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Summary. Conway’s surreal numbers have a fascinating algebraic struc-
ture, which we try to formalise in the Mizar system. In this article, building on
our previous work establishing that the surreal numbers fulfil the ring properties,
we construct the inverse element for any non-zero number. For that purpose, we
formalise the definition of the inverse element formulated in Section Properties
of Division of Conway’s book. In this way we show formally in the Mizar system
that surreal numbers satisfy all nine properties of a field.
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Introduction

In our previous work [19] realized in the Mizar system [5], [6], we have
formally defined and justified a list of properties of subtraction, addition and
multiplication of surreal [12] numbers. The definition of division, which has
been missing so far, is, however, significantly more complicated than the other
operations. For a number x = {Lx | Rx} to be a positive surreal number where
0 ∈ Lx and all other members of Lx are positive, Conway [11] defines y as
follows:

y =

{
0,

1 + (xR−x)yL

xR
,
1 + (xL−x)yR

xL
| 1 + (xL−x)yL

xL
,
1 + (xR−x)yR

xR

}
(I.1)
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where xL, xR ranges over all positive members of set Lx, Rx, respectively [11].
The definition, like most of Conway’s, is rather confusing and seems to be based
more on the property of the inverse element than on a typical mathematical
definition. In fact, y = {Ly | Ry} is defined by a kind of hidden recursion since
yL, yR which appear on the RHS of the equation (I.1) are members of Ly, Ry. As
an illustration of this definition, Conway gave the example 3 = {0, 2 | }, where
there is only xL = 2, y = {0, . . . | . . .} is given as an initial value, so we can put

yL = 0. Then 1+(2−3)02 = 1
2 is a new yR, and

1+(2−3) 12
2 = 1

4 is a new yL and so on,
an infinite number of times. Finally y = {0, 14 ,

5
16 ,
21
64 ,
85
256 , . . . |

1
2 ,
3
8 ,
11
32 ,
43
128 , . . .}.

This definition with a double recursion is a challenge to the formal approach.
Mamane, in his formalisation in the Coq system [8], [7], considered the construc-
tion of the inverse element as a future work [13]. Obua formalised the surreal
numbers in the Isabelle/HOLZF [15], [22], [14], by covering only the additive
group [16]. Schleicher and Stoll [21] proposed a reasonably precise informal proof
that we adapt in our approach.

To formalise such a concept, we first introduce a restriction that limits the
members of the sets Lx, Rx to those that are positive with special exception in
Lx, where we added 0. Let x be a positive surreal number. We define ‖x‖ (see
Def. 9) to be

{0, {xL ∈ Lx | xL > 0} | {xR ∈ Rx | xR > 0}} (I.2)

and we prove that x ≈ ‖x‖ (see theorem (18)). Then we focus on the fact that
the definition of the inverse element x−1 has looping, i.e. the definition uses the
values of the inverse element of every positive member of the sets Lx, Rx, but
they have to be born before x. Suppose I is a function, which in context, will be
the corresponding inverse function defined on all the positive surreal numbers
that were born before x, in particular on Lx ∪Rx. We define a subset of surreal
numbers as follows (see Def. 2, Def. 3):

Definition 1 Let x be a surreal number, X,P be sets of surreal numbers, and
I be a function from the surreal numbers to the surreal numbers such that X is
a subset of the domain of I. We define a subset of surreal numbers as follows:

d(P, x,X, I) =
⋃
p∈P
{(1 + (a− x) · p) · I(a) | a ∈ X}. (I.3)

We define also a sequence of sets of surreal numbers dLn(x, I), dRn (x, I) for a
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given surreal number x and a function I recursively as follows:

dL0 (x, I) = {0},
dR0 (x, I) = ∅,
dLn+1(x, I) = dLn(x, I) ∪ d(dLn(x, I), x,Rx, I) ∪ d(dRn (x, I), x, Lx, I),

dRn+1(x, I) = dRn+1(x, I) ∪ d(dLn(x, I), x, Lx, I) ∪ d(dRn (x, I), x,Rx, I).

