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Summary. In this article, following the previous article [11], we continue
our proofs on integrals of continuous functions of three variables in Mizar [2], [3].
In the first section, continuity of functions of three variables is shown. These are
used in the proofs of the later sections.

The second section summarizes the basic properties of the projection of a
continuous function in three variables, a result that is almost as obvious as in
two variables, but is used to transform [10] Riemann and Lebesgue integrals for
real-valued functions (not extended real-valued functions).

In the last section, we prove integrability and iterated integrals of continuous
functions of three variables. Throughout the paper, the basic operations follow
[1], [? ], and [13].
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(1) Let us consider real normed spaces X, Y, Z, a point u of X × Y × Z,
a point x of X, a point y of Y, and a point z of Z. Suppose u = 〈〈x, y, z〉〉.
Then

(i) ‖u‖ ¬ ‖x‖+ ‖y‖+ ‖z‖, and

(ii) ‖x‖ ¬ ‖u‖, and

(iii) ‖y‖ ¬ ‖u‖, and

(iv) ‖z‖ ¬ ‖u‖.

(2) Let us consider closed interval subsets I, J , K of R, and a subset E of
((the real normed space of R)× (the real normed space of R))× (the real
normed space of R). If E = (I × J)×K, then E is compact.

(3) Let us consider a partial function f from ((the real normed space of R)×
(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, a partial function g from (R×R)×R to R, and a set
E. Suppose f = g and E ⊆ dom f . Then f is uniformly continuous on E

if and only if for every real number e such that 0 < e there exists a real
number r such that 0 < r and for every real numbers x1, x2, y1, y2, z1, z2
such that 〈〈x1, y1, z1〉〉, 〈〈x2, y2, z2〉〉 ∈ E and |x2−x1| < r and |y2− y1| < r

and |z2 − z1| < r holds |g(〈〈x2, y2, z2〉〉)− g(〈〈x1, y1, z1〉〉)| < e.
Proof: For every real number e such that 0 < e there exists a real number
r such that 0 < r and for every points p1, p2 of ((the real normed space
of R)× (the real normed space of R))× (the real normed space of R) such
that p1, p2 ∈ E and ‖p1− p2‖ < r holds ‖f/p1 − f/p2‖ < e by [17, (9)], [14,
(4)], [4, (60)], (1). �

(4) Let us consider intervals I, J , K. Then

(i) (I × J)×K is a subset of ((the real normed space of R)× (the real
normed space of R))× (the real normed space of R), and

(ii) (I ×J)×K ∈ σ(MeasRect(σ(MeasRect(L-Field,L-Field)),L-Field)).

(5) Let us consider a point u of (the real normed space of R) × (the real
normed space of R)× (the real normed space of R), and a real number r.
Suppose 0 < r. Then there exist real numbers s, x, y, z such that

(i) 0 < s < r, and

(ii) u = 〈〈x, y, z〉〉, and

(iii) ]x− s, x+ s[× ]y − s, y + s[× ]z − s, z + s[ ⊆ Ball(u, r).

Let us consider a subset A of (the real normed space of R)×(the real normed
space of R)× (the real normed space of R). Now we state the propositions:
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(6) Suppose for every real numbers a, b, c such that 〈〈a, b, c〉〉 ∈ A there
exists a real-membered set R12 such that R12 is non empty and upper
bounded and R12 = {r, where r is a real number : 0 < r and ]a−r, a+r[×
]b − r, b + r[ × ]c − r, c + r[ ⊆ A}. Then there exists a function F from
A into R such that for every real numbers a, b, c such that 〈〈a, b, c〉〉 ∈ A
there exists a real-membered set R12 such that R12 is non empty and upper
bounded and R12 = {r, where r is a real number : 0 < r and ]a−r, a+r[×
]b− r, b+ r[× ]c− r, c+ r[ ⊆ A} and F (〈〈a, b, c〉〉) = supR12

2 .
Proof: Define P[object, object] ≡ there exist real numbers a, b, c and
there exists a real-membered set R12 such that $1 = 〈〈a, b, c〉〉 and R12 is
non empty and upper bounded and R12 = {r, where r is a real number :
0 < r and ]a− r, a+ r[× ]b− r, b+ r[× ]c− r, c+ r[ ⊆ A} and $2 = supR12

2 .
For every object x such that x ∈ A there exists an object y such that y ∈ R
and P[x, y] by [17, (9)]. Consider F being a function from A into R such
that for every object x such that x ∈ A holds P[x, F (x)] from [6, Sch. 1].
For every real numbers a, b, c such that 〈〈a, b, c〉〉 ∈ A there exists a real-
membered set R12 such that R12 is non empty and upper bounded and
R12 = {r, where r is a real number : 0 < r and ]a−r, a+r[× ]b−r, b+r[×
]c− r, c+ r[ ⊆ A} and F (〈〈a, b, c〉〉) = supR12

2 . �

(7) IfA is open, thenA ∈ σ(MeasRect(σ(MeasRect(L-Field,L-Field)),L-Field)).
The theorem is a consequence of (5), (6), and (1).

Now we state the propositions:

(8) Let us consider closed interval subsets I, J , K of R, a partial function
f from ((the real normed space of R) × (the real normed space of R)) ×
(the real normed space of R) to the real normed space of R, and a partial
function g from (R× R)× R to R. Suppose f is continuous on (I × J)×
K and f = g. Let us consider a real number e. Suppose 0 < e. Then there
exists a real number r such that

(i) 0 < r, and

(ii) for every real numbers x1, x2, y1, y2, z1, z2 such that x1, x2 ∈ I and
y1, y2 ∈ J and z1, z2 ∈ K and |x2 − x1| < r and |y2 − y1| < r and
|z2 − z1| < r holds |g(〈〈x2, y2, z2〉〉)− g(〈〈x1, y1, z1〉〉)| < e.

Proof: Set E = (I × J) ×K. f is uniformly continuous on E. Consider
r being a real number such that 0 < r and for every real numbers x1, x2,
y1, y2, z1, z2 such that 〈〈x1, y1, z1〉〉, 〈〈x2, y2, z2〉〉 ∈ E and |x2−x1| < r and
|y2− y1| < r and |z2− z1| < r holds |g(〈〈x2, y2, z2〉〉)− g(〈〈x1, y1, z1〉〉)| < e.
For every real numbers x1, x2, y1, y2, z1, z2 such that x1, x2 ∈ I and y1,
y2 ∈ J and z1, z2 ∈ K and |x2−x1| < r and |y2−y1| < r and |z2− z1| < r

holds |g(〈〈x2, y2, z2〉〉)− g(〈〈x1, y1, z1〉〉)| < e by [7, (87)]. �
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(9) Let us consider a partial function f from ((the real normed space of R)×
(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, and a partial function g from (R × R) × R to R. If
f = g, then ‖f‖ = |g|.

