be a non
zero natural number. One can verify that p™ is non constant.

Let p be a non constant element of the carrier of Polynom-Ring F'. Let us
note that p™ is non constant.

Let p be a constant element of the carrier of Polynom-Ring F'. One can check
that p” is constant and p" is constant.

Now we state the propositions:

(20) Let us consider an integral domain R, a polynomial p over R, and a na-
tural number n. Then LC p™ = (LCp)".

(21) Let us consider an integral domain R, a non zero polynomial p over R,
and a natural number n. Then deg(p™) = n - (deg(p)).

(22) Let us consider a commutative ring R, a polynomial p over R, and a non
zero natural number n. Then (p™)(0) = p(0)".
PROOF: Define P[natural number] = (p*1)(0) = p(0)$1. For every natural

number k such that k& > 1 holds P[k] from [2], Sch. 8]. O

(23) Let us consider an integral domain R, a non zero element a of R, and
a natural number n. Then (Og,a)"” = a" - ((Og, 1r)").
PROOF: Define P[natural number] = (Og,a)® = a% - ((0g,1z)%). For
every natural number k, P[k] from [2, Sch. 2]. O
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(24) Let us consider a field F', an element a of F, and a natural number n.
Then (alF)" = a"[F.
PROOF: Define P[natural number] = (a|F)* = % |F. For every natural
number k, P[k] from [2, Sch. 2]. O

(25) Let us consider a field F', a non zero element a of F', and natural numbers
n, m. Then (anpoly(a,m))™ = anpoly(a",n - m).

PROOF: Define P[natural number| = for every natural number m, (anpoly(a, m))

anpoly(a®', $1 - m). For every natural number k, P[k] from [2, Sch. 2]. O
(26) Let us consider a field F', an element a of F, and a natural number n.
Then deg((X—a)") = n.
PROOF: Define P[natural number] = deg((X—a)®') = $;. For every natu-
ral number k, P[k] from [2, Sch. 2]. O
(27) Let us consider a field F, an element a of F, and a non zero natural
number n. Then Roots((X—a)") = {a}.
PROOF: Define P[natural number] = Roots((X—a)®') = {a}. For every
natural number k such that & > 1 holds P[k] from [2], Sch. 8]. O
Let us consider a field F', an element a of F', and a natural number n. Now
we state the propositions:
(28) multiplicity ((X—a)™, a) = n. The theorem is a consequence of (26).

(29) BRoots((X—a)?) = n.

PROOF: Define P[natural number] = BRoots((X—a)%) = $1. 0 = deg((X—a)?).

For every natural number k, P[k| from [2, Sch. 2]. O
Now we state the propositions:

(30) Let us consider a non degenerated commutative ring R, a commutative
ring extension S of R, an element a of R, an element b of S, and an element
n of N. If a = b, then (X—b)" = (X—a)".
PROOF: Define P[natural number] = (X—b)% = (X—a)%'. For every na-
tural number &, P[k] from [2, Sch. 2]. O

(31) Let us consider a field F', a monic polynomial p over F, an element a of
F, and a natural number n. Then p | (X—a)™ if and only if there exists
a natural number [ such that [ < n and p = (X—a)!. The theorem is
a consequence of (27), (28), and (26).

(32) Let us consider a non degenerated commutative ring R, elements a, b of
R, and a natural number n. Then eval((X+a)™,b) = (a +b)".
PROOF: Define P[natural number] = eval((X+a)%,b) = (a+b)$1. For
every natural number k, P[k] from [2], Sch. 2]. O

(33) Let us consider a field F, an element a of F', and a non zero natural
number n. Then (X—a)” splits in F.