(I.4)

We show that
⋃
n∈N d

L
n(x, I),

⋃
n∈N d

R
n (x, I) are sets of surreal numbers if I is a

surreal-valued function on Lx ∪ Rx. Next we restrict our consideration to the
positive surreal number x, where we have x ≈ ‖x‖. Note that born ‖x‖ ¬ bornx
(see theorem (22)). Without loss of generality we can assume born ‖x‖ = bornx.
Then exploring the assumption that I(a) · a ≈ 1 for all the positive surreal
numbers a that were born before a, we can prove the following key step that

y = {
⋃
n∈N
dLn(‖x‖, I) |

⋃
n∈N
dRn (‖x‖, I)} (I.5)

is a surreal number (see theorem (31)) and x · y ≈ 1 (see theorem (32)).
It is easy to see that, based on this step, we can extend the domain of the

function I, which covers all surreal numbers created in days before α, by all
positive surreal numbers born on day α, where α is an ordinal number. Conse-
quently, using second-order schemes formulated in [19] which are a consequence
of transfinite induction, we construct a unique sequence of {Iα} functions, where
Iα is the inverse function defined on day α. Finally, we define x−1 as Iα(x) (see
Def. 13, Def. 14), where α is a day where a given positive x is born and −Iα(−x)
in the negative case.

Our formal construction of the inverse element seems to differ from the
definition (I.1) proposed by Conway. This difficulty can be avoided by directly
using transfinite induction-recursion, which is not available in the Mizar system.
We test our approach by proving that our concept of an inverse element satisfies
the property formulated by Conway (see theorems (31), (32)):

Theorem 1 Let x be a positive surreal number. We define d(A, x,B) = {(1 +
(a−x) · b) · (a−1)|a ∈ A ∧ b ∈ B ∧ 0 < a}. Then

x−1 ≈ {{0} ∪ d(Rx, x, Lx−1) ∪ d(Lx, x,Rx−1), d(Lx, x, Lx−1) ∪ d(Rx, x,Rx−1)}.
(I.6)

The formalization follows [11], [21], selected fragments have been described in
[20].
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1. Construction of the Inverse Element for Surreal Numbers

From now on A, B, O denote ordinal numbers, n, m denote natural numbers,
a, b, o denote objects, x, y, z denote surreal numbers, X, Y, Z denote sets, and
Inv, I1, I2 denote functions.

Let x, y be objects. Assume x is surreal and y is surreal. The functor x ∗ y
yielding a surreal number is defined by

(Def. 1) for every surreal numbers x1, y1 such that x1 = x and y1 = y holds
it = x1 · y1.

Let λ, x be objects,X be a set, and Inv be a function. The functor divs(λ, x,X, Inv)
yielding a set is defined by

(Def. 2) o ∈ it iff there exists an object x3 such that x3 ∈ X and x3 6= 0No and
o = (1No +′ (x3 +′ −′x) ∗ λ) ∗ Inv(x3).

Let Λ be a set and x be an object. The functor divset(Λ, x,X, Inv) yielding
a set is defined by

(Def. 3) o ∈ it iff there exists an object λ such that λ ∈ Λ and o ∈ divs(λ, x,X, Inv).

The functor Transitions(x, Inv) yielding a function is defined by

(Def. 4) dom it = N and it(0) = 1No and for every natural number k, it(k) is pair
and (it(k + 1))1 = (Lit(k) ∪divset(Lit(k), x,Rx, Inv))∪divset(Rit(k), x,Lx, Inv)
and (it(k + 1))2 = (Rit(k) ∪divset(Lit(k), x,Lx, Inv))∪divset(Rit(k), x,Rx, Inv).

The functor dL(x, Inv) yielding a function is defined by

(Def. 5) dom it = N and for every natural number k, it(k) = ((Transitions(x, Inv))(k))1.

The functor dR(x, Inv) yielding a function is defined by

(Def. 6) dom it = N and for every natural number k, it(k) = ((Transitions(x, Inv))(k))2.

Let a, b be surreal numbers and x, y be objects. We identify x ∗ y with a · b.
Now we state the propositions:

(1) (i) (dL(o, Inv))(0) = {0No}, and

(ii) (dR(o, Inv))(0) = ∅.
(2) If n ¬ m, then (dL(o, Inv))(n) ⊆ (dL(o, Inv))(m) and (dR(o, Inv))(n) ⊆

(dR(o, Inv))(m).
Proof: Define P[natural number] ≡ (dL(o, Inv))(n) ⊆ (dL(o, Inv))(n +
$1) and (dR(o, Inv))(n) ⊆ (dR(o, Inv))(n+ $1). For every natural number
k such that P[k] holds P[k + 1]. For every natural number k, P[k] from
[3, Sch. 2]. �

Let X be a set and f be a function. We say that f is X-surreal-valued if
and only if

(Def. 7) if o ∈ X, then f(o) is a surreal number.
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Now we state the propositions:

(3) If Inv is Y -surreal-valued and X ⊆ Y, then Inv is X-surreal-valued.