(10) Let us consider closed interval subsets I, J , K of R, a partial function
f from ((the real normed space of R) × (the real normed space of R)) ×
(the real normed space of R) to the real normed space of R, and a partial
function g from (R× R)× R to R. Suppose f is continuous on (I × J)×
K and f = g. Let us consider a real number e. Suppose 0 < e. Then there
exists a real number r such that

(i) 0 < r, and

(ii) for every real numbers x1, x2, y1, y2, z1, z2 such that x1, x2 ∈ I and
y1, y2 ∈ J and z1, z2 ∈ K and |x2 − x1| < r and |y2 − y1| < r and
|z2 − z1| < r holds ||g|(〈〈x2, y2, z2〉〉)− |g|(〈〈x1, y1, z1〉〉)| < e.

The theorem is a consequence of (9) and (8).

2. Properties on the Projective Function of a Three-Variable
Function

Now we state the propositions:

(11) Let us consider a partial function f from ((the real normed space of
R) × (the real normed space of R)) × (the real normed space of R) to
the real normed space of R, a partial function g from (R × R) × R to R,
and elements x, y of R. Suppose f is continuous on dom f and f = g.
Then ProjPMap1(g, 〈〈x, y〉〉) is continuous.
Proof: For every real number z0 such that z0 ∈ dom(ProjPMap1(g, 〈〈x,
y〉〉)) holds ProjPMap1(g, 〈〈x, y〉〉) is continuous in z0 by [15, (19)], [14, (4)],
[17, (9)], [20, (15)]. �

(12) Let us consider a partial function f from ((the real normed space of R)×
(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, a partial function g from (R× R)× R to R, a partial
function p2 from (the real normed space of R) × (the real normed space
of R) to the real normed space of R, and an element z of R. Suppose f
is continuous on dom f and f = g and p2 = ProjPMap2(g, z). Then p2 is
continuous on dom p2.
Proof: For every point x4 of (the real normed space of R) × (the real
normed space of R) such that x4 ∈ dom p2 holds p2� dom p2 is continuous
in x4 by [18, (18)], [15, (19)], [17, (9)], [20, (15)]. �
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(13) Let us consider a partial function f from ((the real normed space of
R) × (the real normed space of R)) × (the real normed space of R) to
the real normed space of R, a partial function g from (R × R) × R to R,
and elements x, y of R. Suppose f is continuous on dom f and f = g.
Then ProjPMap1(|g|, 〈〈x, y〉〉) is continuous. The theorem is a consequence
of (11).

(14) Let us consider a partial function f from ((the real normed space of R)×
(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, a partial function g from (R× R)× R to R, a partial
function p2 from (the real normed space of R) × (the real normed space
of R) to the real normed space of R, and an element z of R. Suppose f is
continuous on dom f and f = g and p2 = ProjPMap2(|g|, z). Then p2 is
continuous on dom p2. The theorem is a consequence of (12).

(15) Let us consider a partial function f from ((the real normed space of R)×
(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, a partial function g from (R×R)×R to R, and elements
x, y of R. Suppose f is uniformly continuous on dom f and f = g. Then
ProjPMap1(g, 〈〈x, y〉〉) is uniformly continuous.
Proof: For every real number r such that 0 < r there exists a real number
s such that 0 < s and for every real numbers z1, z2 such that z1, z2 ∈
dom(ProjPMap1(g, 〈〈x, y〉〉)) and |z1 − z2| < s holds |(ProjPMap1(g, 〈〈x,
y〉〉))(z1)−(ProjPMap1(g, 〈〈x, y〉〉))(z2)| < r by [14, (4)], [17, (9)], [20, (15)],
[19, (22)]. �

(16) Let us consider a partial function f from ((the real normed space of R)×
(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, a partial function g from (R× R)× R to R, a partial
function p2 from (the real normed space of R) × (the real normed space
of R) to the real normed space of R, and an element z of R. Suppose f
is uniformly continuous on dom f and f = g and p2 = ProjPMap2(g, z).
Then p2 is uniformly continuous on dom p2.

(17) Let us consider elements x, y of R, a partial function f from ((the real
normed space of R) × (the real normed space of R)) × (the real normed
space of R) to the real normed space of R, a partial function g from
(R × R) × R to R, and a partial function P8 from R to R. Suppose f is
continuous on dom f and f = g and P8 = ProjPMap1(R(g), 〈〈x, y〉〉). Then
P8 is continuous. The theorem is a consequence of (11).

(18) Let us consider an element z of R, a partial function f from ((the real
normed space of R) × (the real normed space of R)) × (the real normed
space of R) to the real normed space of R, a partial function g from (R×
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R) × R to R, and a partial function P7 from (the real normed space of
R)× (the real normed space of R) to the real normed space of R. Suppose
f is continuous on dom f and f = g and P7 = ProjPMap2(R(g), z). Then
P7 is continuous on domP7. The theorem is a consequence of (12).

(19) Let us consider elements x, y of R, a partial function f from ((the real
normed space of R) × (the real normed space of R)) × (the real normed
space of R) to the real normed space of R, a partial function g from
(R × R) × R to R, and a partial function P8 from R to R. Suppose f

is continuous on dom f and f = g and P8 = ProjPMap1(|R(g)|, 〈〈x, y〉〉).
Then P8 is continuous. The theorem is a consequence of (13).

(20) Let us consider an element z of R, a partial function f from ((the real
normed space of R) × (the real normed space of R)) × (the real normed
space of R) to the real normed space of R, a partial function g from (R×
R)×R to R, and a partial function P7 from (the real normed space of R)×
(the real normed space of R) to the real normed space of R. Suppose f is
continuous on dom f and f = g and P7 = ProjPMap2(|R(g)|, z). Then P7
is continuous on domP7. The theorem is a consequence of (14).

3. Integral of Continuous Three-Variable Functions

Let us consider subsets I, J of R, a non empty, closed interval subset K of
R, elements x, y of R, a partial function f from ((the real normed space of R)×
(the real normed space of R))× (the real normed space of R) to the real normed
space of R, a partial function g from (R × R) × R to R, and a partial function
P8 from R to R. Now we state the propositions:

(21) Suppose x ∈ I and y ∈ J and dom f = (I × J)×K and f is continuous
on (I × J)×K and f = g and P8 = ProjPMap1(R(g), 〈〈x, y〉〉). Then

(i) P8�K is bounded, and

(ii) P8 is integrable on K.