$1
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PROOF: Define P[natural number] = (X—a)® splits in F. For every na-
tural number k such that k£ > 1 holds P[k] from [2, Sch. 8]. O

(34) Let us consider a field Fy, an Fj-homomorphic field F5, a homomorphism
h from F} to F5, an element a of Fj, and a natural number n. Then
(PolyHom(h))((X—a)") = (X— h(a))".
PROOF: Define P[natural number| = (PolyHom(h))((X—a)%') = (X— h(a))®'.
For every natural number k, P[k| from [2}, Sch. 2]. O

3. THE RINGS R? FOR PRIMES p

Let p be a prime number. One can verify that every commutative ring with
characteristic p is non degenerated.
Now we state the propositions:

(35) Let us consider a prime number p, a commutative ring R with characte-
ristic p, and an element a of R. Then p-a = Og.

(36) Let us consider a prime number p, a commutative ring R with charac-
teristic p, a non zero element a of R, and a non zero natural number n. If
n < p, then n-a # OR.
PROOF: Define P[natural number] = $; # 0 and $;-a = Og. P[p|. Consider
u being a natural number such that P[u] and for every natural number v
such that Plv] holds u < v from [2, Sch. 5]. P[p]. O

Let us consider a prime number p, a commutative ring R with characteri-
stic p, an element a of R, and a natural number n. Now we state the propositions:
(37) n-p-a=0g.
PROOF: Define P[natural number] = $; - p - a = Ogr. For every natural
number k, P[k] from [2, Sch. 2]. O

(38) If p|mn,then n-a = 0g. The theorem is a consequence of (37).
Now we state the propositions:

(39) Let us consider a prime number p, a commutative ring R with characte-
ristic p, a non zero element a of R, and a natural number n. Then p | n if
and only if n-a = Og. The theorem is a consequence of (37) and (36).

(40) Let us consider a prime number p, a commutative ring R with characte-
ristic p, and elements a, b of R. Then (a + b)’ = aP + bP.
PROOF: Set F = ((h)a"?, ..., (Z)apbo). Consider f1 being a sequence of
the carrier of R such that >° F' = fi(len F) and f1(0) = Og and for every
natural number j and for every element v of R such that j < len F' and
v=F(j+1)holds f1(j +1) = fi1(j) + v. Define Plelement of N| = $; =0
and f1($1) = 0r or 0 < $; < len F and f1($1) = a” or $; = len F' and
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f1(81) = aP + bP. For every element j of N such that 0 < j < len F' holds
Pj] from [I7, Sch. 7]. O

(41) Let us consider a prime number p, a commutative ring R with characteri-
stic p, elements a, b of R, and a natural number i. Then (a + b)pi = a?' b
PROOF: Define P[natural number| = (a + b)p$1 = a?™ + W™ For every
natural number k, P[k| from [2, Sch. 2]. O

(42) Let us consider a prime number p, a commutative ring R with charac-
teristic p, and an element a of R. Then —a? = (—a)?. The theorem is
a consequence of (40).

Let p be a prime number and R be a commutative ring with characteristic p.
The functor RP yielding a strict double loop structure is defined by

(Def. 1) the carrier of it = the set of all a” where a is an element of R and the addition
of it = (the addition of R) | (the carrier of it) and the multiplication of
it = (the multiplication of R) | (the carrier of it) and 1; = 1 and
0; = Og.

Let us observe that RP is non degenerated.

Let us consider a prime number p, a commutative ring R with characteri-
stic p, elements a, b of R, and elements z, y of RP. Now we state the propositions:

(43) Ifa=zand b=y, thena+b=z+y.
(44) Ifa=xzand b=y, thena-b=uz-y.

Let p be a prime number and R be a commutative ring with characteristic p.
Note that RP is Abelian, add-associative, right zeroed, and right complementable
and RP is commutative, associative, well unital, and distributive.

Let F be a field with characteristic p. One can verify that FP? is almost left
invertible.

Let R be a commutative ring with characteristic p. Observe that RP has
characteristic p.

Let F be a field with characteristic p. One can verify that the functor F?
yields a strict subfield of F.

