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Summary. We formalize the semidirect product of groups in Mizar, follo-
wing §10 of Aschbacher [I]. We also prove the universal property for semidirect
products as found in Bourbaki [7, III §2.10] Proposition 27. In an appendix, we
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1. PRELIMINARIES

Now we state the proposition:

(1) Let us consider natural numbers a, b. If a < b and b # 0, then 2-adivb <
2.

From now on GG, A denote groups and ¢ denotes a homomorphism from A
to AutGroup(G).
Now we state the propositions:

(2) Let us consider a non empty, unital multiplicative magma M. Suppose
for every element h of M, there exists an element g of M such that h-g =
157 and g-h = 1)7. Then M is group-like.

(3) Let us consider a group G, and a subgroup H of G. Then the multipli-
cative magma of H is a strict subgroup of G.

(4) Let us consider a group G, and a normal subgroup N of G. Then the mul-
tiplicative magma of N is a strict, normal subgroup of G.
PROOF: Reconsider Ny = the multiplicative magma of IV as a strict sub-
group of G. For every element g of G, No? = Ny by [15, (59)]. O
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(5) Let us consider a group G, a subgroup H of G, and a normal subgroup
N of G. Suppose N is a subgroup of H. Then the multiplicative magma
of N = the multiplicative magma of (V). The theorem is a consequence
of (4).

Let us consider a group G, subgroups Hi, Hy, K of GG, and subgroups Ki,
K5 of K. Now we state the propositions:

(6) Suppose the multiplicative magma of H; = the multiplicative magma
of K1 and the multiplicative magma of Hs = the multiplicative magma
of Ko. Then Hi N Hy = K1 N Ks.

PROOF: For every element g of G such that g € H; N Hy holds g € K1N K>
by [15, (82)]. For every element g of G such that ¢ € K; N Ks holds
g € Hi N Hy by [15, (82)]. O

(7) Suppose the multiplicative magma of H; = the multiplicative magma
of K1 and the multiplicative magma of Hs = the multiplicative magma
of KQ. Then H1 . H2 = Kl . KQ.

PROOF: For every object x, x € Hy - Hy iff x € K - K3 by [15, (43), (42)].
O
Now we state the propositions:

(8) Let us consider a group G, and a subset A of G. Suppose A = the carrier
of G. Then gr(A) = the multiplicative magma of G.

(9) A and the multiplicative magma of A are isomorphic.

(10) Let us consider a group G, a normal subgroup N of G, and elements ¢,
g2 of G. Suppose g1 - N = go- N. Then there exists an element n of G such

that
(i) n € N, and
(i) g1 = g2 -n.

Let us consider a group GG and subgroups Hi, Hs of G. Now we state the
propositions:
(11) (i) Hy - Hy C the carrier of Hy Ll Hy, and
(ii) Ho - Hy C the carrier of H; U Hy.
(12) If Hy - Hy = the carrier of Hy L Hy, then Hy - Hy = Hy - Hy.
PRrROOF: Hy- Hy C Hi- Ho. For every element x of G such that x € Hy - Ho
holds « € Hy - Hy by [15, (51)], [I7, (4)], [14, (17)]. O

Now we state the propositions:

(13) Let us consider a group G, subgroups H, K of GG, and a subgroup Hj of
K. Suppose the multiplicative magma of H = the multiplicative magma
of Hz. Then H = Hj.
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(14) Let us consider a group G, and subgroups H, K of G. Suppose H is
a subgroup of K. Let us consider a subgroup N of G. If N is a normal
subgroup of K, then N-H = H - N. The theorem is a consequence of (7).

(15) Let us consider a group G, a subgroup H of G, and a normal subgroup
N of G. Suppose N is a subgroup of H. Then the multiplicative magma
of N = the multiplicative magma of (V). The theorem is a consequence
of (4).

(16) Let us consider a group G, and subgroups Hy, N1, Ha, Ny of G. Suppose
the multiplicative magma of H; = the multiplicative magma of Hy and
the multiplicative magma of N; = the multiplicative magma of No. Then

(i) Hl . Nl = H2 . Ng, and
(11) H{ NNy = HyN Ns.

The theorem is a consequence of (3), (7), and (6).

(17) Let us consider a group G, and strict subgroups H, K of G. Suppose
H # K and K is a subgroup of H. Then there exists an element g of G
such that

(i) g € H, and

(i) g ¢ K.