(4) divs(y, x,X, Inv) is surreal-membered.

(5) If Y is surreal-membered and X is surreal-membered and Inv is X-
surreal-valued, then divset(Y, x,X, Inv) is surreal-membered. The the-
orem is a consequence of (4).

(6) (i) (dL(o, Inv))(n+1) = ((dL(o, Inv))(n)∪divset((dL(o, Inv))(n), o,Ro, Inv))∪
divset((dR(o, Inv))(n), o,Lo, Inv), and

(ii) (dR(o, Inv))(n+1) = ((dR(o, Inv))(n)∪divset((dL(o, Inv))(n), o,Lo, Inv))∪
divset((dR(o, Inv))(n), o,Ro, Inv).

(7) divs(o, x,X, Inv) = divs(o, x,X \ {0No}, Inv).
Proof: divs(o, x,X, Inv) ⊆ divs(o, x,X \ {0No}, Inv) by [10, (56)]. Con-
sider x3 being an object such that x3 ∈ X \ {0No} and x3 6= 0No and
a = (1No +′ (x3 +′ −′x) ∗ o) ∗ Inv(x3). �

(8) divset(Y, x,X, Inv) = divset(Y, x,X\{0No}, Inv). The theorem is a con-
sequence of (7).

(9) Suppose Inv is ((Lx ∪Rx) \ {0No})-surreal-valued. Then

(i) (dL(x, Inv))(n) is surreal-membered, and

(ii) (dR(x, Inv))(n) is surreal-membered.

Proof: Define P[natural number] ≡ (dL(x, Inv))($1) is surreal-membered
and (dR(x, Inv))($1) is surreal-membered. P[0]. If P[m], then P[m + 1].
P[m] from [3, Sch. 2]. �

(10) Suppose Inv is ((Lx ∪Rx) \ {0No})-surreal-valued. Then

(i)
⋃

dL(x, Inv) is surreal-membered, and

(ii)
⋃

dR(x, Inv) is surreal-membered.

Proof:
⋃

dL(x, Inv) is surreal-membered by [2, (2)], (9). Consider n be-
ing an object such that n ∈ dom(dR(x, Inv)) and o ∈ (dR(x, Inv))(n).
(dR(x, Inv))(n) is surreal-membered. �

(11) If Y ⊆ Z, then divset(Y, x,X, Inv) ⊆ divset(Z, x,X, Inv).

(12)
⋃

dL(x, Inv) = ({0No}∪divset(
⋃

dL(x, Inv), x,Rx, Inv))∪divset(
⋃

dR(x, Inv), x,Lx, Inv).
Proof: Define P[natural number] ≡ (dL(x, Inv))($1) ⊆ ({0No}∪divset(

⋃
dL(x, Inv), x,Rx, Inv))∪

divset(
⋃

dR(x, Inv), x,Lx, Inv). (dL(x, Inv))(0) = {0No}. If P[n], then
P[n + 1] by (6), [1, (1)], (11). P[n] from [3, Sch. 2].

⋃
dL(x, Inv) ⊆

({0No}∪divset(
⋃

dL(x, Inv), x,Rx, Inv))∪divset(
⋃

dR(x, Inv), x,Lx, Inv)
by [2, (2)]. divset(

⋃
dL(x, Inv), x,Rx, Inv) ⊆

⋃
dL(x, Inv) by [2, (2)], (6).

divset(
⋃

dR(x, Inv), x,Lx, Inv) ⊆
⋃

dL(x, Inv) by [2, (2)], (6). (dL(x, Inv))(0) =
{0No}. �
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(13)
⋃

dR(x, Inv) = divset(
⋃

dL(x, Inv), x,Lx, Inv)∪divset(
⋃

dR(x, Inv), x,Rx, Inv).
Proof: Define P[natural number] ≡ (dR(x, Inv))($1) ⊆ divset(

⋃
dL(x, Inv), x,Lx, Inv)∪

divset(
⋃

dR(x, Inv), x,Rx, Inv). (dR(x, Inv))(0) = ∅. If P[n], then P[n+1]
by (6), (11), [1, (1)]. P[n] from [3, Sch. 2].