The theorem is a consequence of (17).

(22) Suppose x ∈ I and y ∈ J and dom f = (I × J)×K and f is continuous
on (I × J)×K and f = g and P8 = ProjPMap1(R(g), 〈〈x, y〉〉). Then

(i) P8 is integrable on L-Meas, and

(ii)
∫
K

P8(x)dx =
∫
P8 d L-Meas, and

(iii)
∫
K

P8(x)dx =
∫

ProjPMap1(R(g), 〈〈x, y〉〉) d L-Meas, and
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(iv)
∫
K

P8(x)dx = (Integral2(L-Meas,R(g)))(〈〈x, y〉〉).

The theorem is a consequence of (21).

Now we state the propositions:

(23) Let us consider non empty, closed interval subsets I, J of R, a subset
K of R, an element z of R, a partial function f from ((the real normed
space of R)× (the real normed space of R))× (the real normed space of
R) to the real normed space of R, a partial function g from (R × R) ×
R to R, and a partial function P9 from R × R to R. Suppose z ∈ K and
dom f = (I × J)×K and f is continuous on (I × J)×K and f = g and
P9 = ProjPMap2(R(g), z). Then

(i) P9 is integrable on ProdMeas(L-Meas,L-Meas), and

(ii)
∫
P9 d ProdMeas(L-Meas,L-Meas) =

∫
ProjPMap2(R(g), z) d ProdMeas(L-Meas,L-Meas),

and

(iii)
∫
P9 d ProdMeas(L-Meas,L-Meas) = (Integral1(ProdMeas(L-Meas,L-Meas),R(g)))(z).

The theorem is a consequence of (18).

(24) Let us consider subsets I, J of R, a non empty, closed interval subset
K of R, elements x, y of R, a partial function f from ((the real normed
space of R)× (the real normed space of R))× (the real normed space of
R) to the real normed space of R, a partial function g from (R×R)×R to
R, and a partial function P8 from R to R. Suppose x ∈ I and y ∈ J and
dom f = (I × J)×K and f is continuous on (I × J)×K and f = g and
P8 = ProjPMap1(|R(g)|, 〈〈x, y〉〉). Then

(i) P8�K is bounded, and

(ii) P8 is integrable on K.

The theorem is a consequence of (19).

(25) Let us consider subsets I, J of R, a non empty, closed interval subset
K of R, elements x, y of R, a partial function f from ((the real normed
space of R)× (the real normed space of R))× (the real normed space of R)
to the real normed space of R, a partial function g from (R×R)×R to R,
a partial function P8 from R to R, and an element E of L-Field. Suppose
x ∈ I and y ∈ J and dom f = (I × J) ×K and f is continuous on (I ×
J)×K and f = g and P8 = ProjPMap1(|R(g)|, 〈〈x, y〉〉) and E = K. Then
P8 is E-measurable. The theorem is a consequence of (24).

(26) Let us consider subsets I, J of R, a non empty, closed interval subset
K of R, elements x, y of R, a partial function f from ((the real normed
space of R)× (the real normed space of R))× (the real normed space of
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R) to the real normed space of R, a partial function g from (R×R)×R to
R, and a partial function P8 from R to R. Suppose x ∈ I and y ∈ J and
dom f = (I × J)×K and f is continuous on (I × J)×K and f = g and
P8 = ProjPMap1(|R(g)|, 〈〈x, y〉〉). Then

(i) P8 is integrable on L-Meas, and

(ii)
∫
K

P8(x)dx =
∫
P8 d L-Meas, and

(iii)
∫
K

P8(x)dx =
∫

ProjPMap1(|R(g)|, 〈〈x, y〉〉) d L-Meas, and

(iv)
∫
K

P8(x)dx = (Integral2(L-Meas, |R(g)|))(〈〈x, y〉〉).

The theorem is a consequence of (24).

(27) Let us consider non empty, closed interval subsets I, J of R, a subset
K of R, an element z of R, a partial function f from ((the real normed
space of R) × (the real normed space of R)) × (the real normed space
of R) to the real normed space of R, a partial function g from (R ×
R) × R to R, a partial function P9 from R × R to R, and an element
E of σ(MeasRect(L-Field,L-Field)). Suppose z ∈ K and dom f = (I ×
J) × K and f is continuous on (I × J) × K and f = g and P9 =
ProjPMap2(|R(g)|, z) and E = I × J . Then P9 is E-measurable. The
theorem is a consequence of (20).

(28) Let us consider non empty, closed interval subsets I, J of R, a subset
K of R, an element z of R, a partial function f from ((the real normed
space of R)× (the real normed space of R))× (the real normed space of
R) to the real normed space of R, a partial function g from (R × R) ×
R to R, and a partial function P9 from R × R to R. Suppose z ∈ K and
dom f = (I × J)×K and f is continuous on (I × J)×K and f = g and
P9 = ProjPMap2(|R(g)|, z). Then

(i) P9 is integrable on ProdMeas(L-Meas,L-Meas), and

(ii)
∫
P9 d ProdMeas(L-Meas,L-Meas) =

∫
ProjPMap2(|R(g)|, z) d ProdMeas(L-Meas,L-Meas),

and

(iii)
∫
P9 d ProdMeas(L-Meas,L-Meas) = (Integral1(ProdMeas(L-Meas,L-Meas), |R(g)|))(z).

The theorem is a consequence of (20).

(29) Let us consider non empty, closed interval subsets I, J , K of R, a par-
tial function f from ((the real normed space of R) × (the real normed
space of R)) × (the real normed space of R) to the real normed space
of R, a partial function g from (R × R) × R to R, and an element E of



Integral of continuous three variable functions 17

σ(MeasRect(σ(MeasRect(L-Field,L-Field)),L-Field)). Suppose (I × J)×
K = dom f and f is continuous on (I × J)×K and f = g and E = (I ×
J)×K. Then g is E-measurable.
Proof: For every real number r, E∩LE-dom(g, r) ∈ σ(MeasRect(σ(MeasRect(L-Field,L-Field)),L-Field))
by [11, (17), (24)], (7). �

Let us consider non empty, closed interval subsets I, J , K of R, elements
x, y of R, a partial function f from ((the real normed space of R) × (the real
normed space of R)) × (the real normed space of R) to the real normed space
of R, a partial function g from (R×R)×R to R, and a real number e. Now we
state the propositions:

(30) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g. Then suppose 0 < e. Then there exists a real number r such that

(i) 0 < r, and

(ii) for every elements u1, u2 of R×R and for every real numbers x1, y1,
x2, y2 such that u1 = 〈〈x1, y1〉〉 and u2 = 〈〈x2, y2〉〉 and |x2−x1| < r and
|y2−y1| < r and u1, u2 ∈ I×J for every element z of R such that z ∈
K holds |(ProjPMap1(|R(g)|, u2))(z)−(ProjPMap1(|R(g)|, u1))(z)| <
e.