2. AUTOMORPHISM GROUP RESULTS

Let G, A be groups. One can verify that [[(the support of (A, G)) is non
empty.
Now we state the propositions:

(18) Let us consider groups Gi, G2, and an element x of [[(G1, G2). Then
(i) (1) € Gy, and
(i) z(2) € Go, and
(iii) domz = {1, 2}.

(19) Let us consider groups G1, Ga, a subgroup H; of G, a subgroup Hj of
G2, and an element hy of G1. Suppose hy € Hy. Let us consider an element
ha of Go. Suppose he € Ha. Then (h1, ha) € [[(H1, Ha).
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3. SEMIDIRECT PRODUCTS OF GROUPS

From now on GG, A denote groups and ¢ denotes a homomorphism from A
to AutGroup(G).
Now we state the propositions:

(20) Let us consider an element g of G. Then ¢(14)(g) = g.

(21) Let us consider elements a;, az of A, and an element g of G. Then

p(a1)(p(a2)(9)) = (p(ar - a2))(g)-

(22) Let us consider an element a of A, and an element g of G. Then
(i) w(a™)(p(a)(g)) = g, and
(ii) ¢(a)(p(a™)(9)) = g-
The theorem is a consequence of (21) and (20).
Let us consider G, A, and ¢. The functor yielding a non empty,
strict multiplicative magma is defined by
(Def. 1) the carrier of it = [[(the support of (G, A)) and for every elements f,
g of [I(the support of (G, A)), there exists a function h and there exists
an element a; of A and there exists an element go of G such that h =
(the multiplication of it)(f,g) and a1 = f(2) and g2 = g(1) and h(1) =
(the multiplication of G)(f(1), ¢(a1)(g2)) and h(2) = (the multiplication
of 4)(£(2),9(2)).
One can check that G x, A is constituted functions and every element of
G x, A is finite sequence-like.
Now we state the propositions:
(23) The carrier of G %, A = the carrier of [[(G, A).
(24) Let us consider an element a of A, and an element g of G. Then (g, a) is
an element of G' <, A.
Let us consider an element = of G x, A. Now we state the propositions:
(25) (i) z(1) € G, and
(i) =(2) € A, and
(iii) domzx = {1, 2}.
The theorem is a consequence of (23) and (18).

(26) There exists an element g of G and there exists an element a of A such
that = (g, a). The theorem is a consequence of (25).

Now we state the propositions:

(27) Let us consider elements x, y of G %, A, elements a1, as of A, and
elements g1, g2, g3 of G. Suppose = (g1,a1) and y = (g2, as) and g3 =
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©(a1)(g2). Then x -y = (g1 - g3, a1 - az). The theorem is a consequence of
(25).

(28) Let us consider elements x, y of Gx, A, an element a of A, and an element
g of G. Suppose x = (g,14) and y = (1g,a). Then z -y = (g,a). The
theorem is a consequence of (20) and (27).

Let us consider G, A, and ¢. One can verify that G' %, A is unital.
Now we state the propositions:

(29) 1gx,a = (1g,14). The theorem is a consequence of (23).

(30) Let us consider elements x, y of Gx, A, an element a of A, and an element
g of G. Suppose = = (g,a) and y = {(p(a=1)(g7!),a"!). Then

(i) ©-y=1gxu, 4, and
(ii) y -z = 1gx,a-
The theorem is a consequence of (22), (27), and (29).

Let G, A be groups and ¢ be a homomorphism from A to AutGroup(G).
One can check that G x, A is associative and group-like.
Now we state the propositions:

(31) Let us consider an element a of A, an element g of GG, and an element
z of G x4, A. Suppose z = (g,a). Then 27! = (p(a=')(g7!),a™t). The
theorem is a consequence of (23) and (30).

(32) Let us consider elements g1, go of G, and elements z, y, z of G %, A.
Suppose = = (g1,14) and y = (g2,14) and z = (g1 -g2,14). Then z-y = 2.
The theorem is a consequence of (27) and (20).

(33) Let us consider an element g of G, and an element x of G %, A. Suppose
= (g,14). Then 27! = (g1, 14). The theorem is a consequence of (31)
and (20).

(34) Let us consider an element = of G %, A, and an element g of G. Suppose
2 = (g,14). Let us consider an integer i. Then 2% = (g%, 14).