⋃
dR(x, Inv) ⊆ divset(

⋃
dL(x, Inv), x,Lx, Inv)∪

divset(
⋃

dR(x, Inv), x,Rx, Inv) by [2, (2)]. divset(
⋃

dL(x, Inv), x,Lx, Inv) ⊆⋃
dR(x, Inv) by [2, (2)], (6). divset(

⋃
dR(x, Inv), x,Rx, Inv) ⊆

⋃
dR(x, Inv)

by [2, (2)], (6). �

(14) Suppose X \ {0No} ⊆ Z and I1�Z = I2�Z. Then divs(a, b,X, I1) =
divs(a, b,X, I2).
Proof: divs(a, b,X, I1) ⊆ divs(a, b,X, I2) by [10, (56)], [9, (49)]. Consider
x3 being an object such that x3 ∈ X and x3 6= 0No and o = (1No+′ (x3+′

−′b) ∗ a) ∗ I2(x3). �

(15) Suppose X \ {0No} ⊆ Z and I1�Z = I2�Z. Then divset(Y, o,X, I1) =
divset(Y, o,X, I2). The theorem is a consequence of (14).

Let us consider an object x. Now we state the propositions:

(16) Suppose (Lx ∪Rx)\{0No} ⊆ Z and I1�Z = I2�Z. Then Transitions(x, I1) =
Transitions(x, I2).
Proof: Set T1 = Transitions(x, I1). Set T2 = Transitions(x, I2). Define
P[natural number] ≡ T1($1) = T2($1). If P[n], then P[n + 1]. P[n] from
[3, Sch. 2]. �

(17) Suppose (Lx ∪Rx) \ {0No} ⊆ Z and I1�Z = I2�Z. Then

(i) dL(x, I1) = dL(x, I2), and

(ii) dR(x, I1) = dR(x, I2).

The theorem is a consequence of (16).

2. The Concept of Positive Options in Conway’s Sense

Let x be a surreal number. We say that x is positive if and only if

(Def. 8) 0No < x.

One can verify that 1No is positive and there exists a surreal number which
is positive.

Let x, y be positive surreal numbers. Let us note that x+ y is positive and
x · y is positive.

Let x be an object. Assume x is a positive surreal number. The functor ‖x‖
yielding a positive surreal number is defined by

(Def. 9) (y ∈ Lit iff y = 0No or y ∈ Lx and y is positive) and (y ∈ Rit iff y ∈ Rx

and y is positive).
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Now we state the propositions:

(18) If x is positive, then x ≈ ‖x‖.
(19) If x is positive, then ‖‖x‖‖ = ‖x‖.
(20) Suppose x is positive. Then (L‖x‖ ∪R‖x‖) \ {0No} ⊆ Lx ∪Rx.

(21) Suppose x is positive and y ∈ (L‖x‖ ∪R‖x‖) \ {0No}. Then y is positive.

(22) If x is positive, then born ‖x‖ ⊆ bornx.
Proof: Set N2 = ‖x‖. For every object o such that o ∈ LN2 ∪RN2 there
exists O such that O ∈ bornx and o ∈ DayO by [10, (56)], (20), [18, (1)].
�

Let A be an ordinal number. The functor Positives(A) yielding a subset of
DayA is defined by

(Def. 10) x ∈ it iff x ∈ DayA and 0No < x.

Now we state the propositions:

(23) If A ⊆ B, then Positives(A) ⊆ Positives(B).

(24) Suppose x is positive. Then (L‖x‖ ∪R‖x‖) \ {0No} ⊆ Positives(bornx).
The theorem is a consequence of (20) and (21).

3. The Inverse Element for Surreal Numbers

Let A be an ordinal number. The functor inverseNo(A) yielding a many
sorted set indexed by Positives(A) is defined by

(Def. 11) there exists a ⊆-monotone, function yielding transfinite sequence S such
that domS = succA and it = S(A) and for every ordinal number B such
that B ∈ succA there exists a many sorted set S4 indexed by Positives(B)
such that S(B) = S4 and for every object x such that x ∈ Positives(B)
holds S4(x) = 〈〈

⋃
dL(‖x‖,

⋃
rng(S�B)),

⋃
dR(‖x‖,

⋃
rng(S�B))〉〉.