Proof: For every element x of R × R and for every element y of R such
that x ∈ I × J and y ∈ K holds (ProjPMap1(|R(g)|, x))(y) = |R(g)|(x, y)
and |R(g)|(x, y) = |g|(〈〈x, y〉〉) by [7, (87)], [12, (12)]. Consider r being a real
number such that 0 < r and for every real numbers x1, x2, y1, y2, z1, z2
such that x1, x2 ∈ I and y1, y2 ∈ J and z1, z2 ∈ K and |x2 − x1| < r

and |y2 − y1| < r and |z2 − z1| < r holds ||g|(〈〈x2, y2, z2〉〉) − |g|(〈〈x1, y1,
z1〉〉)| < e. �

(31) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g. Then suppose 0 < e. Then there exists a real number r such that

(i) 0 < r, and

(ii) for every elements u1, u2 of R×R and for every real numbers x1, y1,
x2, y2 such that u1 = 〈〈x1, y1〉〉 and u2 = 〈〈x2, y2〉〉 and |x2−x1| < r and
|y2−y1| < r and u1, u2 ∈ I×J for every element z of R such that z ∈
K holds |(ProjPMap1(R(g), u2))(z) − (ProjPMap1(R(g), u1))(z)| <
e.

The theorem is a consequence of (8).

Now we state the proposition:

(32) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R) × (the real normed space
of R))× (the real normed space of R) to the real normed space of R, and
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a partial function g from (R×R)×R to R. Suppose (I × J)×K = dom f

and f is continuous on (I × J)×K and f = g. Then

(i) Integral2(L-Meas, |R(g)|) is a function from R× R into R, and

(ii) Integral2(L-Meas, |R(g)|)�(I × J) is a partial function from R×R to
R, and

(iii) Integral2(L-Meas,R(g)) is a function from R× R into R, and

(iv) Integral2(L-Meas,R(g))�(I × J) is a partial function from R × R to
R.

The theorem is a consequence of (26) and (22).

Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)× (the real normed space of R))×
(the real normed space of R) to the real normed space of R, a partial function g
from (R×R)×R to R, and a partial function F4 from (the real normed space
of R) × (the real normed space of R) to the real normed space of R. Now we
state the propositions:

(33) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g and F4 = Integral2(L-Meas, |R(g)|)�(I × J). Then F4 is uniformly
continuous on I×J . The theorem is a consequence of (30), (19), and (24).

(34) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g and F4 = Integral2(L-Meas,R(g))�(I × J). Then F4 is uniformly
continuous on I×J . The theorem is a consequence of (31), (17), (21), and
(22).

Now we state the proposition:

(35) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R) × (the real normed space
of R))× (the real normed space of R) to the real normed space of R, and
a partial function g from (R×R)×R to R. Suppose (I × J)×K = dom f

and f is continuous on (I × J)×K and f = g. Then

(i) Integral1(ProdMeas(L-Meas,L-Meas), |R(g)|) is a function from R in-
to R, and

(ii) Integral1(ProdMeas(L-Meas,L-Meas), |R(g)|)�K is a partial function
from R to R, and

(iii) Integral1(ProdMeas(L-Meas,L-Meas),R(g)) is a function from R into
R, and

(iv) Integral1(ProdMeas(L-Meas,L-Meas),R(g))�K is a partial function
from R to R.

The theorem is a consequence of (20), (28), (18), and (23).
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Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)× (the real normed space of R))×
(the real normed space of R) to the real normed space of R, a partial function
g from (R×R)×R to R, and a partial function G3 from R to R. Now we state
the propositions:

(36) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g and G3 = Integral1(ProdMeas(L-Meas,L-Meas), |R(g)|)�K. Then
G3 is continuous.
Proof: Consider a, b being real numbers such that I = [a, b]. Consider c,
d being real numbers such that J = [c, d]. For every real number e such
that 0 < e there exists a real number r such that 0 < r and for every
real numbers z1, z2 such that |z2 − z1| < r and z1, z2 ∈ K for every real
numbers x, y such that x ∈ I and y ∈ J holds ||g|(〈〈x, y, z2〉〉) − |g|(〈〈x,
y, z1〉〉)| < e. Set R11 = R(g). For every elements x, y, z of R such that
x ∈ I and y ∈ J and z ∈ K holds (ProjPMap2(|R11|, z))(x, y) = |R11|(〈〈x,
y〉〉, z) and |R11|(〈〈x, y〉〉, z) = |g(〈〈x, y, z〉〉)| and |R11|(〈〈x, y〉〉, z) = |g|(〈〈x, y,
z〉〉) by [7, (87)], [12, (12)]. For every real number e such that 0 < e there
exists a real number r such that 0 < r and for every elements z1, z2 of R
such that |z2 − z1| < r and z1, z2 ∈ K for every elements x, y of R such
that x ∈ I and y ∈ J holds |(ProjPMap1(ProjPMap2(|R11|, z2), x))(y) −
(ProjPMap1(ProjPMap2(|R11|, z1), x))(y)| < e by [11, (28)], [7, (87)], [12,
(12)]. For every real numbers z0, r such that z0 ∈ K and 0 < r there exists
a real number s such that 0 < s and for every real number z1 such that
z1 ∈ K and |z1 − z0| < s holds |G3(z1) − G3(z0)| < r by [11, (30), (28)],
(20), [11, (51), (53)]. �

(37) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g and G3 = Integral1(ProdMeas(L-Meas,L-Meas),R(g))�K. Then G3
is continuous.
Proof: Consider a, b being real numbers such that I = [a, b]. Consider
c, d being real numbers such that J = [c, d]. For every real number e
such that 0 < e there exists a real number r such that 0 < r and for
every real numbers z1, z2 such that |z2 − z1| < r and z1, z2 ∈ K for
every real numbers x, y such that x ∈ I and y ∈ J holds |g(〈〈x, y, z2〉〉) −
g(〈〈x, y, z1〉〉)| < e. Set R11 = R(g). For every elements x, y, z of R such
that x ∈ I and y ∈ J and z ∈ K holds (ProjPMap2(R11, z))(x, y) =
R11(〈〈x, y〉〉, z) and R11(〈〈x, y〉〉, z) = g(〈〈x, y, z〉〉) and R11(〈〈x, y〉〉, z) = g(〈〈x,
y, z〉〉) by [7, (87)]. For every real number e such that 0 < e there exists
a real number r such that 0 < r and for every elements z1, z2 of R such
that |z2 − z1| < r and z1, z2 ∈ K for every elements x, y of R such
that x ∈ I and y ∈ J holds |(ProjPMap1(ProjPMap2(R11, z2), x))(y) −
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(ProjPMap1(ProjPMap2(R11, z1), x))(y)| < e by [11, (28)], [7, (87)], [12,
(12)]. For every real numbers z0, r such that z0 ∈ K and 0 < r there exists
a real number s such that 0 < s and for every real number z1 such that
z1 ∈ K and |z1 − z0| < s holds |G3(z1) − G3(z0)| < r by [11, (30), (28)],
(18), [11, (51), (53)]. �

Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R) × (the real normed space of
R))× (the real normed space of R) to the real normed space of R, and a partial
function g from (R× R)× R to R. Now we state the propositions:

(38) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g. Then Integral2(L-Meas, |R(g)|) is non-negative. The theorem is
a consequence of (24) and (25).

(39) Suppose (I × J) × K = dom f and f is continuous on (I × J) × K

and f = g. Then Integral1(ProdMeas(L-Meas,L-Meas), |R(g)|) is non-
negative. The theorem is a consequence of (20) and (27).

Now we state the propositions:

(40) Let us consider non empty, closed interval subsets I, J , K of R, an ele-
ment u of R×R, a partial function f from ((the real normed space of R)×
(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, and a partial function g from (R×R)×R to R. Sup-
pose (I × J)×K = dom f and f is continuous on (I × J)×K and f = g.
Then (Integral2(L-Meas, |R(g)|))(u) < +∞. The theorem is a consequence
of (32).

(41) Let us consider non empty, closed interval subsets I, J , K of R, an ele-
ment z of R, a partial function f from ((the real normed space of R) ×
(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, and a partial function g from (R×R)×R to R. Suppose
(I ×J)×K = dom f and f is continuous on (I ×J)×K and f = g. Then
(Integral1(ProdMeas(L-Meas,L-Meas), |R(g)|))(z) < +∞. The theorem is
a consequence of (35).

(42) Let us consider non empty, closed interval subsets I, J , K of R, a par-
tial function f from ((the real normed space of R) × (the real normed
space of R)) × (the real normed space of R) to the real normed space
of R, a partial function g from (R × R) × R to R, and an element E of
σ(MeasRect(L-Field,L-Field)). Suppose (I × J) × K = dom f and f is
continuous on (I × J) ×K and f = g. Then Integral2(L-Meas, |R(g)|) is
E-measurable.
Proof: Set F = Integral2(L-Meas, |R(g)|). Set I1 = I × J . Reconsider
G = Integral2(L-Meas, |R(g)|)�I1 as a partial function from R×R to R. Re-
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consider R4 = Integral2(L-Meas,R(g))�I1 as a partial function from R×R
to R. Reconsider G1 = G as a partial function from (the real normed space
of R)×(the real normed space of R) to the real normed space of R. Recon-
sider R6 = R4 as a partial function from (the real normed space of R) ×
(the real normed space of R) to the real normed space of R. G1 is uniformly
continuous on I×J . R6 is uniformly continuous on I×J . F is non-negative.
Reconsider H = R×R as an element of σ(MeasRect(L-Field,L-Field)). For
every real number r, H ∩ LE-dom(F, r) ∈ σ(MeasRect(L-Field,L-Field))
by [16, (4)], [5, (49)], [16, (3)]. �

Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R) × (the real normed space of
R))× (the real normed space of R) to the real normed space of R, and a partial
function g from (R× R)× R to R. Now we state the propositions:

(43) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g. Then

(i) g is integrable on ProdMeas(ProdMeas(L-Meas,L-Meas),L-Meas),
and

(ii) for every element u of R × R, ProjPMap1(R(g), u) is integrable on
L-Meas, and

(iii) for every element U of σ(MeasRect(L-Field,L-Field)), Integral2(L-Meas,R(g))
is U -measurable, and

(iv) Integral2(L-Meas,R(g)) is integrable on ProdMeas(L-Meas,L-Meas),
and

(v)
∫
g d ProdMeas(ProdMeas(L-Meas,L-Meas),L-Meas) =

∫
Integral2(L-Meas,R(g)) d ProdMeas(L-Meas,L-Meas).

Proof: Set F = Integral2(L-Meas, |R(g)|). Set I1 = I×J . Reconsider G =
Integral2(L-Meas, |R(g)|)�I1 as a partial function from R×R to R. Recon-
sider R4 = Integral2(L-Meas,R(g))�I1 as a partial function from R×R to
R. Reconsider A1 = I×J as an element of σ(MeasRect(L-Field,L-Field)).
Reconsider G1 = G as a partial function from (the real normed space of
R)×(the real normed space of R) to the real normed space of R. Reconsider
R6 = R4 as a partial function from (the real normed space of R)×(the real
normed space of R) to the real normed space of R. G1 is uniformly conti-
nuous on I×J . R6 is uniformly continuous on I×J . Reconsider N1 = (R×
R)\A1 as an element of σ(MeasRect(L-Field,L-Field)). F is non-negative.
Reconsider H = R×R as an element of σ(MeasRect(L-Field,L-Field)). F
is H-measurable. Set F1 = F �N1. For every object x such that x ∈ domF1
holds F1(x) = 0 by [5, (49)]. Reconsider K1 = (I × J) × K as an ele-
ment of σ(MeasRect(σ(MeasRect(L-Field,L-Field)),L-Field)). g is K1-
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measurable. For every element x of R×R, (Integral2(L-Meas, |R(g)|))(x) <
+∞. �

(44) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g. Then

(i) for every element z of R, ProjPMap2(R(g), z) is integrable on ProdMeas(L-Meas,L-Meas),
and

(ii) for every element V of L-Field, Integral1(ProdMeas(L-Meas,L-Meas),R(g))
is V -measurable, and

(iii) Integral1(ProdMeas(L-Meas,L-Meas),R(g)) is integrable on L-Meas,
and

(iv)
∫
g d ProdMeas(ProdMeas(L-Meas,L-Meas),L-Meas) =

∫
Integral1(ProdMeas(L-Meas,L-Meas),R(g)) d L-Meas.

The theorem is a consequence of (43) and (41).

