

About Path and Cycle Graphs

Sebastian Koch Mainz, Germany fly.high.android@gmail.com

Summary. In this article path and cycle graphs are formalized in the Mizar system.

MSC: [05C38](http://zbmath.org/classification/?q=cc:05C38) [68V20](http://zbmath.org/classification/?q=cc:68V20) Keywords: path graph; cycle graph MML identifier: [GLPACY00](http://fm.mizar.org/miz/glpacy00.miz), version: [8.1.14 5.85.1476](http://ftp.mizar.org/)

INTRODUCTION

Path and cycle graphs are two fundamental graph families (cf. [\[5\]](#page-13-0), [\[18\]](#page-13-1), [\[8\]](#page-13-2)). In this article both types are formalized in the Mizar system [\[9\]](#page-13-3), [\[4\]](#page-12-0) (based on the formalization of graphs in [\[15\]](#page-13-4)), in a way that also includes the 1-cycle, 2-cycle, ray and double-ray graph in the definitions. It is shown how a finite path graph can be constructed successively and how to construct cycle graphs from finite path graphs. A maximal graph path is characterized for every path graph, as well. Furthermore, the rather obvious fact that a graph circuit in a cycle graph covers all its vertices and edges is proven and constitutes the longest proof in this work.

1. Preliminaries

One can verify that there exists a graph which is trivial, non-directed-multi, and loopfull.

Let *G* be a non acyclic graph. One can verify that there exists a subgraph of *G* which is non acyclic.

Now we state the propositions:

- (1) Let us consider a graph G_1 , a subgraph G_2 of G_1 , a vertex v_1 of G_1 , and a vertex v_2 of G_2 . Suppose $v_1 = v_2$. Then
	- (i) v_2 *.*inDegree() $\subseteq v_1$ *.inDegree(), and*
	- (ii) v_2 *outDegree()* $\subseteq v_1$ *outDegree(), and*
	- (iii) v_2 *.degree*() $\subseteq v_1$ *.degree*()*.*
- (2) Let us consider a graph G , and a trail T of G . Then T length() = *T .*edges().

Let *G* be a non trivial, connected graph. One can verify that every vertex of *G* is non isolated.

Let *G* be a non acyclic graph. One can verify that there exists a walk of *G* which is cycle-like.

Now we state the propositions:

(3) Let us consider a non trivial, tree-like graph *T*, a vertex *v* of *T*, and a subgraph *F* of *T* with vertex *v* removed. Then *F* .numComponents() = *v.*degree().

PROOF: Define $\mathcal{H}(\text{vertex of } F) = F.\text{reachableFrom}(\$_1).$ Consider *h*' being a function from the vertices of *F* into *F .*componentSet() such that for every vertex *w* of *F*, $h'(w) = H(w)$ from [\[6,](#page-13-5) Sch. 8]. \Box

- (4) Let us consider a non trivial, finite, tree-like graph *T*, a vertex *v* of *T*, a subgraph *F* of *T* with vertex *v* removed, and a component *C* of *F*. Then there exists a vertex *w* of *T* such that
	- (i) *w* is endvertex, and
	- (ii) $w \in$ the vertices of *C*.
- (5) Let us consider a graph G_2 , objects *v*, *e*, *w*, a vertex v_2 of G_2 , a supergraph G_1 of G_2 extended by v, w and e between them, and a vertex v_1 of *G*₁. Suppose $v_1 \neq v$ and $v_1 \neq w$ and $v_1 = v_2$. Then
	- (i) v_1 *.edgesIn() =* v_2 *.edgesIn(), and*
	- (ii) v_1 .inDegree() = v_2 .inDegree(), and
	- (iii) v_1 *.edgesOut() =* v_2 *.edgesOut(), and*
	- (iv) v_1 .outDegree() = v_2 .outDegree(), and
	- (v) v_1 *.edgesInOut() =* v_2 *.edgesInOut(), and*
	- (vi) v_1 .degree() = v_2 .degree().
- (6) Let us consider a graph G_2 , a vertex *v* of G_2 , objects *e*, *w*, a supergraph G_1 of G_2 extended by *v*, *w* and *e* between them, and a vertex v_1 of G_1 . Suppose $e \notin \text{the edges of } G_2 \text{ and } w \notin \text{the vertices of } G_2 \text{ and } v_1 = v.$ Then
	- (i) v_1 *.edgesIn() = v.edgesIn(), and*
- (ii) v_1 .inDegree() = v .inDegree(), and
- (iii) v_1 *.edgesOut() = v.edgesOut()* \cup {*e*}, and
- (iv) v_1 .outDegree() = v .outDegree() + 1, and
- (v) *v*1*.*edgesInOut() = *v.*edgesInOut() *∪ {e}*, and
- (vi) v_1 .degree() = v .degree() + 1.
- (7) Let us consider a graph G_2 , objects *v*, *e*, a vertex *w* of G_2 , a supergraph G_1 of G_2 extended by *v*, *w* and *e* between them, and a vertex w_1 of G_1 . Suppose $e \notin \text{the edges of } G_2 \text{ and } v \notin \text{the vertices of } G_2 \text{ and } w_1 = w.$ Then
	- (i) w_1 *.*edgesIn() = *w.*edgesIn() ∪ {*e*}, and
	- (ii) w_1 .inDegree() = w .inDegree() + 1, and
	- (iii) w_1 *.edgesOut() = w.edgesOut(), and*
	- (iv) w_1 .outDegree $() = w$.outDegree $()$, and
	- (v) *w*1*.*edgesInOut() = *w.*edgesInOut() *∪ {e}*, and
	- (vi) w_1 *.degree() = w.degree() + 1.*
- (8) Let us consider a graph *G*, and a component *C* of *G*. Then *C* endVertices() \subseteq *G.*endVertices().