Now we state the proposition:

(25) Let us consider a ⊆-monotone, function yielding transfinite sequence
S. Suppose for every B such that B ∈ domS there exists a many sor-
ted set S4 indexed by Positives(B) such that S(B) = S4 and for eve-
ry o such that o ∈ Positives(B) holds S4(o) = 〈〈

⋃
dL(‖o‖,

⋃
rng(S�B)),⋃

dR(‖o‖,
⋃

rng(S�B))〉〉. If A ∈ domS, then inverseNo(A) = S(A).
Proof: DefineD(ordinal number) = Positives($1). DefineH(object,⊆-monotone , function
yielding transfinite sequence) = 〈〈

⋃
dL(‖$1‖,

⋃
rng $2),

⋃
dR(‖$1‖,

⋃
rng $2)〉〉.

Consider S2 being a ⊆-monotone, function yielding transfinite sequence
such that domS2 = succA and S2(A) = inverseNo(A) and for every or-
dinal number B such that B ∈ succA there exists a many sorted set S4
indexed by D(B) such that S2(B) = S4 and for every object x such that
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x ∈ D(B) holds S4(x) = H(x, S2�B). S1� succA = S2� succA from [19,
Sch. 2]. �

Let x be a surreal number. The functor inv x yielding an object is defined
by the term

(Def. 12) (inverseNo(bornx))(x).

The functor inversesNo(x) yielding a function is defined by

(Def. 13) dom it = (Lx ∪Rx) \ {0No} and for every y such that y ∈ (Lx ∪Rx) \
{0No} holds it(y) = inv y.

Now we state the propositions:

(26) Suppose x is positive and inversesNo(‖x‖) ⊆ Inv. Then inv x = 〈〈
⋃

dL(‖x‖, Inv),⋃
dR(‖x‖, Inv)〉〉.
Proof: Set A = bornx. Set N2 = ‖x‖. Consider S being a ⊆-monotone,
function yielding transfinite sequence such that domS = succA and inverseNo(A) =
S(A) and for every ordinal number B such that B ∈ succA there exi-
sts a many sorted set S4 indexed by Positives(B) such that S(B) =
S4 and for every object o such that o ∈ Positives(B) holds S4(o) =
〈〈
⋃

dL(‖o‖,
⋃

rng(S�B)),
⋃

dR(‖o‖,
⋃

rng(S�B))〉〉. Consider S4 being a ma-
ny sorted set indexed by Positives(A) such that S(A) = S4 and for every
object o such that o ∈ Positives(A) holds S4(o) = 〈〈

⋃
dL(‖o‖,

⋃
rng(S�A)),⋃

dR(‖o‖,
⋃

rng(S�A))〉〉. Set U1 =
⋃

rng(S�A). Set X8 = (LN2 ∪RN2) \
{0No}. X8 ⊆ Positives(A). X8 ⊆ Lx ∪Rx. X8 ⊆ domU1 by [18, (1)], [4,
(8)], [19, (5)]. If a ∈ X8, then (U1�X8)(a) = (Inv�X8)(a) by [9, (49)],
[18, (1)], [4, (8)], [19, (5)]. dL(N2, U1) = dL(N2, Inv) and dR(N2, U1) =
dR(N2, Inv). �

(27) Let us consider a function f . Suppose dom f = N and y ∈
⋃
f . Then

there exists n such that

(i) y ∈ f(n), and

(ii) for every m such that y ∈ f(m) holds n ¬ m.

Proof: Define P[natural number] ≡ y ∈ f($1). Consider n being an object
such that n ∈ dom f and y ∈ f(n). There exists a natural number k such
that P[k] and for every natural number n such that P[n] holds k ¬ n from
[3, Sch. 5]. �

(28) Let us consider surreal numbers x1, xR1 , y1, yR1 . Suppose 0No < x1 and
x1 · xR1 ≈ 1No and 0No < y1 and y1 · yR1 ≈ 1No and x · y1 < y · x1. Then
x · xR1 < y · yR1 .

(29) Let us consider surreal numbers x, x1, x2, y1, y2. Then

(i) (1No + (x2 − x) · y2) · x1 + −(1No + (x1 − x) · y1) · x2 ≈ (x1 − x2) ·
(1No − x · y1) + (y1 − y2) · x1 · (x− x2), and
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(ii) (1No+(x2−x) ·y2) ·x1− (1No+(x1−x) ·y1) ·x2 ≈ (x1−x2) · (1No−
x · y2) + (y2 − y1) · x2 · (x1 − x).

(30) Let us consider surreal numbers x1, y1, I4. Suppose x1 · I4 ≈ 1No. Then
x1 · y + x · y1 − x1 · y1 ≈ 1No + x1 · (y − (1No + (x1 − x) · y1) · I4).