4. THE PoLYyNOMIALS X" — a

Let R be a unital, non empty double loop structure, a be an element of R,

and n be a non zero natural number. The functor m yielding a sequence
of R is defined by the term

(Def. 2) 0.R+:[0 — —a,n — 1g].
Let us observe that X (% is finite-Support.
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Let R be a unital, non degenerated double loop structure. One can verify
that X (™) is non constant and monic.

Let R be a non degenerated ring. One can verify that the functor X (%)
yields a non constant, monic element of the carrier of Polynom-Ring R. Now we

state the proposition:

(45) Let us consider a unital, non degenerated double loop structure L, an ele-
ment a of L, and a non zero natural number n. Then

(i) (X™9)(0) = ~a, and
(it) (X09)(n) =1z, and

(iii) for every natural number m such that m # 0 and m # n holds
(X ™9)(m) = 0.

Let us consider a unital, non degenerated double loop structure R, a non
zero natural number n, and an element a of R. Now we state the propositions:

(46) deg(X (™)) =n.
(47) LC X9 = 1p.
Now we state the propositions:

(48) Let us consider a non degenerated ring R, a non zero natural number n,

and elements a, x of R. Then eval(X (™ z) = z" — q.
PROOF: Set ¢ = X% Consider F being a finite sequence of elements
of R such that eval(g,z) = >_ F and len F' = leng and for every element
j of N such that j € dom F holds F(j) = ¢(j —' 1) - powerg(z,j —' 1).
n = deg(q). Consider f; being a sequence of the carrier of R such that
Y F = fi(len F) and f;(0) = Or and for every natural number j and
for every element v of R such that j < len F and v = F(j + 1) holds
fi(7 +1) = fi(j) + v. Define Plelement of N] = $; = 0 and f1($1) = Or
or0<$; <lenF and f1($1) = —aor $; =len F and f1($;) = 2" — a. For
every element j of N such that 0 < j < len F' holds PJj] from [I7, Sch. 7].
]

(49) Let us consider a field F', a non zero natural number n, and elements a,
b of F. Then b is a root of X(™ if and only if 5" = a. The theorem is
a consequence of (48).

(50) Let us consider a field F', an extension E of F', a non zero natural number
n, an element a of F', and an element b of E. If b = a, then X (@) = X (),
The theorem is a consequence of (43).

(51) Let us consider a non degenerated, commutative ring R, a non trivial
natural number n, and an element a of R. Then (Deriv(R))(X %)) =
n - (X("=10r)). The theorem is a consequence of (43) and (14).

41
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(52) Let us consider a prime number p, a commutative ring R with charac-
teristic p, and an element a of R. Then (Deriv(R))(X®%) = 0.R. The
theorem is a consequence of (43) and (38).

(53) Let us consider a prime number p, a field F' with characteristic p, and
clements a, b of F. If ¥» = a, then X% = (X—b)”. The theorem is
a consequence of (7), (43), (40), (22), and (6).

(54) Let us consider a prime number p, a field F' with characteristic p, and
an element a of F. Suppose there exists no element b of F' such that
b = a. Then X @9 ig irreducible. The theorem is a consequence of (50),
(49), (53), (18), (31), (22), (5), (6), (3), (9), and (10).

5. MORE ON MULTIPLICITY OF ROOTS

Now we state the propositions:

(55) Let us consider a field F', a non zero polynomial p over F, and an element
a of F. Then deg(p) > multiplicity(p, a).

(56) Let us consider a field F, a non zero polynomial p over F, an ele-
ment a of F, and an element n of N. Then (X—a)" | p if and only if
multiplicity (p, a) > n.

(57) Let us consider a field F, an extension F of F', a non zero element p of
the carrier of Polynom-Ring F', and an element a of E. Then a is a root of
p in F if and only if multiplicity(p,a) > 1. The theorem is a consequence
of (56).