Let *G* be an edgeless graph. Let us note that *G*.endVertices() is empty.

2. Path Graphs

Let *G* be a graph. We say that *G* is path-like if and only if

(Def. 1) *G* is tree-like and for every vertex *v* of *G*, *v*.degree() \subseteq 2.

Observe that every graph which is path-like is also tree-like, locally-finite, and with max degree and every graph which is trivial and edgeless is also pathlike and every graph which is trivial and path-like is also edgeless and there exists a graph which is finite and path-like.

Now we state the proposition:

(9) Let us consider a locally-finite graph *G*. Then *G* is path-like if and only if *G* is tree-like and for every vertex *v* of *G*, *v*.degree() ≤ 2 .

Let *F* be a graph-yielding function. We say that *F* is path-like if and only if (Def. 2) for every object *x* such that $x \in \text{dom } F$ there exists a graph *G* such that $F(x) = G$ and *G* is path-like.

Let *P* be a path-like graph. Observe that $\langle P \rangle$ is path-like and $\mathbb{N} \longrightarrow P$ is path-like.

Let F be a non empty, graph-yielding function. Let us note that F is pathlike if and only if the condition (Def. 3) is satisfied.

(Def. 3) for every element *x* of dom F , $F(x)$ is path-like.

Let *S* be a graph sequence. Observe that *S* is path-like if and only if the condition (Def. 4) is satisfied.

(Def. 4) for every natural number *n*, $S(n)$ is path-like.

One can verify that every graph-yielding function which is empty is also path-like and every graph-yielding function which is trivial and edgeless is also path-like and every graph-yielding function which is path-like is also tree-like and there exists a graph sequence which is non empty and path-like.

Let F be a path-like, non empty, graph-yielding function and x be an element of dom F . One can check that $F(x)$ is path-like.

Let *S* be a path-like graph sequence and *n* be a natural number. One can check that $S(n)$ is path-like.

Let p be a path-like, graph-yielding finite sequence. Note that $p \nmid n$ is path-like and $p_{\parallel n}$ is path-like.

Let *m* be a natural number. Let us observe that $\text{smid}(p, m, n)$ is path-like and $\langle p(m), \ldots, p(n) \rangle$ is path-like.

Let *p*, *q* be path-like, graph-yielding finite sequences. Note that $p \cap q$ is path-like and $p \sim q$ is path-like.

Let P_1 , P_2 be path-like graphs. One can verify that $\langle P_1, P_2 \rangle$ is path-like.

Let P_3 be a path-like graph. One can check that $\langle P_1, P_2, P_3 \rangle$ is path-like.

Let *S* be a graph-membered set. We say that *S* is path-like if and only if

(Def. 5) for every graph *G* such that $G \in S$ holds *G* is path-like.

Observe that every graph-membered set which is empty is also path-like and every graph-membered set which is path-like is also tree-like.

Let P_1 be a path-like graph. Let us note that $\{P_1\}$ is path-like.

Let P_2 be a path-like graph. Let us observe that $\{P_1, P_2\}$ is path-like.

Let F be a path-like, graph-yielding function. One can verify that rng F is path-like.

Let *X* be a path-like, graph-membered set. Note that every subset of *X* is path-like.

Let *Y* be a set. Observe that $X \cap Y$ is path-like and $X \setminus Y$ is path-like.

Let *X*, *Y* be path-like, graph-membered sets. One can verify that $X \cup Y$ is path-like and *X*[−]*Y* is path-like and there exists a graph-membered set which is non empty and path-like.

Let *S* be a non empty, path-like, graph-membered set. Let us observe that every element of *S* is path-like.

Now we state the propositions:

(10) Let us consider a path-like graph P_2 , a vertex v_2 of P_2 , objects e, w_2 , and a supergraph P_1 of P_2 extended by v_2 , w_2 and e between them. If v_2 is endvertex or P_2 is trivial, then P_1 is path-like. The theorem is a consequence of (6) and (5).

(11) Let us consider a path-like graph P_2 , objects v_2 , e , a vertex w_2 of P_2 , and a supergraph P_1 of P_2 extended by v_2 , w_2 and e between them. If w_2 is endvertex or P_2 is trivial, then P_1 is path-like. The theorem is a consequence of (7) and (5).

Let *n* be a natural number. One can check that there exists a graph which is $(n+1)$ -vertex, *n*-edge, and path-like.

Let n be a non zero natural number. Let us note that there exists a graph which is *n*-vertex, $(n-1)$ -edge, and path-like and there exists a graph which is $(n+1)$ -vertex, *n*-edge, path-like, and non trivial.