Now we state the propositions:

(45) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)×(the real normed space of
R))×(the real normed space of R) to the real normed space of R, a partial
function g from (R×R)×R to R, an element x of R, and an element E of
L-Field. Suppose (I × J)×K = dom f and f is continuous on (I × J)×
K and f = g and x ∈ I. Then ProjPMap1(| Integral2(L-Meas,R(g))|, x)
is E-measurable.
Proof: Set F4 = Integral2(L-Meas,R(g)). ReconsiderG4 = Integral2(L-Meas,R(g))
as a function from R × R into R. Reconsider G = G4�(I × J) as a par-
tial function from R × R to R. Reconsider F = G as a partial func-
tion from (the real normed space of R) × (the real normed space of
R) to the real normed space of R. F is uniformly continuous on I ×
J . Set F5 = ProjPMap1(|F4|, x). Set L0 = F5�J . For every element
t of R such that t ∈ J holds 0 ¬ L0(t) by [5, (49)], [12, (14)]. Re-
consider H = R as an element of L-Field. For every real number r,
H ∩ LE-dom(F5, r) ∈ L-Field by [5, (49)], [16, (4), (3)]. �

(46) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R) × (the real normed space
of R))× (the real normed space of R) to the real normed space of R, and
a partial function g from (R×R)×R to R. Suppose (I × J)×K = dom f

and f is continuous on (I × J)×K and f = g. Then

(i) for every element x of R, (Integral2(L-Meas, | Integral2(L-Meas,R(g))|))(x) <
+∞, and

(ii) for every element x of R, ProjPMap1(Integral2(L-Meas,R(g)), x) is
integrable on L-Meas.
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Proof: Reconsider G4 = Integral2(L-Meas,R(g)) as a function from R×
R into R. Reconsider G = G4�(I × J) as a partial function from R × R
to R. Reconsider F = G as a partial function from (the real normed
space of R) × (the real normed space of R) to the real normed space
of R. F is uniformly continuous on I × J . For every element x of R,
(Integral2(L-Meas, | Integral2(L-Meas,R(g))|))(x) < +∞ by [11, (25)], [8,
(5)], [9, (75)], [16, (5), (6)]. Integral2(L-Meas,R(g)) is integrable on ProdMeas(L-Meas,L-Meas).
�

(47) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)×(the real normed space of
R))×(the real normed space of R) to the real normed space of R, a partial
function g from (R×R)×R to R, an element y of R, and an element E of
L-Field. Suppose (I × J)×K = dom f and f is continuous on (I × J)×
K and f = g and y ∈ J . Then ProjPMap2(| Integral2(L-Meas,R(g))|, y)
is E-measurable.
Proof: Set F4 = Integral2(L-Meas,R(g)). ReconsiderG4 = Integral2(L-Meas,R(g))
as a function from R × R into R. Reconsider G = G4�(I × J) as a par-
tial function from R × R to R. Reconsider F = G as a partial func-
tion from (the real normed space of R) × (the real normed space of R)
to the real normed space of R. F is uniformly continuous on I × J . Set
F6 = ProjPMap2(|F4|, y). Set L0 = F6�I. For every element t of R such
that t ∈ I holds 0 ¬ L0(t) by [5, (49)], [12, (14)]. For every element r of R,
0R ¬ F6(r) by [5, (49)]. Reconsider H = R as an element of L-Field. For
every real number r, H ∩ LE-dom(F6, r) ∈ L-Field by [16, (4)], [5, (49)],
[16, (3)]. �

(48) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R) × (the real normed space
of R))× (the real normed space of R) to the real normed space of R, and
a partial function g from (R×R)×R to R. Suppose (I × J)×K = dom f

and f is continuous on (I × J)×K and f = g. Then

(i) for every element y of R, (Integral1(L-Meas, | Integral2(L-Meas,R(g))|))(y) <
+∞, and

(ii) for every element y of R, ProjPMap2(Integral2(L-Meas,R(g)), y) is
integrable on L-Meas.

Proof: Reconsider G4 = Integral2(L-Meas,R(g)) as a function from R×
R into R. Reconsider G = G4�(I × J) as a partial function from R × R
to R. Reconsider F = G as a partial function from (the real normed
space of R) × (the real normed space of R) to the real normed space
of R. F is uniformly continuous on I × J . For every element y of R,
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(Integral1(L-Meas, | Integral2(L-Meas,R(g))|))(y) < +∞ by [11, (26)], [8,
(5)], [9, (75)], [16, (5), (6)]. Integral2(L-Meas,R(g)) is integrable on ProdMeas(L-Meas,L-Meas).
�

(49) Let us consider non empty, closed interval subsets I, J , K of R, a par-
tial function f from ((the real normed space of R) × (the real normed
space of R)) × (the real normed space of R) to the real normed space
of R, a partial function g from (R × R) × R to R, and an element E of
σ(MeasRect(L-Field,L-Field)). Suppose (I × J) × K = dom f and f is
continuous on (I × J) ×K and f = g. Then Integral2(L-Meas, |R(g)|) is
E-measurable.
Proof: Set F = Integral2(L-Meas, |R(g)|). Set F0 = F �(I×J). Reconsider
G = F0 as a partial function from R×R to R. Reconsider G1 = G as a par-
tial function from (the real normed space of R)×(the real normed space of
R) to the real normed space of R. G1 is uniformly continuous on I×J . Re-
consider R2 = R×R as an element of σ(MeasRect(L-Field,L-Field)). F is
non-negative. For every real number r,R2∩LE-dom(F, r) ∈ σ(MeasRect(L-Field,L-Field))
by [16, (4)], [5, (49)], [16, (3)]. �

(50) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)×(the real normed space of
R))×(the real normed space of R) to the real normed space of R, a partial
function g from (R× R)× R to R, and an element E of L-Field. Suppose
(I ×J)×K = dom f and f is continuous on (I ×J)×K and f = g. Then
Integral1(ProdMeas(L-Meas,L-Meas), |R(g)|) is E-measurable.
Proof: Set F = Integral1(ProdMeas(L-Meas,L-Meas), |R(g)|). Set F0 =
F �K. Reconsider G = F0 as a partial function from R to R. G�K is
bounded and G is integrable on K. Reconsider R = R as an element of
L-Field. F is non-negative. For every real number r, R ∩ LE-dom(F, r) ∈
L-Field by [16, (4)], [5, (49)], [16, (3)]. �

(51) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)×(the real normed space of
R))×(the real normed space of R) to the real normed space of R, a partial
function g from (R × R) × R to R, and an element x of R. Suppose (I ×
J)×K = dom f and f is continuous on (I × J)×K and f = g. Then

(i) ProjPMap1(Integral2(L-Meas,R(g)), x) is a function from R into R,
and

(ii) ProjPMap1(| Integral2(L-Meas,R(g))|, x) is a function from R into
R.

