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Introduction

Path and cycle graphs are two fundamental graph families (cf. [5], [18], [8]).
In this article both types are formalized in the Mizar system [9], [4] (based on
the formalization of graphs in [15]), in a way that also includes the 1-cycle,
2-cycle, ray and double-ray graph in the definitions. It is shown how a finite
path graph can be constructed successively and how to construct cycle graphs
from finite path graphs. A maximal graph path is characterized for every path
graph, as well. Furthermore, the rather obvious fact that a graph circuit in a
cycle graph covers all its vertices and edges is proven and constitutes the longest
proof in this work.

1. Preliminaries

One can verify that there exists a graph which is trivial, non-directed-multi,
and loopfull.

Let G be a non acyclic graph. One can verify that there exists a subgraph
of G which is non acyclic.

Now we state the propositions:
c© 2024 The Author(s) / AMU
(Association of Mizar Users)
under CC BY-SA 3.0 license165

https://sciendo.com/journal/forma
mailto:fly.high.android@gmail.com
http://zbmath.org/classification/?q=cc:05C38
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/glpacy00.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


166 sebastian koch

(1) Let us consider a graph G1, a subgraph G2 of G1, a vertex v1 of G1, and
a vertex v2 of G2. Suppose v1 = v2. Then

(i) v2.inDegree() ⊆ v1.inDegree(), and

(ii) v2.outDegree() ⊆ v1.outDegree(), and

(iii) v2.degree() ⊆ v1.degree().

(2) Let us consider a graph G, and a trail T of G. Then T .length() =

T .edges().

Let G be a non trivial, connected graph. One can verify that every vertex of
G is non isolated.

Let G be a non acyclic graph. One can verify that there exists a walk of G
which is cycle-like.

Now we state the propositions:

(3) Let us consider a non trivial, tree-like graph T , a vertex v of T , and
a subgraph F of T with vertex v removed. Then F .numComponents() =
v.degree().
Proof: Define H(vertex of F ) = F .reachableFrom($1). Consider h′ being
a function from the vertices of F into F .componentSet() such that for
every vertex w of F , h′(w) = H(w) from [6, Sch. 8]. �

(4) Let us consider a non trivial, finite, tree-like graph T , a vertex v of T ,
a subgraph F of T with vertex v removed, and a component C of F . Then
there exists a vertex w of T such that

(i) w is endvertex, and

(ii) w ∈ the vertices of C.

(5) Let us consider a graph G2, objects v, e, w, a vertex v2 of G2, a super-
graph G1 of G2 extended by v, w and e between them, and a vertex v1 of
G1. Suppose v1 6= v and v1 6= w and v1 = v2. Then

(i) v1.edgesIn() = v2.edgesIn(), and

(ii) v1.inDegree() = v2.inDegree(), and

(iii) v1.edgesOut() = v2.edgesOut(), and

(iv) v1.outDegree() = v2.outDegree(), and

(v) v1.edgesInOut() = v2.edgesInOut(), and

(vi) v1.degree() = v2.degree().

(6) Let us consider a graph G2, a vertex v of G2, objects e, w, a supergraph
G1 of G2 extended by v, w and e between them, and a vertex v1 of G1.
Suppose e /∈ the edges of G2 and w /∈ the vertices of G2 and v1 = v. Then

(i) v1.edgesIn() = v.edgesIn(), and



About path and cycle graphs 167

(ii) v1.inDegree() = v.inDegree(), and

(iii) v1.edgesOut() = v.edgesOut() ∪ {e}, and

(iv) v1.outDegree() = v.outDegree() + 1, and

(v) v1.edgesInOut() = v.edgesInOut() ∪ {e}, and

(vi) v1.degree() = v.degree() + 1.

(7) Let us consider a graph G2, objects v, e, a vertex w of G2, a supergraph
G1 of G2 extended by v, w and e between them, and a vertex w1 of G1.
Suppose e /∈ the edges of G2 and v /∈ the vertices of G2 and w1 = w. Then

(i) w1.edgesIn() = w.edgesIn() ∪ {e}, and

(ii) w1.inDegree() = w.inDegree() + 1, and

(iii) w1.edgesOut() = w.edgesOut(), and

(iv) w1.outDegree() = w.outDegree(), and

(v) w1.edgesInOut() = w.edgesInOut() ∪ {e}, and

(vi) w1.degree() = w.degree() + 1.

