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Introduction

In this paper, Problems 41 from Section I, 92, 121, 122, 123 from Section
IV, 172, 182, 183, 191, 192, and 192a from Section V of [9] are formalized, using
the Mizar formalism [3, 2]. The paper is a part of the project Formalization of
Elementary Number Theory in Mizar [7].

In the preliminary section, we proved some trivial but useful facts about
numbers.

In problem 92 the inequality pk+1+pk+2 ¬ p1∗p2∗· · ·∗pk should be justified
for any integer k  3, where pk denotes the k-th prime. Because we count primes
starting from the index 0, we formulated the fact as:
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3 <= k implies
primenumber(k) + primenumber(k+1) <= Product primesFinS(k);

where primesFinS(k) denotes the finite sequence of primes of the length k, and
elements of finite sequences are indexed from 1.

Problem 121 about finding the least positive integer n for which k · 22n + 1
is composite is represented as separated theorems for every positive k ¬ 10.

Problem 122 requires finding all positive integers k ¬ 10 such that every
number k · 22n + 1 (n = 1, 2, . . . ) is composite. The proof lies in the fact that
numbers (3 · t + 2) · 22n + 1 are all divisible by 3 and greater than 3, for every
natural t, and every positive natural n. In the book, there are minor misprints
in the proof, where 2 · 222 + 1 should be 2 · 22n + 1 and 5 · 222 + 1 should be
5 · 22n + 1.

Problems 191 and 192 are generalized from positive integers to non-zero
integers.

Problem 192a is formulated incorrectly in the book. It asks to prove that
the system of two equations x2 + 7y2 = z2 and 7x2 + y2 = t2 has no solutions
in positive integers x, y, z, and t. However, it has solutions, for instance, x = 3,
y = 1, z = 4, and t = 8. The example is provided in the book.

Proofs of other problems are straightforward formalizations of solutions given
in the book.

1. Preliminaries

From now on a, b, c, k, m, n denote natural numbers, i, j denote integers,
and p denotes a prime number.

Now we state the propositions:

(1) If n < 3, then n = 0 or n = 1 or n = 2.

(2) If n < 4, then n = 0 or n = 1 or n = 2 or n = 3.

(3) If n < 5, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4.

Let us note that 12 is non integer and there exists a rational number which
is non natural and there exists a rational number which is non integer.

Now we state the proposition:

(4) If j 6= 0 and ij is integer, then j | i.
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Let q be a non integer rational number. One can verify that q2 is non integer.
Now we state the proposition:

(5) If ab · c is natural and b 6= 0 and a and b are relatively prime, then there
exists a natural number d such that c = b · d.

2. Problem 41

Let us consider an integer k. Now we state the propositions:

(6) 2 · k + 1 and 9 · k + 4 are relatively prime.

(7) gcd(2 · k − 1, 9 · k + 4) = gcd(k + 8, 17).

3. Problem 92

Now we state the proposition:

(8) If m > 1 and n > 1 and m and n are relatively prime, then there exist
prime numbers p, q such that p | m and p - n and q | n and q - m and
p 6= q.

Let us consider k. The functor primesFinS(k) yielding a finite sequence of
elements of N is defined by

(Def. 1) len it = k and for every natural number i such that i < k holds it(i+1) =
pr(i).

Let us observe that primesFinS(0) is empty.
Now we state the propositions:

(9) primesFinS(1) = 〈2〉.
(10) primesFinS(2) = 〈2, 3〉.
(11) primesFinS(3) = 〈2, 3, 5〉.
(12) p < pr(k) if and only if primeindex(p) < k.

(13) If primeindex(p) < k, then 1 + primeindex(p) ∈ dom(primesFinS(k)).

(14) If primeindex(p) < k, then (primesFinS(k))(1 + primeindex(p)) = p.

(15) If p < pr(k), then p ∈ rng primesFinS(k). The theorem is a consequence
of (13), (12), and (14).

(16) If p and
∏

primesFinS(k) are relatively prime, then pr(k) ¬ p. The
theorem is a consequence of (15).

Let us consider k. Let us note that primesFinS(k) is positive yielding and
primesFinS(k) is increasing.

LetR be an extended real-valued binary relation. We say that R is with values greater or equal one
if and only if
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(Def. 2) for every extended real r such that r ∈ rngR holds r  1.

Observe that 〈1〉 is with values greater or equal one and there exists a natural-
valued finite sequence which is with values greater or equal one.