The theorem is a consequence of (32).
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(52) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)×(the real normed space of
R))×(the real normed space of R) to the real normed space of R, a partial
function g from (R × R) × R to R, and an element y of R. Suppose (I ×
J)×K = dom f and f is continuous on (I × J)×K and f = g. Then

(i) ProjPMap2(Integral2(L-Meas,R(g)), y) is a function from R into R,
and

(ii) ProjPMap2(| Integral2(L-Meas,R(g))|, y) is a function from R into
R.

The theorem is a consequence of (32).

(53) Let us consider non empty, closed interval subsets I, J , K of R, a par-
tial function f from ((the real normed space of R) × (the real normed
space of R)) × (the real normed space of R) to the real normed space
of R, and a partial function g from (R × R) × R to R. Suppose (I ×
J) × K = dom f and f is continuous on (I × J) × K and f = g. Then
| Integral1(ProdMeas(L-Meas,L-Meas),R(g))| is a function from R into R.
The theorem is a consequence of (35).

(54) Let us consider an element x of R, non empty, closed interval subsets
I, J , K of R, and a partial function g from (R × R) × R to R. Suppose
(I × J)×K = dom g. Then

∫
ProjPMap1(Integral2(L-Meas,R(g)), x)�R \

J d L-Meas = 0.

(55) Let us consider an element y of R, non empty, closed interval subsets
I, J , K of R, and a partial function g from (R × R) × R to R. Suppose
(I × J)×K = dom g. Then

∫
ProjPMap2(Integral2(L-Meas,R(g)), y)�R \

I d L-Meas = 0.

(56) Let us consider non empty, closed interval subsets I, J , K of R, and
a partial function g from (R×R)×R to R. Suppose (I×J)×K = dom g.
Then

∫
Integral1(ProdMeas(L-Meas,L-Meas),R(g))�R \K d L-Meas = 0.

(57) Let us consider an element x of R, non empty, closed interval subsets I, J ,
K of R, a partial function f from ((the real normed space of R)×(the real
normed space of R))×(the real normed space of R) to the real normed spa-
ce of R, a partial function g from (R×R)×R to R, and a partial function P1
from R to R. Suppose x ∈ I and (I×J)×K = dom f and f is continuous on
(I×J)×K and f = g and P1 = ProjPMap1(Integral2(L-Meas,R(g)), x)�J .
Then P1 is continuous. The theorem is a consequence of (32) and (34).

(58) Let us consider an element y of R, non empty, closed interval subsets I, J ,
K of R, a partial function f from ((the real normed space of R)×(the real
normed space of R))×(the real normed space of R) to the real normed spa-
ce of R, a partial function g from (R×R)×R to R, and a partial function P2
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from R to R. Suppose y ∈ J and (I×J)×K = dom f and f is continuous on
(I×J)×K and f = g and P2 = ProjPMap2(Integral2(L-Meas,R(g)), y)�I.
Then P2 is continuous. The theorem is a consequence of (32) and (34).

(59) Let us consider an element x of R, non empty, closed interval subsets I, J ,
K of R, a partial function f from ((the real normed space of R)×(the real
normed space of R))×(the real normed space of R) to the real normed spa-
ce of R, a partial function g from (R×R)×R to R, and a partial function P1
from R to R. Suppose x ∈ I and (I×J)×K = dom f and f is continuous on
(I×J)×K and f = g and P1 = ProjPMap1(Integral2(L-Meas,R(g)), x)�J .
Then

(i) P1 � J is bounded, and

(ii) P1 is integrable on J .

The theorem is a consequence of (32) and (34).

(60) Let us consider an element y of R, non empty, closed interval subsets I, J ,
K of R, a partial function f from ((the real normed space of R)×(the real
normed space of R))×(the real normed space of R) to the real normed spa-
ce of R, a partial function g from (R×R)×R to R, and a partial function P2
from R to R. Suppose y ∈ J and (I×J)×K = dom f and f is continuous on
(I×J)×K and f = g and P2 = ProjPMap2(Integral2(L-Meas,R(g)), y)�I.
Then

(i) P2 � I is bounded, and

(ii) P2 is integrable on I.

The theorem is a consequence of (32) and (34).

(61) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)×(the real normed space of
R))×(the real normed space of R) to the real normed space of R, a partial
function g from (R × R) × R to R, and a partial function G3 from R to
R. Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g and G3 = Integral1(ProdMeas(L-Meas,L-Meas),R(g))�K. Then

(i) G3 � K is bounded, and

(ii) G3 is integrable on K.

The theorem is a consequence of (37).

(62) Let us consider an element x of R, non empty, closed interval subsets I, J ,
K of R, a partial function f from ((the real normed space of R)×(the real
normed space of R))×(the real normed space of R) to the real normed spa-
ce of R, a partial function g from (R×R)×R to R, and a partial function P1
from R to R. Suppose x ∈ I and (I×J)×K = dom f and f is continuous on
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(I×J)×K and f = g and P1 = ProjPMap1(Integral2(L-Meas,R(g)), x)�J .
Then

(i) ProjPMap1(Integral2(L-Meas,R(g)), x)�J is integrable on L-Meas,
and

(ii)
∫
J

P1(x)dx =
∫

ProjPMap1(Integral2(L-Meas,R(g)), x)�J d L-Meas,

and

(iii)
∫
J

P1(x)dx =
∫

ProjPMap1(Integral2(L-Meas,R(g)), x) d L-Meas, and

(iv)
∫
J

P1(x)dx = (Integral2(L-Meas, Integral2(L-Meas,R(g))))(x).

The theorem is a consequence of (46), (59), and (54).

(63) Let us consider an element y of R, non empty, closed interval subsets I, J ,
K of R, a partial function f from ((the real normed space of R)×(the real
normed space of R))×(the real normed space of R) to the real normed spa-
ce of R, a partial function g from (R×R)×R to R, and a partial function P2
from R to R. Suppose y ∈ J and (I×J)×K = dom f and f is continuous on
(I×J)×K and f = g and P2 = ProjPMap2(Integral2(L-Meas,R(g)), y)�I.
Then

(i) ProjPMap2(Integral2(L-Meas,R(g)), y)�I is integrable on L-Meas, and

(ii)
∫
I

P2(x)dx =
∫

ProjPMap2(Integral2(L-Meas,R(g)), y)�I d L-Meas,

and

(iii)
∫
I

P2(x)dx =
∫

ProjPMap2(Integral2(L-Meas,R(g)), y) d L-Meas, and

(iv)
∫
I

P2(x)dx = (Integral1(L-Meas, Integral2(L-Meas,R(g))))(y).

The theorem is a consequence of (48), (60), and (55).

Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R) × (the real normed space of
R))× (the real normed space of R) to the real normed space of R, and a partial
function g from (R× R)× R to R. Now we state the propositions:

(64) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g. Then

(i) for every element U of L-Field, Integral2(L-Meas, Integral2(L-Meas,R(g)))
is U -measurable, and
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(ii) Integral2(L-Meas, Integral2(L-Meas,R(g))) is integrable on L-Meas,
and

(iii)
∫

Integral2(L-Meas,R(g)) d ProdMeas(L-Meas,L-Meas) =
∫

Integral2(L-Meas, Integral2(L-Meas,R(g))) d L-Meas,
and

(iv)
∫
g d ProdMeas(ProdMeas(L-Meas,L-Meas),L-Meas) =

∫
Integral2(L-Meas, Integral2(L-Meas,R(g))) d L-Meas,

and

(v) Integral2(L-Meas,R(g))�(I×J) is integrable on ProdMeas(L-Meas,L-Meas),
and

(vi)
∫

Integral2(L-Meas,R(g))�(I×J) d ProdMeas(L-Meas,L-Meas) =
∫

Integral2(L-Meas, Integral2(L-Meas,R(g))�(I×
J)) d L-Meas.

The theorem is a consequence of (32), (43), (46), (40), and (34).

(65) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g. Then

(i) for every element V of L-Field, Integral1(L-Meas, Integral2(L-Meas,R(g)))
is V -measurable, and

(ii) Integral1(L-Meas, Integral2(L-Meas,R(g))) is integrable on L-Meas,
and

(iii)
∫

Integral2(L-Meas,R(g)) d ProdMeas(L-Meas,L-Meas) =
∫

Integral1(L-Meas, Integral2(L-Meas,R(g))) d L-Meas,
and

(iv)
∫
g d ProdMeas(ProdMeas(L-Meas,L-Meas),L-Meas) =

∫
Integral1(L-Meas, Integral2(L-Meas,R(g))) d L-Meas,

and

(v)
∫

Integral2(L-Meas,R(g))�(I×J) d ProdMeas(L-Meas,L-Meas) =
∫

Integral1(L-Meas, Integral2(L-Meas,R(g))�(I×
J)) d L-Meas.

The theorem is a consequence of (32), (43), (48), (40), and (34).

Now we state the propositions:

(66) Let us consider an element x of R, non empty, closed interval subsets I, J ,
K of R, a partial function f from ((the real normed space of R)×(the real
normed space of R))×(the real normed space of R) to the real normed spa-
ce of R, a partial function g from (R×R)×R to R, and a partial function P1
from R to R. Suppose x ∈ I and (I×J)×K = dom f and f is continuous on
(I×J)×K and f = g and P1 = ProjPMap1(Integral2(L-Meas,R(g))�(I×
J), x). Then

(i) P1 is continuous, and

(ii) dom(ProjPMap1(Integral2(L-Meas,R(g))�(I × J), x)) = J , and

(iii) P1�J is bounded, and

(iv) P1 is integrable on J , and
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(v)
∫
J

P1(x)dx =
∫

ProjPMap1(Integral2(L-Meas,R(g))�(I×J), x) d L-Meas,

and

(vi)
∫
J

P1(x)dx = (Integral2(L-Meas, Integral2(L-Meas,R(g))�(I×J)))(x),

and

(vii) ProjPMap1(Integral2(L-Meas,R(g))�(I×J), x) is integrable on L-Meas.

The theorem is a consequence of (32) and (34).

(67) Let us consider an element y of R, non empty, closed interval subsets I, J ,
K of R, a partial function f from ((the real normed space of R)×(the real
normed space of R))×(the real normed space of R) to the real normed spa-
ce of R, a partial function g from (R×R)×R to R, and a partial function P2
from R to R. Suppose y ∈ J and (I×J)×K = dom f and f is continuous on
(I×J)×K and f = g and P2 = ProjPMap2(Integral2(L-Meas,R(g))�(I×
J), y). Then

(i) P2 is continuous, and

(ii) dom(ProjPMap2(Integral2(L-Meas,R(g))�(I × J), y)) = I, and

(iii) P2�I is bounded, and

(iv) P2 is integrable on I, and

(v)
∫
I

P2(x)dx =
∫

ProjPMap2(Integral2(L-Meas,R(g))�(I×J), y) d L-Meas,

and

(vi)
∫
I

P2(x)dx = (Integral1(L-Meas, Integral2(L-Meas,R(g))�(I×J)))(y),

and

(vii) ProjPMap2(Integral2(L-Meas,R(g))�(I×J), y) is integrable on L-Meas.

The theorem is a consequence of (32) and (34).

(68) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)×(the real normed space of
R))×(the real normed space of R) to the real normed space of R, a partial
function g from (R×R)×R to R, and a partial function G8 from R to R.
Suppose (I×J)×K = dom f and f is continuous on (I×J)×K and f = g

and G8 = Integral2(L-Meas, Integral2(L-Meas,R(g))�(I × J))�I. Then

(i) domG8 = I, and

(ii) G8 is continuous, and

(iii) G8 � I is bounded, and
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(iv) G8 is integrable on I, and

(v) Integral2(L-Meas, Integral2(L-Meas,R(g))�(I×J))�I is integrable on
L-Meas, and

(vi)
∫

Integral2(L-Meas, Integral2(L-Meas,R(g))�(I×J))�I d L-Meas =
∫
I

G8(x)dx,

and

(vii)
∫

Integral2(L-Meas,R(g))�(I×J) d ProdMeas(L-Meas,L-Meas) =
∫
I

G8(x)dx.

The theorem is a consequence of (32) and (34).

(69) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)×(the real normed space of
R))×(the real normed space of R) to the real normed space of R, a partial
function g from (R×R)×R to R, and a partial function G7 from R to R.
Suppose (I×J)×K = dom f and f is continuous on (I×J)×K and f = g

and G7 = Integral1(L-Meas, Integral2(L-Meas,R(g))�(I × J))�J . Then

(i) domG7 = J , and

(ii) G7 is continuous, and

(iii) G7 � J is bounded, and

(iv) G7 is integrable on J , and

(v) Integral1(L-Meas, Integral2(L-Meas,R(g))�(I×J))�J is integrable on
L-Meas, and

(vi)
∫

Integral1(L-Meas, Integral2(L-Meas,R(g))�(I × J))�J d L-Meas =∫
J

G7(x)dx, and

(vii)
∫

Integral2(L-Meas,R(g))�(I×J) d ProdMeas(L-Meas,L-Meas) =
∫
J

G7(x)dx.

The theorem is a consequence of (32) and (34).
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