(8) Let us consider a graphG, and a component C ofG. Then C.endVertices() ⊆
G.endVertices().

Let G be an edgeless graph. Let us note that G.endVertices() is empty.

2. Path Graphs

Let G be a graph. We say that G is path-like if and only if

(Def. 1) G is tree-like and for every vertex v of G, v.degree() ⊆ 2.

Observe that every graph which is path-like is also tree-like, locally-finite,
and with max degree and every graph which is trivial and edgeless is also path-
like and every graph which is trivial and path-like is also edgeless and there
exists a graph which is finite and path-like.

Now we state the proposition:

(9) Let us consider a locally-finite graph G. Then G is path-like if and only
if G is tree-like and for every vertex v of G, v.degree() ¬ 2.

Let F be a graph-yielding function. We say that F is path-like if and only if

(Def. 2) for every object x such that x ∈ domF there exists a graph G such that
F (x) = G and G is path-like.

Let P be a path-like graph. Observe that 〈P 〉 is path-like and N 7−→ P is
path-like.

Let F be a non empty, graph-yielding function. Let us note that F is path-
like if and only if the condition (Def. 3) is satisfied.
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(Def. 3) for every element x of domF , F (x) is path-like.

Let S be a graph sequence. Observe that S is path-like if and only if the
condition (Def. 4) is satisfied.

(Def. 4) for every natural number n, S(n) is path-like.

One can verify that every graph-yielding function which is empty is also
path-like and every graph-yielding function which is trivial and edgeless is also
path-like and every graph-yielding function which is path-like is also tree-like
and there exists a graph sequence which is non empty and path-like.

Let F be a path-like, non empty, graph-yielding function and x be an ele-
ment of domF . One can check that F (x) is path-like.

Let S be a path-like graph sequence and n be a natural number. One can
check that S(n) is path-like.

Let p be a path-like, graph-yielding finite sequence. Note that p�n is path-like
and p�n is path-like.

Let m be a natural number. Let us observe that smid(p,m, n) is path-like
and 〈p(m), . . . , p(n)〉 is path-like.

Let p, q be path-like, graph-yielding finite sequences. Note that p a q is
path-like and p aa q is path-like.

Let P1, P2 be path-like graphs. One can verify that 〈P1, P2〉 is path-like.
Let P3 be a path-like graph. One can check that 〈P1, P2, P3〉 is path-like.
Let S be a graph-membered set. We say that S is path-like if and only if

(Def. 5) for every graph G such that G ∈ S holds G is path-like.

Observe that every graph-membered set which is empty is also path-like and
every graph-membered set which is path-like is also tree-like.

Let P1 be a path-like graph. Let us note that {P1} is path-like.
Let P2 be a path-like graph. Let us observe that {P1, P2} is path-like.
Let F be a path-like, graph-yielding function. One can verify that rngF is

path-like.
Let X be a path-like, graph-membered set. Note that every subset of X is

path-like.
Let Y be a set. Observe that X ∩ Y is path-like and X \ Y is path-like.
Let X, Y be path-like, graph-membered sets. One can verify that X ∪ Y is

path-like and X−. Y is path-like and there exists a graph-membered set which
is non empty and path-like.

Let S be a non empty, path-like, graph-membered set. Let us observe that
every element of S is path-like.

Now we state the propositions:

(10) Let us consider a path-like graph P2, a vertex v2 of P2, objects e, w2, and
a supergraph P1 of P2 extended by v2, w2 and e between them. If v2 is en-
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dvertex or P2 is trivial, then P1 is path-like. The theorem is a consequence
of (6) and (5).

(11) Let us consider a path-like graph P2, objects v2, e, a vertex w2 of P2, and
a supergraph P1 of P2 extended by v2, w2 and e between them. If w2 is en-
dvertex or P2 is trivial, then P1 is path-like. The theorem is a consequence
of (7) and (5).

Let n be a natural number. One can check that there exists a graph which
is (n+ 1)-vertex, n-edge, and path-like.

Let n be a non zero natural number. Let us note that there exists a graph
which is n-vertex, (n−′ 1)-edge, and path-like and there exists a graph which is
(n+ 1)-vertex, n-edge, path-like, and non trivial.

Let P be a path-like graph. Let us observe that every subgraph of P which
is connected is also path-like.

Now we state the propositions:

(12) Let us consider a graph G2, objects v1, e, v2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. If G1 is path-like, then G2 is
path-like.