Let *P* be a path-like graph. Let us observe that every subgraph of *P* which is connected is also path-like.

Now we state the propositions:

- (12) Let us consider a graph G_2 , objects v_1 , e , v_2 , and a supergraph G_1 of G_2 extended by v_1 , v_2 and e between them. If G_1 is path-like, then G_2 is path-like.
- (13) Let us consider a path-like graph P_1 , a vertex v of P_1 , and a subgraph P_2 of P_1 with vertex *v* removed. If *v* is endvertex or P_1 is trivial, then P_2 is path-like.
- (14) Let us consider a finite, path-like graph *G*, and a connected subgraph *H* of *G*. Then there exists a non empty, finite, path-like, graph-yielding finite sequence *p* such that
	- (i) $p(1) \approx H$, and
	- (ii) $p(\text{len } p) = G$, and
	- (iii) len $p = G.\text{order}() H.\text{order}(t) + 1$, and
	- (iv) for every element *n* of dom *p* such that $n \leq \text{len } p 1$ there exist vertices v_1 , v_2 of *G* and there exists an object *e* such that $p(n + 1)$ is a supergraph of $p(n)$ extended by v_1 , v_2 and e between them and $e \in$ (the edges of *G*) \setminus (the edges of *p*(*n*)) and (*v*₁ \in the vertices of $p(n)$ and $v_2 \notin$ the vertices of $p(n)$ and if $p(n)$ is not trivial, then $v_1 \in$ $p(n)$ *.*endVertices() or $v_1 \notin$ the vertices of $p(n)$ and $v_2 \in$ the vertices of $p(n)$ and if $p(n)$ is not trivial, then $v_2 \in p(n)$.endVertices()).

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every finite, path-like graph } G \text{ for }$ every connected subgraph *H* of *G* such that $\$_1 = G.\text{order}() - H.\text{order}()$ there exists a non empty, finite, path-like, graph-yielding finite sequence *p* such that $p(1) \approx H$ and $p(\text{len } p) = G$ and $\text{len } p = G.\text{order}() - H.\text{order}() + 1$ and for every element *n* of dom *p* such that $n \leq \text{len } p-1$ there exist vertices

 v_1, v_2 of *G* and there exists an object *e* such that $p(n+1)$ is a supergraph of $p(n)$ extended by v_1, v_2 and e between them and $e \in$ (the edges of *G*) \setminus (the edges of *p*(*n*)) and (*v*₁ \in the vertices of *p*(*n*) and *v*₂ \notin the vertices of $p(n)$ and if $p(n)$ is not trivial, then $v_1 \in p(n)$ *.*endVertices() or $v_1 \notin$ the vertices of $p(n)$ and $v_2 \in$ the vertices of $p(n)$ and if $p(n)$ is not trivial, then $v_2 \in p(n)$.endVertices()). $\mathcal{P}[0]$ by [\[15,](#page-13-4) (117)], [\[11,](#page-13-6) (21)], [\[3,](#page-12-1) (40)], [\[17,](#page-13-7) (25)]. For every natural number *k* such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [\[15,](#page-13-4) (117), (26)], [\[11,](#page-13-6) (31)], [\[15,](#page-13-4) (48), (47), (107)]. For every natural number *k*, $\mathcal{P}[k]$ from [\[2,](#page-12-2) Sch. 2]. \square

- (15) Let us consider a finite, path-like graph *G*. Then there exists a non empty, finite, path-like, graph-yielding finite sequence *p* such that
	- (i) *p*(1) is trivial and edgeless, and
	- (ii) $p(\operatorname{len} p) = G$, and
	- (iii) len $p = G$.order(), and
	- (iv) for every element *n* of dom *p* such that $n \leq \text{len } p 1$ there exist vertices v_1 , v_2 of *G* and there exists an object *e* such that $p(n+1)$ is a supergraph of $p(n)$ extended by v_1 , v_2 and e between them and $e \in$ (the edges of *G*) \setminus (the edges of *p*(*n*)) and (*v*₁ \in the vertices of $p(n)$ and if $n \ge 2$, then $v_1 \in p(n)$ *.*endVertices() and $v_2 \notin$ the vertices of $p(n)$ or $v_1 \notin$ the vertices of $p(n)$ and $v_2 \in$ the vertices of $p(n)$ and if $n \ge 2$, then $v_2 \in p(n)$.endVertices()).