(58) Let us consider a field F', a non zero polynomial p over F, an extension
E of F, and a non zero polynomial ¢ over E. Suppose ¢ = p. Let us
consider an F-extending extension K of F', and an element a of K. Then
multiplicity (¢, a) = multiplicity(p, a).

(59) Let us consider a field F', a non zero polynomial p over F', an extension
FE of F, and a non zero polynomial ¢ over E. Suppose ¢ = p. Let us
consider an element a of E. Then multiplicity(q,a) = multiplicity(p, a).
The theorem is a consequence of (58).

(60) Let us consider a field F', a non zero polynomial p over F, a non ze-
ro element ¢ of F', and an element a of F. Then multiplicity(c - p,a) =
multiplicity (p, a).

(61) Let us consider a field F', an extension E of F, a non zero polyno-
mial p over F, a non zero element ¢ of F', and an element a of £. Then

multiplicity (¢ - p, a) = multiplicity(p, a). The theorem is a consequence of
(15) and (59).
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(62) Let us consider a field F', an extension E of F', non zero polynomials p, ¢
over F', and an element a of E. Then multiplicity(p*q, a) = multiplicity(p, a)+
multiplicity (¢, a). The theorem is a consequence of (59).

(63) Let us consider a field F, a non zero polynomial p over F', extensions
FE1, Es of F, and a function ¢ from Fp into Es. Suppose ¢ is F-fixing and
isomorphism. Let us consider an element a of F. Then multiplicity(p,a) =
multiplicity (p, i(a)).

PROOF: Set n = multiplicity(p, a). Reconsider E5 = Fs as an E1-homomorphic
field. Reconsider h = i as an additive function from F into E3. Reconsider

X1 = (X—a)™ as an element of the carrier of Polynom-Ring F. Recon-
sider Xy = (X—a)""! as an element of the carrier of Polynom-Ring Ej.
(PolyHom(h))(X1) = (X— h(a))™ and (PolyHom(h))(X2) = (X— h(a))"*.
(PolyHom(h))(p) = p by [l (6), (12)]. O

(64) Let us consider a field F, a non zero polynomial p over F, an exten-
sion E of F, and an element a of F. Then multiplicity(p,®(a, E)) =
multiplicity (p, a).

(65) Let us consider a field F', a non zero polynomial p over F, an extension
FE of F, an F-extending extension K of F', and an element a of E. Then
multiplicity (p, ®(a, K)) = multiplicity(p, a).

(66) Let us consider a field F', a non zero polynomial p over F', a polynomial
q over F, and an element a of F. Suppose p = (X— q)multiplicity (Pa) & g.
Then eval(g,a) # Op.

(67) Let us consider a field F', and a non zero polynomial p over F. Then

Roots(p) < BRoots(p) if and only if there exists an element a of F such
that multiplicity(p,a) > 1.

(68) Let us consider a field F', a non zero polynomial p over F, and an element
a of F. Then multiplicity(NormPoly p, a) = multiplicity(p, a).

(69) Let us consider a field F', and a non constant polynomial p over F'. Then

deg(p) = Roots(p) if and only if p splits in F' and for every element a of
F, multiplicity(p, a) < 1. The theorem is a consequence of (67) and (68).

(70) Let us consider a field F', a non zero element p of the carrier of Polynom-Ring F',
and an element a of F'. Suppose a is a root of p. Then

(i) multiplicity(p, a) = 1 iff eval((Deriv(F))(p),a) # Op, and
(ii) multiplicity(p,a) > 1 iff eval((Deriv(F))(p),a) = Op.
The theorem is a consequence of (66).

(71) Let us consider a field F; and a non zero element p of the carrier of
Polynom-Ring F'. Then there exists an element a of F' such that multiplicity(p, a) >
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1 if and only if ged(p, (Deriv(F'))(p)) has roots. The theorem is a conse-
quence of (70).