(13) Let us consider a path-like graph P1, a vertex v of P1, and a subgraph
P2 of P1 with vertex v removed. If v is endvertex or P1 is trivial, then P2
is path-like.

(14) Let us consider a finite, path-like graph G, and a connected subgraph
H of G. Then there exists a non empty, finite, path-like, graph-yielding
finite sequence p such that

(i) p(1) ≈ H, and

(ii) p(len p) = G, and

(iii) len p = G.order()−H.order() + 1, and

(iv) for every element n of dom p such that n ¬ len p − 1 there exist
vertices v1, v2 of G and there exists an object e such that p(n + 1)
is a supergraph of p(n) extended by v1, v2 and e between them and
e ∈ (the edges of G) \ (the edges of p(n)) and (v1 ∈ the vertices of
p(n) and v2 /∈ the vertices of p(n) and if p(n) is not trivial, then v1 ∈
p(n).endVertices() or v1 /∈ the vertices of p(n) and v2 ∈ the vertices
of p(n) and if p(n) is not trivial, then v2 ∈ p(n).endVertices()).

Proof: Define P[natural number] ≡ for every finite, path-like graph G for
every connected subgraph H of G such that $1 = G.order() − H.order()
there exists a non empty, finite, path-like, graph-yielding finite sequence p
such that p(1) ≈ H and p(len p) = G and len p = G.order()−H.order()+1
and for every element n of dom p such that n ¬ len p−1 there exist vertices
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v1, v2 of G and there exists an object e such that p(n+ 1) is a supergraph
of p(n) extended by v1, v2 and e between them and e ∈ (the edges of
G)\(the edges of p(n)) and (v1 ∈ the vertices of p(n) and v2 /∈ the vertices
of p(n) and if p(n) is not trivial, then v1 ∈ p(n).endVertices() or v1 /∈
the vertices of p(n) and v2 ∈ the vertices of p(n) and if p(n) is not trivial,
then v2 ∈ p(n).endVertices()). P[0] by [15, (117)], [11, (21)], [3, (40)], [17,
(25)]. For every natural number k such that P[k] holds P[k + 1] by [15,
(117), (26)], [11, (31)], [15, (48), (47), (107)]. For every natural number k,
P[k] from [2, Sch. 2]. �

(15) Let us consider a finite, path-like graph G. Then there exists a non
empty, finite, path-like, graph-yielding finite sequence p such that

(i) p(1) is trivial and edgeless, and

(ii) p(len p) = G, and

(iii) len p = G.order(), and

(iv) for every element n of dom p such that n ¬ len p − 1 there exist
vertices v1, v2 of G and there exists an object e such that p(n + 1)
is a supergraph of p(n) extended by v1, v2 and e between them and
e ∈ (the edges of G) \ (the edges of p(n)) and (v1 ∈ the vertices of
p(n) and if n  2, then v1 ∈ p(n).endVertices() and v2 /∈ the vertices
of p(n) or v1 /∈ the vertices of p(n) and v2 ∈ the vertices of p(n) and
if n  2, then v2 ∈ p(n).endVertices()).

Proof: Set H = the trivial subgraph of G. Consider p being a non empty,
finite, path-like, graph-yielding finite sequence such that p(1) ≈ H and
p(len p) = G and len p = G.order()−H.order()+1 and for every element n
of dom p such that n ¬ len p− 1 there exist vertices v1, v2 of G and there
exists an object e such that p(n + 1) is a supergraph of p(n) extended
by v1, v2 and e between them and e ∈ (the edges of G) \ (the edges of
p(n)) and (v1 ∈ the vertices of p(n) and v2 /∈ the vertices of p(n) and if
p(n) is not trivial, then v1 ∈ p(n).endVertices() or v1 /∈ the vertices of
p(n) and v2 ∈ the vertices of p(n) and if p(n) is not trivial, then v2 ∈
p(n).endVertices()). Consider v1, v2 being vertices of G, e being an object
such that p(n+1) is a supergraph of p(n) extended by v1, v2 and e between
them and e ∈ (the edges of G)\ (the edges of p(n)) and (v1 ∈ the vertices
of p(n) and v2 /∈ the vertices of p(n) and if p(n) is not trivial, then v1 ∈
p(n).endVertices() or v1 /∈ the vertices of p(n) and v2 ∈ the vertices of
p(n) and if p(n) is not trivial, then v2 ∈ p(n).endVertices()). If n  2, then
p(n) is not trivial by [16, (3)], [17, (25)], [10, (143), (144)]. �

(16) Let us consider a non empty, graph-yielding finite sequence p. Suppose
p(1) is path-like and for every element n of dom p such that n ¬ len p− 1
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there exist objects v1, e, v2 such that p(n + 1) is a supergraph of p(n)
extended by v1, v2 and e between them and (p(n) is trivial or v1 ∈
p(n).endVertices() or v2 ∈ p(n).endVertices()). Then p(len p) is path-like.
Proof: Define P[natural number] ≡ if $1 ¬ len p − 1, then p($1 + 1)
is a path-like graph. For every natural number n such that P[n] holds
P[n + 1] by [17, (25)], [10, (56)], (10), (11). For every natural number n,
P[n] from [2, Sch. 2]. �

(17) Let us consider a non trivial, finite, path-like graph G. Then there exists
a non empty, finite, path-like, graph-yielding finite sequence p such that

(i) p(1) is 2-vertex and path-like, and

(ii) p(len p) = G, and

(iii) len p+ 1 = G.order(), and

(iv) for every element n of dom p such that n ¬ len p − 1 there exist
vertices v1, v2 of G and there exists an object e such that p(n + 1)
is a supergraph of p(n) extended by v1, v2 and e between them and
e ∈ (the edges of G)\(the edges of p(n)) and (v1 ∈ p(n).endVertices()
and v2 /∈ the vertices of p(n) or v1 /∈ the vertices of p(n) and v2 ∈
p(n).endVertices()).

The theorem is a consequence of (15), (10), and (11).

(18) Let us consider a non empty, graph-yielding finite sequence p. Suppose
p(1) is non trivial and path-like and for every element n of dom p such that
n ¬ len p−1 there exist objects v1, e, v2 such that p(n+1) is a supergraph of
p(n) extended by v1, v2 and e between them and (v1 ∈ p(n).endVertices()
or v2 ∈ p(n).endVertices()). Then p(len p) is path-like.
Proof: Define P[natural number] ≡ if $1 ¬ len p − 1, then p($1 + 1)
is a path-like graph. For every natural number n such that P[n] holds
P[n + 1] by [17, (25)], [10, (56)], (10), (11). For every natural number n,
P[n] from [2, Sch. 2]. �

(19) Let us consider graphs G1, G2, and a partial graph mapping F from G1
to G2. If F is isomorphism, then G1 is path-like iff G2 is path-like.

(20) Let us consider graphs G1, G2. If G1 ≈ G2, then if G1 is path-like, then
G2 is path-like.

(21) Let us consider a graph G1, a set E, and a graph G2 given by reversing
directions of the edges E of G1. Then G1 is path-like if and only if G2 is
path-like. The theorem is a consequence of (19).

Let P2 be a 2-vertex, path-like graph. One can verify that every vertex of
P2 is endvertex.

Now we state the propositions:



172 sebastian koch

(22) Let us consider a finite, non trivial, path-like graph P . Then δ(P ) = 1.
Proof: Consider p being a non empty, finite, path-like, graph-yielding
finite sequence such that p(1) is 2-vertex and path-like and p(len p) = P

and len p + 1 = P .order() and for every element n of dom p such that
n ¬ len p − 1 there exist vertices v1, v2 of P and there exists an object
e such that p(n + 1) is a supergraph of p(n) extended by v1, v2 and e

between them and e ∈ (the edges of P ) \ (the edges of p(n)) and (v1 ∈
p(n).endVertices() and v2 /∈ the vertices of p(n) or v1 /∈ the vertices of
p(n) and v2 ∈ p(n).endVertices()). Define P[natural number] ≡ for every
graph H such that H = p($1 + 1) and $1 ¬ len p− 1 holds δ(H) = 1. P[0]
by [15, (174)], [12, (36)]. For every natural number k such that P[k] holds
P[k + 1] by [17, (25)], [10, (141)], [15, (174)], [12, (35)]. For every natural
number k, P[k] from [2, Sch. 2]. �

(23) Let us consider a finite, path-like graph P . Then there exists a vertex-
distinct path P0 of P such that

(i) P0.vertices() = the vertices of P , and

(ii) P0.edges() = the edges of P , and

(iii) P .endVertices() = {P0.first(), P0.last()} iff P is not trivial, and

(iv) P0 is trivial iff P is trivial, and

(v) P0 is closed iff P is trivial, and

(vi) P0 is minimum length.