Let f be an extended real-valued function. Let us observe that f is with
values greater or equal one if and only if the condition (Def. 3) is satisfied.

(Def. 3) for every object x such that x ∈ dom f holds f(x)  1.

Let f be an extended real-valued finite sequence. One can verify that f is
with values greater or equal one if and only if the condition (Def. 4) is satisfied.

(Def. 4) for every natural number n such that 1 ¬ n ¬ len f holds f(n)  1.

One can verify that every extended real-valued binary relation which is emp-
ty is also with values greater or equal one and every extended real-valued binary
relation which is with values greater or equal one is also positive yielding.

Now we state the propositions:

(17) If m ¬ n, then primesFinS(n)�m = primesFinS(m).

(18) Let us consider extended real-valued binary relations P , R. Suppose
rngP ⊆ rngR and R is with values greater or equal one. Then P is with
values greater or equal one.

(19) Let us consider extended real-valued finite sequences f , g. Suppose f a g

is with values greater or equal one. Then

(i) f is with values greater or equal one, and

(ii) g is with values greater or equal one.

(20) Let us consider an extended real r. If 〈r〉 is with values greater or equal
one, then r  1.

Let us consider a with values greater or equal one, real-valued finite sequence
f . Now we state the propositions:

(21)
∏
f  1.

Proof: Define P[finite sequence of elements of R] ≡ for every with values
greater or equal one, real-valued finite sequence g such that g = $1 holds∏

$1  1. For every finite sequence p of elements of R and for every element
x of R such that P[p] holds P[p a 〈x〉] by (19), (20), [5, (96)]. For every
finite sequence p of elements of R, P[p] from [4, Sch. 2]. �

(22)
∏

(f�n) ¬
∏
f . The theorem is a consequence of (19) and (20).

Let us consider k. One can verify that primesFinS(k) is with values greater
or equal one.

Now we state the proposition:

(23) If 3 ¬ k, then pr(k) + pr(k + 1) ¬
∏

primesFinS(k). The theorem is
a consequence of (8) and (16).
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4. Problem 121

Let k, n be natural numbers. We say that n satisfies Sierpiński Problem 121 for k
if and only if

(Def. 5) k · 22n + 1 is composite and for every positive natural number m such
that m < n holds k · 22m + 1 is not composite.

Now we state the propositions:

(24) 5 satisfies Sierpiński Problem 121 for 1. The theorem is a consequence
of (3).

(25) 1 satisfies Sierpiński Problem 121 for 2.

(26) 2 satisfies Sierpiński Problem 121 for 3.

(27) 2 satisfies Sierpiński Problem 121 for 4.

(28) 1 satisfies Sierpiński Problem 121 for 5.

(29) 1 satisfies Sierpiński Problem 121 for 6.

(30) 3 satisfies Sierpiński Problem 121 for 7. The theorem is a consequence
of (1).

(31) 1 satisfies Sierpiński Problem 121 for 8.

(32) 2 satisfies Sierpiński Problem 121 for 9.

(33) 2 satisfies Sierpiński Problem 121 for 10.

5. Problem 122

Let us consider a positive natural number n. Now we state the propositions:

(34) 3 | (3 · a+ 2) · 22n + 1.

(35) 2 · 22n + 1 is composite.

(36) 5 · 22n + 1 is composite. The theorem is a consequence of (34).

(37) 8 · 22n + 1 is composite. The theorem is a consequence of (34).

Now we state the proposition:

(38) Let us consider a positive natural number k. Then k ¬ 10 and for every
positive natural number n, k·22n+1 is composite if and only if k ∈ {2, 5, 8}.
The theorem is a consequence of (24), (26), (27), (30), (32), (33), (35), (36),
and (37).
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6. Problem 123

Now we state the propositions:

(39) 22
n+1

+ 22
n

+ 1  7.

(40) If n > 0, then 22
n+1

+ 22
n

+ 1  21.

(41) If n > 1, then 22
n+1

+ 22
n

+ 1  273.

(42) If m is even or m = 2 · n, then 2m mod 3 = 1.
Proof: Define P[natural number] ≡ 22·$1 mod 3 = 1. For every k such
that P[k] holds P[k + 1] by [6, (8)]. For every k, P[k] from [1, Sch. 2]. �

(43) If m is odd or m = 2 · n+ 1, then 2m mod 3 = 2.
Proof: Define P[natural number] ≡ 22·$1+1 mod 3 = 2. For every k such
that P[k] holds P[k + 1] by [6, (8)]. For every k, P[k] from [1, Sch. 2]. �

(44) Let us consider a non zero natural number n. Then 3 | 22n+1 + 22
n

+ 1.
The theorem is a consequence of (42).