PROOF: Set $H =$ the trivial subgraph of *G*. Consider *p* being a non empty, finite, path-like, graph-yielding finite sequence such that $p(1) \approx H$ and $p(\text{len } p) = G$ and $\text{len } p = G.\text{order}() - H.\text{order}(+) + 1$ and for every element *n* of dom *p* such that $n \leq \text{len } p - 1$ there exist vertices v_1, v_2 of *G* and there exists an object *e* such that $p(n + 1)$ is a supergraph of $p(n)$ extended by v_1, v_2 and *e* between them and $e \in$ (the edges of *G*) \setminus (the edges of $p(n)$ and $(v_1 \in \text{the vertices of } p(n) \text{ and } v_2 \notin \text{the vertices of } p(n) \text{ and if } v_1 \in \text{the vertices of } p(n)$ $p(n)$ is not trivial, then $v_1 \in p(n)$ *.*endVertices() or $v_1 \notin$ the vertices of $p(n)$ and $v_2 \in$ the vertices of $p(n)$ and if $p(n)$ is not trivial, then $v_2 \in$ $p(n)$.endVertices()). Consider v_1 , v_2 being vertices of *G*, *e* being an object such that $p(n+1)$ is a supergraph of $p(n)$ extended by v_1, v_2 and *e* between them and $e \in$ (the edges of *G*) \setminus (the edges of *p*(*n*)) and (*v*₁ \in the vertices of $p(n)$ and $v_2 \notin$ the vertices of $p(n)$ and if $p(n)$ is not trivial, then $v_1 \in$ $p(n)$ *.endVertices()* or $v_1 \notin$ the vertices of $p(n)$ and $v_2 \in$ the vertices of $p(n)$ and if $p(n)$ is not trivial, then $v_2 \in p(n)$ *.*endVertices()). If $n \ge 2$, then $p(n)$ is not trivial by [\[16,](#page-13-8) (3)], [\[17,](#page-13-7) (25)], [\[10,](#page-13-9) (143), (144)]. \square

(16) Let us consider a non empty, graph-yielding finite sequence *p*. Suppose $p(1)$ is path-like and for every element *n* of dom *p* such that $n \leq \text{len } p - 1$

there exist objects v_1 , e , v_2 such that $p(n + 1)$ is a supergraph of $p(n)$ extended by v_1, v_2 and *e* between them and $(p(n))$ is trivial or $v_1 \in$ $p(n)$ *.endVertices()* or $v_2 \in p(n)$ *.endVertices()).* Then $p(\text{len } p)$ is path-like. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{if } \$_{1} \leqslant \text{len } p - 1, \text{ then } p(\$_{1} + 1)$ is a path-like graph. For every natural number *n* such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [\[17,](#page-13-7) (25)], [\[10,](#page-13-9) (56)], (10), (11). For every natural number *n*, $\mathcal{P}[n]$ from [\[2,](#page-12-2) Sch. 2]. \square

- (17) Let us consider a non trivial, finite, path-like graph *G*. Then there exists a non empty, finite, path-like, graph-yielding finite sequence *p* such that
	- (i) *p*(1) is 2-vertex and path-like, and
	- (ii) $p(\text{len } p) = G$, and
	- (iii) len $p + 1 = G$.order(), and
	- (iv) for every element *n* of dom *p* such that $n \leq \text{len } p 1$ there exist vertices v_1 , v_2 of *G* and there exists an object *e* such that $p(n+1)$ is a supergraph of $p(n)$ extended by v_1 , v_2 and e between them and $e \in$ (the edges of *G*) \setminus (the edges of $p(n)$) and ($v_1 \in p(n)$ *.*endVertices() and $v_2 \notin$ the vertices of $p(n)$ or $v_1 \notin$ the vertices of $p(n)$ and $v_2 \in$ $p(n)$.endVertices()).

The theorem is a consequence of (15) , (10) , and (11) .

(18) Let us consider a non empty, graph-yielding finite sequence *p*. Suppose *p*(1) is non trivial and path-like and for every element *n* of dom *p* such that $n \leq \text{len } p-1$ there exist objects v_1, e, v_2 such that $p(n+1)$ is a supergraph of $p(n)$ extended by v_1, v_2 and *e* between them and $(v_1 \in p(n)$ *.endVertices()* or $v_2 \in p(n)$.endVertices()). Then $p(\text{len } p)$ is path-like. **PROOF:** Define \mathcal{P} [natural number] \equiv if $\$_1 \leqslant \ln p - 1$, then $p(\$_1 + 1)$

is a path-like graph. For every natural number *n* such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [\[17,](#page-13-7) (25)], [\[10,](#page-13-9) (56)], (10), (11). For every natural number *n*, $\mathcal{P}[n]$ from [\[2,](#page-12-2) Sch. 2]. \square

- (19) Let us consider graphs G_1, G_2 , and a partial graph mapping F from G_1 to G_2 . If F is isomorphism, then G_1 is path-like iff G_2 is path-like.
- (20) Let us consider graphs G_1, G_2 . If $G_1 \approx G_2$, then if G_1 is path-like, then *G*² is path-like.
- (21) Let us consider a graph G_1 , a set E , and a graph G_2 given by reversing directions of the edges E of G_1 . Then G_1 is path-like if and only if G_2 is path-like. The theorem is a consequence of (19).

Let P_2 be a 2-vertex, path-like graph. One can verify that every vertex of *P*² is endvertex.