Proof: Define P[natural number] ≡ for every finite, path-like graph P

such that P .order() = $1 + 1 there exists a vertex-distinct path P0 of P
such that P0.vertices() = the vertices of P and P0.edges() = the edges
of P and (P .endVertices() = {P0.first(), P0.last()} iff P is not trivial)
and (P0 is closed iff P is trivial) and P0 is minimum length. P[0] by [15,
(26), (22)], [13, (90)]. For every natural number n such that P[n] holds
P[n + 1] by [15, (26)], (22), [15, (174)], (13). For every natural number
n, P[n] from [2, Sch. 2]. Consider n being a natural number such that
P .order() = n + 1. Consider P0 being a vertex-distinct path of P such
that P0.vertices() = the vertices of P and P0.edges() = the edges of P
and (P .endVertices() = {P0.first(), P0.last()} iff P is not trivial) and (P0
is closed iff P is trivial) and P0 is minimum length. �

(24) Let us consider a non zero natural number n, and n-vertex, path-like
graphs P1, P2. Then P2 is P1-isomorphic. The theorem is a consequence
of (23).

(25) Let us consider a natural number n, and n-edge, path-like graphs P1,
P2. Then P2 is P1-isomorphic. The theorem is a consequence of (24).
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(26) Let us consider a non trivial, path-like graph P . Then

(i) P .order() = 2 iff ∆(P ) = 1, and

(ii) P .order() 6= 2 iff ∆(P ) = 2.

(27) Let us consider a non trivial, path-like graph P , and a vertex v of P . If
v is not endvertex, then v.degree() = 2.

Let us consider a finite, non trivial, path-like graph P . Now we state the
propositions:

(28) There exist vertices v1, v2 of P such that

(i) v1 6= v2, and

(ii) P .endVertices() = {v1, v2}.
The theorem is a consequence of (23).

(29) P .endVertices() = 2. The theorem is a consequence of (28).

Now we state the proposition:

(30) Let us consider a finite, non trivial graph G. Suppose G is acyclic and

δ(G) = 1 and G.endVertices() = 2. Then G is path-like.
Proof: Set F = the subgraph ofG with vertex v removed. 3 ⊆ F .numComponents().
Consider c1, c2, c3 being objects such that c1, c2 ∈ F .componentSet() and
c3 ∈ F .componentSet() and c1 6= c2 and c1 6= c3 and c2 6= c3. Consider v1
being a vertex of F such that c1 = F .reachableFrom(v1). Consider v2 be-
ing a vertex of F such that c2 = F .reachableFrom(v2). Consider v3 being
a vertex of F such that c3 = F .reachableFrom(v3). Set C1 = the subgraph
of F induced by F .reachableFrom(v1). Set C2 = the subgraph of F
induced by F .reachableFrom(v2). Set C3 = the subgraph of F induced
by F .reachableFrom(v3). Consider w1 being a vertex of G such that w1
is endvertex and w1 ∈ the vertices of C1. Consider w2 being a vertex of
G such that w2 is endvertex and w2 ∈ the vertices of C2. Consider w3
being a vertex of G such that w3 is endvertex and w3 ∈ the vertices of
C3. w1 6= w2 by [14, (12)]. w2 6= w3 by [14, (12)]. w3 6= w1 by [14, (12)]. �

One can verify that every graph which is 2-vertex, simple, and connected is
also path-like and every graph which is 2-vertex and path-like is also complete.

Let n be a natural number. Let us observe that every graph which is (n+3)-
vertex and path-like is also non complete.

3. Cycle Graphs

Let G be a graph. We say that G is cycle-like if and only if

(Def. 6) G is connected, non acyclic, and 2-regular.
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One can verify that there exists a graph which is non trivial and cycle-like
and every graph which is connected, non acyclic, and 2-regular is also cycle-like
and every graph which is cycle-like is also connected, non acyclic, and 2-regular.

Now we state the proposition:

(31) Let us consider a cycle-like graph G, and a circuit-like walk C of G. Then

(i) C.vertices() = the vertices of G, and

(ii) C.edges() = the edges of G.

Note that every graph which is cycle-like is also non edgeless, finite, and
with max degree.

Now we state the proposition:

(32) Let us consider a cycle-like graph G. Then G.order() = G.size().