PROOF: Define Plinteger] = % = (¢%1,1,4). P[0] by [14, (25)], (29). For
every integer ¢ such that P[i] holds P[i — 1] and P[i+ 1] by (33), (23), [14,
(33), (32)]. For every integer ¢, Pi] from [13, Sch. 4]. O

(35) Let us consider elements a1, as of A, and elements z, y, z of G %, A.
Suppose z = (1, a1) and y = (1g, a2) and z = (1g,a1-a2). Then z-y = 2.
The theorem is a consequence of (27).

(36) Let us consider an element a of A, and an element z of G %, A. Suppose
z = (1g,a). Then x71 = (1g,a1). The theorem is a consequence of (31).

(37) Let us consider an integer 4, an element = of G' %, A, and an element a
of A. Suppose z = (1g,a). Then 2 = (1g,a’).

75
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PROOF: Define Plinteger] = %1 = (1¢,a%'). P[0] by [14, (25)], (29). For
every integer ¢ such that P[i] holds P[i — 1] and P[i + 1] by (36), (23), [14,
(33), (32)]. For every integer ¢, Pi] from [13, Sch. 4]. O

Let us consider G, A, and ¢. The functor [inell(G, A, )| yielding a function

from G into G' x, A is defined by
(Def. 2) for every element g of G, it(g) = (g,14).
Aschbacher [1], THEOREM (10.1.2):
Let us consider G, A, and ¢. One can check that incll(G, A, ¢) is multipli-
cative and one-to-one.
The functor yielding a function from A into G 31, A is defined
by
(Def. 3) for every element a of A, it(a) = (1g,a).
Aschbacher [1], THEOREM (10.1.2):
Let us consider G, A, and ¢. Observe that incl2(G, A, ) is multiplicative
and one-to-one.
Now we state the proposition:
(38) ASCHBACHER [I], THEOREM (10.1.3):
Imincll(G, A, ¢) is a normal subgroup of G x, A.
Proor: For every elements x, g of G x, A such that g is an element
of Imincll(G, 4, ¢) holds ¢* € Imincll(G, A, ¢) by [18, (45)], (26), (31),
(27). O
Let us consider A, G, and ¢. Observe that Imincll(G, A, ) is normal.
Now we state the propositions:
(39) Imincl2(G, A, p) NImincll(G, A, ¢) = {1}Gxu, -
PRrROOF: Set I} = Imincl2(G, A4, ¢). Set I = Imincll(G, A, ¢). Set S =
G %, A. For every object x such that x € the carrier of I; N I3 holds
x € {1g} by [15, (82)], [I8, (45)], [5, (77)], (29). O
(40) Let us consider an element = of G x, A. Then there exists an element
g of G and there exists an element a of A such that (incll(G, A, ¢))(g) -
(incl2(G, A, ¢))(a) = x. The theorem is a consequence of (26), (27), and
(20).
(41) (Imincll(G, A, ¢)) - (Imincl2(G, A, p)) = the carrier of G' <, A.

PROOF: For every element x of Gx,A, x € (Imincll(G, A, ¢))-(Imincl2(G, A, ¢))

by (40), [18, (45)], [I7, (4)]. O

(42) Imincll(G, A, ¢) UImincl2(G, A, p) = G %, A. The theorem is a conse-
quence of (41).

Now we state the proposition:
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(43) ASCHBACHER [I], THEOREM (10.1.3):
G and Imincll(G, A, ¢) are isomorphic.
Let us consider an element a of A and an element g of G. Now we state the
propositions:
(44) ASCHBACHER [I], THEOREM (10.1.4):
(incl1(G, A, @) () 2EAD@ — (5(a=1)(g),14). The theorem is a con-
sequence of (31) and (27).
(45) (incll(G, A, p))(g) (G AR) (@ D= (p(a)(g),14). The theorem is a con-
sequence of (44).
Now we state the proposition:
(46) G X (A= {1}augroup(a) 4 = LI{G, A)-
PROOF: Set S =G X (A= {1} AutGroup(@)) A. The carrier of S = the carrier of
[[{G, A). Set B; = the multiplication of S. Set By = the multiplication
of TI(G, A). Set U = [](the support of (G, A)). By is a binary operation
on U and By is a binary operation on U. For every elements x, y of
[1(the support of (G, A)), Bi(z,y) = Ba(z,y) by (26), [10, (9)], (27), [11
(29)]. O