(72) Let us consider a field F', a non zero element p of the carrier of Polynom-Ring F',
and an extension E of F'. Suppose p splits in E. Then there exists an ele-
ment a of E such that multiplicity(p, a) > 1 if and only if ged(p, (Deriv(F))(p)) #
1.F. The theorem is a consequence of (70).

(73) Let us consider a field F', an irreducible element p of the carrier of
Polynom-Ring F', and an extension E of F. Suppose p splits in £. Then
there exists an element a of E such that multiplicity(p,a) > 1 if and only
if (Deriv(F'))(p) = 0.F. The theorem is a consequence of (17) and (72).

(74) Let us consider a prime number p, a commutative ring R with cha-
racteristic p, and an element f of the carrier of Polynom-Ring R. Then
(Deriv(R))(f) = 0.R if and only if for every natural number i such that
i € Support f holds p | i. The theorem is a consequence of (38) and (39).

6. SEPARABLE POLYNOMIALS

Let F' be a field and p be a non constant element of the carrier of Polynom-Ring F'.

We say that p is separable if and only if
(Def. 3) for every element a of the splitting field of p such that a is a root of p in
the splitting field of p holds multiplicity(p,a) = 1.

We introduce the notation p is inseparable as an antonym for p is separable.

Let us observe that there exists a non constant, monic element of the carrier
of Polynom-Ring F' which is separable and there exists a non constant, monic
element of the carrier of Polynom-Ring F' which is inseparable.

Let us consider a field F' and a non constant element p of the carrier of
Polynom-Ring F'. Now we state the propositions:

(75) p is separable if and only if for every extension F of F' such that p
splits in E for every element a of FE such that a is a root of p in E holds
multiplicity (p,a) = 1. The theorem is a consequence of (63).

(76) p is separable if and only if there exists an extension E of F' such that
p splits in E' and for every element a of E such that a is a root of p in F
holds multiplicity(p, a) = 1. The theorem is a consequence of (63).

(77) p is separable if and only if for every extension E of F' and for every
element a of F, multiplicity(p,a) < 1. The theorem is a consequence of
(58), (57), (75), and (76).

(78) p is separable if and only if there exists an extension E of F' such that
p splits in F and for every element a of E, multiplicity(p,a) < 1. The
theorem is a consequence of (57) and (76).
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Now we state the propositions:

(79) Let us consider a field F, and a separable, non constant element p of
the carrier of Polynom-Ring F. Then deg(p) = Roots(p) if and only if p
splits in F'. The theorem is a consequence of (75), (60), and (69).

(80) Let us consider a field F', and a non constant element p of the carrier of
Polynom-Ring F'. Then p is separable if and only if gcd(p, (Deriv(F))(p)) =
1.F. The theorem is a consequence of (77) and (72).

(81) Let us consider a field F, and a non constant, irreducible element p of
the carrier of Polynom-Ring F'. Then p is separable if and only if (Deriv(F'))(p) #
0.F. The theorem is a consequence of (77) and (73).

(82) Let us consider a field F', and a non constant element p of the carrier of
Polynom-Ring F'. Then p is separable if and only if for every splitting field
FE of p, there exists an element a of £ and there exists a product of linear
polynomials ¢ of E and Roots(E,p) such that p = a - ¢. The theorem is
a consequence of (75), (59), and (60).

(83) Let us consider a field F', and a non constant, monic element p of the car-
rier of Polynom-Ring F'. Then p is separable if and only if for every splitting
field E of p, p is a product of linear polynomials of E and Roots(E, p).
The theorem is a consequence of (82).

Let us consider a field F' and a non constant element p of the carrier of
Polynom-Ring F'. Now we state the propositions:

(84) p is separable if and only if for every extension F of F' such that p splits
in E holds p is square-free over E. The theorem is a consequence of (60),
(75), and (56).

(85) p is separable if and only if there exists an extension E of F' such that
Roots(E,p) = deg(p). The theorem is a consequence of (77), (58), (79),
(69), and (78).