One can check that every graph which is trivial, non-directed-multi, and
loopfull is also cycle-like and every graph which is trivial and cycle-like is also
non-multi and loopfull and every graph which is non trivial and cycle-like is also
loopless and there exists a graph which is trivial and cycle-like.

Let F be a graph-yielding function. We say that F is cycle-like if and only
if

(Def. 7) for every object x such that x ∈ domF there exists a graph G such that
F (x) = G and G is cycle-like.

Let C be a cycle-like graph. Observe that 〈C〉 is cycle-like and N 7−→ C is
cycle-like.

Let F be a non empty, graph-yielding function. Let us note that F is cycle-
like if and only if the condition (Def. 8) is satisfied.

(Def. 8) for every element x of domF , F (x) is cycle-like.

Let S be a graph sequence. Observe that S is cycle-like if and only if the
condition (Def. 9) is satisfied.

(Def. 9) for every natural number n, S(n) is cycle-like.

One can verify that every graph-yielding function which is empty is also
cycle-like and every graph-yielding function which is trivial, non-directed-multi,
and loopfull is also cycle-like and every graph-yielding function which is cycle-
like is also connected and there exists a graph sequence which is non empty and
cycle-like.

Let F be a cycle-like, non empty, graph-yielding function and x be an ele-
ment of domF . Let us observe that F (x) is cycle-like.

Let S be a cycle-like graph sequence and n be a natural number. Let us
observe that S(n) is cycle-like.

Let p be a cycle-like, graph-yielding finite sequence. One can verify that p�n
is cycle-like and p�n is cycle-like.
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Let m be a natural number. Let us note that smid(p,m, n) is cycle-like and
〈p(m), . . . , p(n)〉 is cycle-like.

Let p, q be cycle-like, graph-yielding finite sequences. One can verify that
p a q is cycle-like and p aa q is cycle-like.

Let C1, C2 be cycle-like graphs. Observe that 〈C1, C2〉 is cycle-like.
Let C3 be a cycle-like graph. Let us observe that 〈C1, C2, C3〉 is cycle-like.
Let S be a graph-membered set. We say that S is cycle-like if and only if

(Def. 10) for every graph G such that G ∈ S holds G is cycle-like.

Note that every graph-membered set which is empty is also cycle-like and
every graph-membered set which is cycle-like is also connected.

Let C1 be a cycle-like graph. One can check that {C1} is cycle-like.
Let C2 be a cycle-like graph. Let us note that {C1, C2} is cycle-like.
Let F be a cycle-like, graph-yielding function. Observe that rngF is cycle-

like.
Let X be a cycle-like, graph-membered set. One can verify that every subset

of X is cycle-like.
Let Y be a set. Note that X ∩ Y is cycle-like and X \ Y is cycle-like.
Let X, Y be cycle-like, graph-membered sets. Observe that X ∪ Y is cycle-

like and X−. Y is cycle-like and there exists a graph-membered set which is non
empty and cycle-like.

Let S be a non empty, cycle-like, graph-membered set. Let us note that
every element of S is cycle-like.

Now we state the propositions:

(33) Let us consider a trivial, edgeless graph G2, a vertex v of G2, and an ob-
ject e. Then every supergraph of G2 extended by e between vertices v and
v is cycle-like.

(34) Let us consider a finite, non trivial, path-like graph P , elements v1, v2
of P .endVertices(), an object e, and a supergraph C of P extended by e

between vertices v1 and v2. Suppose v1 6= v2 and e /∈ the edges of P . Then
C is cycle-like. The theorem is a consequence of (29), (27), and (23).

(35) Let us consider a cycle-like graph C, and an edge e of C. Then every
subgraph of C with edge e removed is finite and path-like. The theorem
is a consequence of (31).

Let C be a cycle-like graph and e be an edge of C. One can check that every
subgraph of C with edge e removed is finite and path-like.

Now we state the propositions:

(36) Let us consider a trivial, cycle-like graph G1, a vertex v of G1, and
an edge e of G1. Then there exists a trivial, edgeless graph G2 such that
G1 is a supergraph of G2 extended by e between vertices v and v.
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(37) Let us consider a non trivial, cycle-like graph C, vertices v1, v2 of C,
and an edge e of C. Suppose e joins v1 to v2 in C. Then there exists a non
trivial, finite, path-like graph P such that

(i) e /∈ the edges of P , and

(ii) C is a supergraph of P extended by e between vertices v1 and v2,
and

(iii) P .endVertices() = {v1, v2}.