Now we state the propositions:

- (22) Let us consider a finite, non trivial, path-like graph *P*. Then $\delta(P) = 1$. PROOF: Consider *p* being a non empty, finite, path-like, graph-yielding finite sequence such that $p(1)$ is 2-vertex and path-like and $p(\text{len } p) = P$ and len $p + 1 = P$ order() and for every element *n* of dom *p* such that $n \leq \text{len } p - 1$ there exist vertices v_1, v_2 of *P* and there exists an object *e* such that $p(n+1)$ is a supergraph of $p(n)$ extended by v_1 , v_2 and *e* between them and $e \in$ (the edges of *P*) \setminus (the edges of $p(n)$) and $(v_1 \in$ *p*(*n*).endVertices() and $v_2 \notin$ the vertices of *p*(*n*) or $v_1 \notin$ the vertices of $p(n)$ and $v_2 \in p(n)$.endVertices()). Define P [natural number] \equiv for every graph *H* such that $H = p(\$_{1} + 1)$ and $\$_{1} \leqslant \text{len } p - 1$ holds $\delta(H) = 1$. $\mathcal{P}[0]$ by $[15, (174)]$ $[15, (174)]$, $[12, (36)]$ $[12, (36)]$. For every natural number k such that $\mathcal{P}[k]$ holds $P[k+1]$ by [\[17,](#page-13-7) (25)], [\[10,](#page-13-9) (141)], [\[15,](#page-13-4) (174)], [\[12,](#page-13-10) (35)]. For every natural number k , $\mathcal{P}[k]$ from [\[2,](#page-12-2) Sch. 2]. \square
- (23) Let us consider a finite, path-like graph *P*. Then there exists a vertexdistinct path P_0 of P such that
	- (i) P_0 , vertices() = the vertices of P , and
	- (ii) P_0 *.edges*() = the edges of P, and
	- (iii) *P*.endVertices() = $\{P_0$.first(), P_0 .last()} iff *P* is not trivial, and
	- (iv) P_0 is trivial iff P is trivial, and
	- (v) P_0 is closed iff P is trivial, and
	- (vi) P_0 is minimum length.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every finite, path-like graph } P$ such that $P.\text{order}() = \$_1 + 1$ there exists a vertex-distinct path P_0 of P such that P_0 , vertices() = the vertices of P and P_0 , edges() = the edges of *P* and $(P.\text{endVertices}) = {P_0.\text{first}(), P_0.\text{last}() \text{ iff } P \text{ is not trivial}$ and $(P_0$ is closed iff *P* is trivial) and P_0 is minimum length. $\mathcal{P}[0]$ by [\[15,](#page-13-4) (26), (22), [\[13,](#page-13-11) (90)]. For every natural number *n* such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [\[15,](#page-13-4) (26)], (22), [15, (174)], (13). For every natural number $n, \mathcal{P}[n]$ from [\[2,](#page-12-2) Sch. 2]. Consider *n* being a natural number such that $P.\text{order}() = n + 1.$ Consider P_0 being a vertex-distinct path of P such that P_0 , vertices() = the vertices of *P* and P_0 , edges() = the edges of *P* and $(P.\text{endVertices}) = {P_0.\text{first}(), P_0.\text{last}() \text{ iff } P \text{ is not trivial} and (P_0$ is closed iff *P* is trivial) and P_0 is minimum length. \Box

- (24) Let us consider a non zero natural number *n*, and *n*-vertex, path-like graphs P_1 , P_2 . Then P_2 is P_1 -isomorphic. The theorem is a consequence of (23).
- (25) Let us consider a natural number *n*, and *n*-edge, path-like graphs *P*1, *P*2. Then *P*² is *P*1-isomorphic. The theorem is a consequence of (24).
- (26) Let us consider a non trivial, path-like graph *P*. Then
	- (i) $P.\text{order}() = 2 \text{ iff } \Delta(P) = 1$, and
	- (ii) $P.\text{order}() \neq 2 \text{ iff } \Delta(P) = 2.$
- (27) Let us consider a non trivial, path-like graph *P*, and a vertex *v* of *P*. If *v* is not endvertex, then *v*.degree() = 2.

Let us consider a finite, non trivial, path-like graph *P*. Now we state the propositions:

- (28) There exist vertices v_1 , v_2 of P such that
	- (i) $v_1 \neq v_2$, and
	- (ii) *P*.endVertices() = {*v*₁*, v*₂}.

The theorem is a consequence of (23).

(29) $\overline{P_{\text{endVertices}}}$ = 2. The theorem is a consequence of (28).

Now we state the proposition:

(30) Let us consider a finite, non trivial graph *G*. Suppose *G* is acyclic and $\delta(G) = 1$ and $\overline{G$.endVertices() = 2. Then *G* is path-like. PROOF: Set $F =$ the subgraph of *G* with vertex *v* removed. $3 \subseteq F$.numComponents() Consider c_1, c_2, c_3 being objects such that $c_1, c_2 \in F$ componentSet() and $c_3 \in F$.componentSet() and $c_1 \neq c_2$ and $c_1 \neq c_3$ and $c_2 \neq c_3$. Consider v_1 being a vertex of *F* such that $c_1 = F$ reachable From (v_1) . Consider v_2 being a vertex of F such that $c_2 = F$ reachable From (v_2) . Consider v_3 being a vertex of *F* such that $c_3 = F$.reachableFrom(*v*₃). Set C_1 = the subgraph of *F* induced by *F* reachable From (v_1) . Set C_2 = the subgraph of *F* induced by *F* reachableFrom (v_2) . Set C_3 = the subgraph of *F* induced by F reachable From (v_3) . Consider w_1 being a vertex of G such that w_1 is endvertex and $w_1 \in$ the vertices of C_1 . Consider w_2 being a vertex of *G* such that w_2 is endvertex and $w_2 \in$ the vertices of C_2 . Consider w_3 being a vertex of *G* such that w_3 is endvertex and $w_3 \in$ the vertices of *C*₃. *w*₁ ≠ *w*₂ by [\[14,](#page-13-12) (12)]. *w*₂ ≠ *w*₃ by [14, (12)]. *w*₃ ≠ *w*₁ by [14, (12)]. □

One can verify that every graph which is 2-vertex, simple, and connected is also path-like and every graph which is 2-vertex and path-like is also complete.