Let x be a positive surreal number. Note that inv x is surreal.
Now we state the propositions:

(31) If x is positive, then inv x is a surreal number.

(32) If x is positive and y = inv x, then x · y ≈ 1No.

Let x be a surreal number. Assume x 6≈ 0No. The functor x−1 yielding
a surreal number is defined by

(Def. 14) (i) it = inv x, if x is positive,

(ii) −it = inv(−x), otherwise.

4. Basic Properties of the Inverse Element

Now we state the proposition:

(33) If x 6≈ 0No, then x · (x−1) ≈ 1No.

Let X, Y be sets and x be a surreal number. The functor divset(X,x, Y )
yielding a set is defined by

(Def. 15) o ∈ it iff there exist surreal numbers x1, y1 such that 0No < x1 and
x1 ∈ X and y1 ∈ Y and o = (1No + (x1 − x) · y1) · (x1−1).

Note that divset(X,x, Y ) is surreal-membered.
Now we state the propositions:

(34) Let us consider sets X, n1, and a surreal-membered set Y. Suppose x is
positive and (X = Lx and n1 = L‖x‖ or X = Rx and n1 = R‖x‖). Then
divset(X, ‖x‖, Y ) = divset(Y, ‖x‖, n1, inversesNo(‖x‖)).
Proof: Set N2 = ‖x‖. Set Inv = inversesNo(N2). divset(X,N2, Y ) ⊆
divset(Y,N2, X1, Inv) by [10, (56)]. Consider y1 being an object such that
y1 ∈ Y and o ∈ divs(y1, N2, X1, Inv). Consider x1 being an object such
that x1 ∈ X1 and x1 6= 0No and o = (1No +′ (x1 +′ −′N2) ∗ y1) ∗ Inv(x1).
�

(35) If x ≈ y, then divset(X,x, Y ) l divset(X, y, Y ).

(36) Suppose x is positive. Then x−1 = 〈〈({0No} ∪ divset(Rx, ‖x‖,Lx−1)) ∪
divset(Lx, ‖x‖,Rx−1), divset(Lx, ‖x‖,Lx−1) ∪ divset(Rx, ‖x‖,Rx−1)〉〉. The
theorem is a consequence of (26), (34), (12), and (13).

(37) Let us consider surreal-membered sets X1, X2, Y1, Y2. Suppose X2lX1
and Y2 l Y1 and 〈〈X1, Y1〉〉 is surreal. Then 〈〈X2, Y2〉〉 is surreal.
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Proof: X2 � Y2 by [17, (45)], [18, (4)]. Consider M being an ordinal
number such that for every o such that o ∈ X2∪Y2 there exists an ordinal
number A such that A ∈M and o ∈ DayA. �

(38) Suppose x is positive. Then 〈〈({0No}∪divset(Rx, x,Lx−1))∪divset(Lx, x,Rx−1),
divset(Lx, x,Lx−1)∪divset(Rx, x,Rx−1)〉〉 is a surreal number. The theorem
is a consequence of (18), (35), (36), and (37).

(39) Suppose x is positive and y = 〈〈({0No}∪divset(Rx, x,Lx−1))∪divset(Lx, x,Rx−1),
divset(Lx, x,Lx−1) ∪ divset(Rx, x,Rx−1)〉〉. Then x−1 ≈ y. The theorem is
a consequence of (18), (35), and (36).

5. Fundamental Properties of the Inverse Element

Now we state the proposition:

(40) If x 6≈ 0No, then 0No < x iff 0No < x−1.
Proof: x · (x−1) ≈ 1No. If 0No < x, then 0No < x−1 by [19, (72)]. �

Let x be a positive surreal number. Note that x−1 is positive.
Now we state the propositions:

(41) x · y ≈ 0No if and only if x ≈ 0No or y ≈ 0No.

(42) If x 6≈ 0No and x ·y ≈ 1No, then y ≈ x−1. The theorem is a consequence
of (33).

(43) If 0No 6≈ x and x ≈ y, then x−1 ≈ y−1. The theorem is a consequence
of (33) and (42).

(44) If x 6≈ 0No, then (x−1)−1 ≈ x. The theorem is a consequence of (33) and
(42).

(45) If x 6≈ 0No and y 6≈ 0No, then x · y−1 ≈ x−1 · (y−1). The theorem is
a consequence of (33), (41), and (42).
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