The theorem is a consequence of (28).

(38) Let us consider a cycle-like graph C. Then C.order() = 2 if and only if
C is not non-multi.
Proof: Consider e1, e2, v1, v2 being objects such that e1 joins v1 and v2 in
C and e2 joins v1 and v2 in C and e1 6= e2. Set W1 = C.walkOf(v1, e1, v2).
Set W2 = W1.addEdge(e2). v1 6= v2 by [15, (16), (57)], [1, (11)], [7, (32)].
The vertices of C = W2.vertices(). �

Let n be a natural number. Observe that every graph which is n-vertex and
cycle-like is also n-edge and every graph which is n-edge and cycle-like is also
n-vertex and there exists a graph which is (n + 1)-vertex, (n + 1)-edge, and
cycle-like and every graph which is (n+ 2)-vertex and cycle-like is also loopless
and every graph which is (n + 3)-vertex and cycle-like is also simple and there
exists a graph which is (n+ 2)-vertex, (n+ 2)-edge, loopless, and cycle-like and
there exists a graph which is (n+ 3)-vertex, (n+ 3)-edge, simple, and cycle-like.

Let n be a non zero natural number. Let us observe that there exists a graph
which is n-vertex, n-edge, and cycle-like and every graph which is (n+1)-vertex
and cycle-like is also loopless and every graph which is (n+ 2)-vertex and cycle-
like is also simple and there exists a graph which is (n+ 1)-vertex, (n+ 1)-edge,
cycle-like, and loopless and there exists a graph which is (n+ 2)-vertex, (n+ 2)-
edge, cycle-like, and simple.

Now we state the propositions:

(39) Let us consider a cycle-like graph C1, and a non acyclic subgraph C2 of
C1. Then C1 ≈ C2. The theorem is a consequence of (31).

(40) Let us consider graphs G1, G2, and a partial graph mapping F from G1
to G2. Suppose F is isomorphism. Then G1 is cycle-like if and only if G2
is cycle-like.

(41) Let us consider graphs G1, G2. Suppose G1 ≈ G2. If G1 is cycle-like,
then G2 is cycle-like. The theorem is a consequence of (40).

(42) Let us consider a graph G1, a set E, and a graph G2 given by reversing
directions of the edges E of G1. Then G1 is cycle-like if and only if G2 is
cycle-like. The theorem is a consequence of (40).
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(43) Let us consider a non zero natural number n, and n-vertex, cycle-like
graphs C1, C2. Then C2 is C1-isomorphic. The theorem is a consequence
of (37), (24), and (29).

(44) Let us consider a non zero natural number n, and n-edge, cycle-like
graphs C1, C2. Then C2 is C1-isomorphic.

(45) Let us consider a finite, non trivial, path-like graph P , an object v,
and a supergraph C of P extended by vertex v and edges between v and
P .endVertices() of P . Suppose v /∈ the vertices of P . Then C is simple and
cycle-like.
Proof: P .endVertices() 6= 0. Consider w1, w2 being vertices of P such
that w1 6= w2 and P .endVertices() = {w1, w2}. There exists a com-
ponent G3 of P and there exist vertices w1, w2 of G3 such that w1,
w2 ∈ P .endVertices() and w1 6= w2 by [14, (30)]. �

(46) Let us consider a non trivial, cycle-like graph C, and a vertex v of C.
Then every subgraph of C with vertex v removed is finite and path-like.
The theorem is a consequence of (31).

(47) Let us consider a simple, cycle-like graph C, and a vertex v of C. Then
there exists a non trivial, path-like graph P such that

(i) v /∈ the vertices of P , and

(ii) C is a supergraph of P extended by vertex v and edges between v

and P .endVertices() of P .

Proof: Set P = the subgraph of C with vertex v removed. P is path-like.
P is not trivial by [15, (26), (48)]. �

One can verify that every graph which is 3-vertex, simple, and complete is
also cycle-like and every graph which is 3-vertex and cycle-like is also simple,
complete, and chordal.

Let n be a natural number. Let us observe that every graph which is (n+4)-
vertex and cycle-like is also non chordal and non complete.

Let n be a non zero natural number. One can check that every graph which
is (n+ 3)-vertex and cycle-like is also non chordal and non complete and there
exists a graph which is cycle-like, non complete, and non chordal.
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