Let *n* be a natural number. Let us observe that every graph which is $(n+3)$ vertex and path-like is also non complete.

3. Cycle Graphs

Let *G* be a graph. We say that *G* is cycle-like if and only if (Def. 6) *G* is connected, non acyclic, and 2-regular.

One can verify that there exists a graph which is non trivial and cycle-like and every graph which is connected, non acyclic, and 2-regular is also cycle-like and every graph which is cycle-like is also connected, non acyclic, and 2-regular.

Now we state the proposition:

- (31) Let us consider a cycle-like graph *G*, and a circuit-like walk *C* of *G*. Then
	- (i) $C.\text{vertices}() = \text{the vertices of } G, \text{ and }$
	- (ii) $C.\text{edges}() = \text{the edges of } G.$

Note that every graph which is cycle-like is also non edgeless, finite, and with max degree.

Now we state the proposition:

(32) Let us consider a cycle-like graph *G*. Then $G.\text{order}() = G.\text{size}()$.

One can check that every graph which is trivial, non-directed-multi, and loopfull is also cycle-like and every graph which is trivial and cycle-like is also non-multi and loopfull and every graph which is non trivial and cycle-like is also loopless and there exists a graph which is trivial and cycle-like.

Let *F* be a graph-yielding function. We say that *F* is cycle-like if and only if

(Def. 7) for every object *x* such that $x \in \text{dom } F$ there exists a graph *G* such that $F(x) = G$ and *G* is cycle-like.

Let *C* be a cycle-like graph. Observe that $\langle C \rangle$ is cycle-like and $\mathbb{N} \longrightarrow C$ is cycle-like.

Let F be a non empty, graph-yielding function. Let us note that F is cyclelike if and only if the condition (Def. 8) is satisfied.

(Def. 8) for every element x of dom F , $F(x)$ is cycle-like.

Let *S* be a graph sequence. Observe that *S* is cycle-like if and only if the condition (Def. 9) is satisfied.

(Def. 9) for every natural number *n*, $S(n)$ is cycle-like.

One can verify that every graph-yielding function which is empty is also cycle-like and every graph-yielding function which is trivial, non-directed-multi, and loopfull is also cycle-like and every graph-yielding function which is cyclelike is also connected and there exists a graph sequence which is non empty and cycle-like.

Let F be a cycle-like, non empty, graph-yielding function and x be an element of dom *F*. Let us observe that $F(x)$ is cycle-like.

Let *S* be a cycle-like graph sequence and *n* be a natural number. Let us observe that $S(n)$ is cycle-like.

Let *p* be a cycle-like, graph-yielding finite sequence. One can verify that $p \upharpoonright n$ is cycle-like and $p_{\lfloor n}$ is cycle-like.

Let *m* be a natural number. Let us note that $\text{smid}(p, m, n)$ is cycle-like and $\langle p(m), \ldots, p(n) \rangle$ is cycle-like.

Let p, q be cycle-like, graph-yielding finite sequences. One can verify that $p \cap q$ is cycle-like and $p \sim q$ is cycle-like.

Let C_1 , C_2 be cycle-like graphs. Observe that $\langle C_1, C_2 \rangle$ is cycle-like. Let C_3 be a cycle-like graph. Let us observe that $\langle C_1, C_2, C_3 \rangle$ is cycle-like. Let *S* be a graph-membered set. We say that *S* is cycle-like if and only if

(Def. 10) for every graph *G* such that $G \in S$ holds *G* is cycle-like.

Note that every graph-membered set which is empty is also cycle-like and every graph-membered set which is cycle-like is also connected.

Let C_1 be a cycle-like graph. One can check that $\{C_1\}$ is cycle-like.

Let C_2 be a cycle-like graph. Let us note that $\{C_1, C_2\}$ is cycle-like.

Let *F* be a cycle-like, graph-yielding function. Observe that rng *F* is cyclelike.

Let X be a cycle-like, graph-membered set. One can verify that every subset of *X* is cycle-like.

Let *Y* be a set. Note that $X \cap Y$ is cycle-like and $X \setminus Y$ is cycle-like.

Let *X*, *Y* be cycle-like, graph-membered sets. Observe that $X \cup Y$ is cyclelike and *X−* . *^Y* is cycle-like and there exists a graph-membered set which is non empty and cycle-like.

Let *S* be a non empty, cycle-like, graph-membered set. Let us note that every element of *S* is cycle-like.