(45) 7 | 22n+1 + 22
n

+ 1. The theorem is a consequence of (42) and (43).

Let n be a non zero natural number. Note that 13 ·(2
2n+1+22

n
+1) is natural.

Now we state the proposition:

(46) Let us consider a non zero natural number n. If n > 1, then 13 · (2
2n+1 +

22
n

+ 1) is composite. The theorem is a consequence of (39), (45), (44),
and (41).

7. Problem 172

Now we state the proposition:

(47) Let us consider positive natural numbers n, x, y, z. Then nx + ny = nz

if and only if n = 2 and y = x and z = x+ 1.

8. Problem 182

Now we state the proposition:

(48) Let us consider real numbers a, b, c. If c > 1 and ca = cb, then a = b.

Let us consider positive natural numbers n, x, y, z, t. Now we state the
propositions:

(49) If x ¬ y ¬ z, then nx + ny + nz = nt iff n = 2 and y = x and z = x+ 1
and t = x+ 2 or n = 3 and y = x and z = x and t = x+ 1.
Proof: If nx + ny + nz = nt, then n = 2 and y = x and z = x + 1 and
t = x + 2 or n = 3 and y = x and z = x and t = x + 1 by [10, (5)], [1,
(23)], [8, (93)], [6, (8)]. �
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(50) nx + ny + nz = nt if and only if n = 2 and y = x and z = x + 1 and
t = x + 2 or n = 2 and y = x + 1 and z = x and t = x + 2 or n = 2 and
z = y and x = y + 1 and t = y + 2 or n = 3 and y = x and z = x and
t = x+ 1. The theorem is a consequence of (49).

9. Problem 183

Now we state the proposition:

(51) Let us consider positive natural numbers x, y, z, t. Then 4x+4y+4z 6= 4t.

10. Problem 191

Now we state the proposition:

(52) Let us consider non zero integers x, y, z, t. Then

(i) x2 + 5 · y2 6= z2, or

(ii) 5 · x2 + y2 6= t2.

11. Problem 192

Now we state the propositions:

(53) Let us consider non zero integers x, y, z, t. Then

(i) x2 + 6 · y2 6= z2, or

(ii) 6 · x2 + y2 6= t2.
(54) (i) 32 + 7 · 12 = 42, and

(ii) 7 · 32 + 12 = 82.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and
beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Vol-
ker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in
Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-
319-20614-1. doi:10.1007/978-3-319-20615-8 17.

[3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32,
2018. doi:10.1007/s10817-017-9440-6.

http://fm.mizar.org/1990-1/pdf1-1/nat_1.pdf
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-017-9440-6


8 artur korniłowicz and rafał ziobro

[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[5] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized
Mathematics, 1(4):661–668, 1990.

[6] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890,
1990.

[7] Adam Naumowicz. Dataset description: Formalization of elementary number theory in
Mizar. In Christoph Benzmüller and Bruce R. Miller, editors, Intelligent Computer Ma-
thematics – 13th International Conference, CICM 2020, Bertinoro, Italy, July 26–31,
2020, Proceedings, volume 12236 of Lecture Notes in Computer Science, pages 303–308.
Springer, 2020. doi:10.1007/978-3-030-53518-6 22.

[8] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125–
130, 1991.

[9] Wacław Sierpiński. 250 Problems in Elementary Number Theory. Elsevier, 1970.
[10] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.

Accepted June 18, 2024

http://fm.mizar.org/1990-1/pdf1-3/finseq_2.pdf
http://fm.mizar.org/1990-1/pdf1-4/rvsum_1.pdf
http://fm.mizar.org/1990-1/pdf1-5/newton.pdf
https://doi.org/10.1007/978-3-030-53518-6_22
https://doi.org/10.1007/978-3-030-53518-6_22
http://dx.doi.org/10.1007/978-3-030-53518-6_22
http://fm.mizar.org/1991-2/pdf2-1/prepower.pdf
http://fm.mizar.org/1990-1/pdf1-3/int_1.pdf

	=0pt Elementary Number Theory Problems. Part XIII  By Artur Korniłowicz and Rafał Ziobro  