Now we state the propositions:

(86) Let us consider a field F', a non constant element p of the carrier of
Polynom-Ring F', and a non zero element a of F. Then a - p is separable
if and only if p is separable. The theorem is a consequence of (15), (75),
and (61).

(87) Let us consider a field F', non constant elements p, ¢ of the carrier of
Polynom-Ring F', and an element r of the carrier of Polynom-Ring F'. If
p = q * r, then if p is separable, then ¢ is separable. The theorem is
a consequence of (77) and (62).

(88) Let us consider a field F', an extension F of F', a non constant element p of
the carrier of Polynom-Ring F', and a non constant element g of the carrier
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of Polynom-Ring E. If p = ¢, then p is separable iff ¢ is separable. The
theorem is a consequence of (80).
Let F be a field and a be an element of F. One can verify that X—a is
separable and irreducible.
Let n be a non trivial natural number. Note that (X—a)" is inseparable and
reducible.
Let F be a field with characteristic 0. One can check that every irreducible
element of the carrier of Polynom-Ring F' is separable.
Now we state the proposition:

(89) Let us consider a prime number p, a field F' with characteristic p, and
an element a of F. If a ¢ FP, then X% is irreducible and inseparable.
The theorem is a consequence of (54), (50), (49), (53), (28), and (77).

7. PERFECT FIELDS

Let F be a field. We say that F' is perfect if and only if
(Def. 4) every irreducible element of the carrier of Polynom-Ring F' is separable.

Let us note that every field with characteristic 0 is perfect.
Now we state the propositions:

(90) Let us consider a prime number p, a field F' with characteristic p, and
an element ¢ of the carrier of Polynom-Ring F'. Suppose for every natural
number ¢ such that i € Support ¢ holds p | i and there exists an element a
of F such that a? = ¢q(i). Then there exists an element r of the carrier of
Polynom-Ring F' such that 7P = ¢. The theorem is a consequence of (25)
and (40).

(91) Let us consider a prime number p, and a field F' with characteristic p.
Then F' is perfect if and only if F' ~ FP. The theorem is a consequence of
(89), (75), (57), (73), (74), and (90).

(92) Let us consider a field F'. Then F' is finite if and only if there exists
a non zero natural number n such that F' = (char(F))". The theorem is
a consequence of (39) and (4).

(93) Let us consider a prime number p, a finite field F' with characteristic p,
and an element a of F'. Then there exists an element b of F' such that
b? = a. The theorem is a consequence of (92) and (10).

Observe that every finite field is perfect and every algebraic closed field is
perfect.
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8. SEPARABLE EXTENSIONS

Let F be a field, F be an extension of F, and a be an element of E. We say
that ‘a 1S F-separable  if and only if
(Def. 5) there exists an Fralgebraic element b of E such that b = a and MinPoly (b, F')
is separable.

One can verify that there exists an element of E which is non zero and
F-separable and every element of E/ which is F-separable is also Fralgebraic.

Let a be a F-separable element of E. Observe that MinPoly(a, F') is separa-
ble.

We say that [ Eis F-separable| if and only if

(Def. 6) FE' is F-algebraic and every element of E is F-separable.

We introduce the notation E is F-inseparable as an antonym for E is F-
separable.

Let us observe that there exists an extension of F' which is F-finite and
F-separable and every extension of F' which is F-separable is also Fralgebraic.

Let E be a F-separable extension of F. Note that every element of F is
F-separable.

Now we state the proposition:

(94) Let us consider a field F, an extension K of F, and a K-extending
extension E of F. Suppose F is F-separable. Then

(i) E is K-separable, and
(ii) K is F-separable.
The theorem is a consequence of (88) and (87).

Let F' be a perfect field. One can verify that every Fralgebraic extension
of F'is F-separable and there exists an extension of F' which is F-normal and
F-separable.

Let p be a non constant element of the carrier of Polynom-Ring F'. Let us
note that every splitting field of p is F-normal and F-separable.
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