Now we state the propositions:

- (33) Let us consider a trivial, edgeless graph G_2 , a vertex v of G_2 , and an object *e*. Then every supergraph of *G*² extended by *e* between vertices *v* and *v* is cycle-like.
- (34) Let us consider a finite, non trivial, path-like graph P , elements v_1, v_2 of *P .*endVertices(), an object *e*, and a supergraph *C* of *P* extended by *e* between vertices v_1 and v_2 . Suppose $v_1 \neq v_2$ and $e \notin$ the edges of *P*. Then *C* is cycle-like. The theorem is a consequence of (29) , (27) , and (23) .
- (35) Let us consider a cycle-like graph *C*, and an edge *e* of *C*. Then every subgraph of *C* with edge *e* removed is finite and path-like. The theorem is a consequence of (31).

Let *C* be a cycle-like graph and *e* be an edge of *C*. One can check that every subgraph of *C* with edge *e* removed is finite and path-like.

Now we state the propositions:

(36) Let us consider a trivial, cycle-like graph *G*1, a vertex *v* of *G*1, and an edge e of G_1 . Then there exists a trivial, edgeless graph G_2 such that G_1 is a supergraph of G_2 extended by e between vertices v and v .

- (37) Let us consider a non trivial, cycle-like graph C , vertices v_1 , v_2 of C , and an edge e of C . Suppose e joins v_1 to v_2 in C . Then there exists a non trivial, finite, path-like graph *P* such that
	- (i) $e \notin \text{the edges of } P$, and
	- (ii) *C* is a supergraph of *P* extended by *e* between vertices v_1 and v_2 , and
	- (iii) $P.\text{endVertices}() = \{v_1, v_2\}.$

The theorem is a consequence of (28).

(38) Let us consider a cycle-like graph *C*. Then *C.*order() = 2 if and only if *C* is not non-multi.

PROOF: Consider e_1, e_2, v_1, v_2 being objects such that e_1 joins v_1 and v_2 in *C* and e_2 joins v_1 and v_2 in *C* and $e_1 \neq e_2$. Set $W_1 = C$.walkOf(v_1, e_1, v_2). Set $W_2 = W_1$.addEdge (e_2) . $v_1 \neq v_2$ by [\[15,](#page-13-4) (16), (57)], [\[1,](#page-12-3) (11)], [\[7,](#page-13-13) (32)]. The vertices of $C = W_2$, vertices(). \Box

Let *n* be a natural number. Observe that every graph which is *n*-vertex and cycle-like is also *n*-edge and every graph which is *n*-edge and cycle-like is also *n*-vertex and there exists a graph which is $(n + 1)$ -vertex, $(n + 1)$ -edge, and cycle-like and every graph which is $(n+2)$ -vertex and cycle-like is also loopless and every graph which is $(n+3)$ -vertex and cycle-like is also simple and there exists a graph which is $(n+2)$ -vertex, $(n+2)$ -edge, loopless, and cycle-like and there exists a graph which is $(n+3)$ -vertex, $(n+3)$ -edge, simple, and cycle-like.

Let *n* be a non zero natural number. Let us observe that there exists a graph which is *n*-vertex, *n*-edge, and cycle-like and every graph which is $(n+1)$ -vertex and cycle-like is also loopless and every graph which is $(n+2)$ -vertex and cyclelike is also simple and there exists a graph which is $(n+1)$ -vertex, $(n+1)$ -edge, cycle-like, and loopless and there exists a graph which is $(n+2)$ -vertex, $(n+2)$ edge, cycle-like, and simple.

Now we state the propositions:

- (39) Let us consider a cycle-like graph C_1 , and a non acyclic subgraph C_2 of *C*₁. Then $C_1 \approx C_2$. The theorem is a consequence of (31).
- (40) Let us consider graphs G_1, G_2 , and a partial graph mapping F from G_1 to G_2 . Suppose F is isomorphism. Then G_1 is cycle-like if and only if G_2 is cycle-like.
- (41) Let us consider graphs G_1 , G_2 . Suppose $G_1 \approx G_2$. If G_1 is cycle-like, then G_2 is cycle-like. The theorem is a consequence of (40) .
- (42) Let us consider a graph G_1 , a set E , and a graph G_2 given by reversing directions of the edges E of G_1 . Then G_1 is cycle-like if and only if G_2 is cycle-like. The theorem is a consequence of (40).
- (43) Let us consider a non zero natural number *n*, and *n*-vertex, cycle-like graphs C_1 , C_2 . Then C_2 is C_1 -isomorphic. The theorem is a consequence of (37), (24), and (29).
- (44) Let us consider a non zero natural number *n*, and *n*-edge, cycle-like graphs C_1 , C_2 . Then C_2 is C_1 -isomorphic.
- (45) Let us consider a finite, non trivial, path-like graph *P*, an object *v*, and a supergraph *C* of *P* extended by vertex *v* and edges between *v* and *P*.endVertices() of *P*. Suppose $v \notin$ the vertices of *P*. Then *C* is simple and cycle-like.

PROOF: $\overline{P \cdot \text{endVertices}}$ $\neq 0$. Consider w_1, w_2 being vertices of *P* such that $w_1 \neq w_2$ and *P* .endVertices() = $\{w_1, w_2\}$. There exists a component G_3 of *P* and there exist vertices w_1 , w_2 of G_3 such that w_1 , *w*₂ ∈ *P*.endVertices() and *w*₁ \neq *w*₂ by [\[14,](#page-13-12) (30)]. □

- (46) Let us consider a non trivial, cycle-like graph *C*, and a vertex *v* of *C*. Then every subgraph of *C* with vertex *v* removed is finite and path-like. The theorem is a consequence of (31).
- (47) Let us consider a simple, cycle-like graph *C*, and a vertex *v* of *C*. Then there exists a non trivial, path-like graph *P* such that
	- (i) $v \notin$ the vertices of *P*, and
	- (ii) *C* is a supergraph of *P* extended by vertex *v* and edges between *v* and *P .*endVertices() of *P*.

PROOF: Set $P =$ the subgraph of C with vertex v removed. P is path-like. *P* is not trivial by [\[15,](#page-13-4) (26), (48)]. \Box

One can verify that every graph which is 3-vertex, simple, and complete is also cycle-like and every graph which is 3-vertex and cycle-like is also simple, complete, and chordal.

Let *n* be a natural number. Let us observe that every graph which is $(n+4)$ vertex and cycle-like is also non chordal and non complete.

Let *n* be a non zero natural number. One can check that every graph which is $(n+3)$ -vertex and cycle-like is also non chordal and non complete and there exists a graph which is cycle-like, non complete, and non chordal.

REFERENCES

- [1] Grzegorz Bancerek. [Cardinal numbers.](http://fm.mizar.org/1990-1/pdf1-2/card_1.pdf) *Formalized Mathematics*, 1(**2**):377–382, 1990.
- [2] Grzegorz Bancerek. [The fundamental properties of natural numbers.](http://fm.mizar.org/1990-1/pdf1-1/nat_1.pdf) *Formalized Mathematics*, 1(**1**):41–46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. [Segments of natural numbers and finite](http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf) [sequences.](http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf) *Formalized Mathematics*, 1(**1**):107–114, 1990.
- [4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. [The role of the Mizar Mathematical Library](https://doi.org/10.1007/s10817-017-9440-6)

[for interactive proof development in Mizar.](https://doi.org/10.1007/s10817-017-9440-6) *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi[:10.1007/s10817-017-9440-6.](http://dx.doi.org/10.1007/s10817-017-9440-6)

- [5] John Adrian Bondy and U. S. R. Murty. *Graph Theory*. Graduate Texts in Mathematics, 244. Springer, New York, 2008. ISBN 978-1-84628-969-9.
- [6] Czesław Byliński. [Functions from a set to a set.](http://fm.mizar.org/1990-1/pdf1-1/funct_2.pdf) *Formalized Mathematics*, 1(**1**):153–164, 1990.
- [7] Czesław Byliński. [Some basic properties of sets.](http://fm.mizar.org/1990-1/pdf1-1/zfmisc_1.pdf) *Formalized Mathematics*, 1(**1**):47–53, 1990.
- [8] Reinhard Diestel. *Graph Theory*, volume Graduate Texts in Mathematics; 173. Springer, Berlin, fifth edition, 2017. ISBN 978-3-662-53621-6.
- [9] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. *Journal of Automated Reasoning*, 55(3):191–198, 2015. doi[:10.1007/s10817-015-9345-1.](http://dx.doi.org/10.1007/s10817-015-9345-1)
- [10] Sebastian Koch. About supergraphs. Part I. *Formalized Mathematics*, 26(**2**):101–124, 2018. doi[:10.2478/forma-2018-0009.](http://dx.doi.org/10.2478/forma-2018-0009)
- [11] Sebastian Koch. About supergraphs. Part III. *Formalized Mathematics*, 27(**2**):153–179, 2019. doi[:10.2478/forma-2019-0016.](http://dx.doi.org/10.2478/forma-2019-0016)
- [12] Sebastian Koch. Refined finiteness and degree properties in graphs. *Formalized Mathematics*, 28(**2**):137–154, 2020. doi[:10.2478/forma-2020-0013.](http://dx.doi.org/10.2478/forma-2020-0013)
- [13] Gilbert Lee. [Walks in graphs.](http://fm.mizar.org/2005-13/pdf13-2/glib_001.pdf) *Formalized Mathematics*, 13(**2**):253–269, 2005.
- [14] Gilbert Lee. [Trees and graph components.](http://fm.mizar.org/2005-13/pdf13-2/glib_002.pdf) *Formalized Mathematics*, 13(**2**):271–277, 2005.
- [15] Gilbert Lee and Piotr Rudnicki. [Alternative graph structures.](http://fm.mizar.org/2005-13/pdf13-2/glib_000.pdf) *Formalized Mathematics*, 13(**2**):235–252, 2005.
- [16] Michał J. Trybulec. [Integers.](http://fm.mizar.org/1990-1/pdf1-3/int_1.pdf) *Formalized Mathematics*, 1(**3**):501–505, 1990.
- [17] Wojciech A. Trybulec. [Non-contiguous substrings and one-to-one finite sequences.](http://fm.mizar.org/1990-1/pdf1-3/finseq_3.pdf) *Formalized Mathematics*, 1(**3**):569–573, 1990.
- [18] Robin James Wilson. *Introduction to Graph Theory*. Oliver & Boyd, Edinburgh, 1972. ISBN 0-05-002534-1.

Accepted December 9, 2024