4. COMPLEMENTARY SUBGROUPS

Let G, H, N be groups. We say that [ H, N are complements in G | if and
only if
(Def. 4) there exists a strict subgroup H; of G and there exists a strict, normal
subgroup Nj of G such that H; = the multiplicative magma of H and
N7 = the multiplicative magma of N and H; - N1 = the carrier of G and
HiNN = {1}@.
Let G be a group and H, N be subgroups of G. Observe that H, N are
complements in G if and only if the condition (Def. 5) is satisfied.
(Def. 5) N is normal and H - N = the carrier of G and H NN = {1}¢.
Let us consider a group G, subgroups H, K of GG, and a subgroup N of G.
Now we state the propositions:
(47) Suppose H is a subgroup of K. Then suppose N is a normal subgroup
of K. Then H, N are complements in K if and only if V- H = the carrier
of K and HN N = {1} . The theorem is a consequence of (3), (4), (7),
and (6).
(48) Suppose H is a subgroup of K. Then suppose N is a normal subgroup
of K. Then H, N are complements in K if and only if H - N = the carrier
of K and HN N = {1}g. The theorem is a consequence of (14) and (47).
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Let us consider a group G, subgroups H, K of GG, and a normal subgroup N
of G. Now we state the propositions:

(49) Suppose H is a subgroup of K. Then suppose N is a subgroup of K.
Then H, (N)g are complements in K if and only if N - H = the carrier
of K and HN N = {1}k. The theorem is a consequence of (3), (15), and
(47).

(50) If H is a subgroup of K, then if N is a subgroup of K, then H, N are
complements in K iff H, (N)g are complements in K. The theorem is
a consequence of (47) and (49).

Now we state the propositions:

(51) Let us consider a group G, a subgroup K of G, a subgroup H of K, and
a normal subgroup N of G. Suppose N is a subgroup of K. Then H, N
are complements in K if and only if H, (N)g are complements in K.

(52) Let us consider a group G, a subgroup H of G, and a normal subgro-
up N of G. Then H, N are complements in G if and only if H U N =
the multiplicative magma of G and H NN = {1}¢.

Proor: If H, N are complements in G, then H U N = the multiplicative
magma of G and H NN = {1}¢ by [16, (50)], (8). O
Now we state the propositions:

(53) UNIVERSAL PROPERTY OF QUOTIENT GROUPS:

Let us consider groups G1, G2, a normal subgroup N of G1, and a homo-
morphism f from G to Ga. Suppose N is a subgroup of Ker f. Then there
exists a homomorphism f from @1/ to G5 such that f = f-(the canonical
homomorphism onto cosets of N).

PROOF: Define Plelement of @1/, element of Ga] = there exists an ele-
ment g of G such that $§; = ¢g- N and $2 = f(g). For every element x
of €1/, there exists an element y of Gy such that P[z,y] by [I8, (23)].
Consider f being a function from @/ into Gy such that for every element
z of &1/, Plx, f(z)] from [9, Sch. 3]. For every elements x1, 29 of &1/,

flxy-x9) = f(mL f(z2) by (10), [15, (40)], [I8], (41)]. For every element

g of G1, f(g) = (f - (the canonical homomorphism onto cosets of N))(g)
by (10), [15, (40)], [18, (41)], [9, (15)]. O

(54) Let us consider groups G1, G, a normal subgroup Nj of G, a normal
subgroup No of G2, and a homomorphism ¢ from G to Ga. Suppose ¢ is
bijective and ¢°(the carrier of N1) = the carrier of No. Then ¢1/y, and
&2/, are isomorphic.
PROOF: For every element g of G such that g € Nj holds g € Ker(the canonical
homomorphism onto cosets of Na)-¢ by [9, (35)], [I8, (24)], [15}, (113)], [9,
(15)]. Consider @ being a homomorphism from &/, to @2/, such that
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(the canonical homomorphism onto cosets of Na) - ¢ = @ - (the canonical
homomorphism onto cosets of Ny). For every element y of ©2/y,, there
exists an element x of @1/, such that @(z) = y by [I8, (21), (62)], [9,
(5)], [8 (13)]. For every elements a, b of 1/, such that %(a) = %(b) holds
a =0bby [18 (21)], [9, (15)], (10), [9} (64)]. O

Let us consider a group G, a subgroup H of GG, and a normal subgroup N
of G. Now we state the propositions:

(55) Suppose H, N are complements in G. Then there exists a homomorphism
¢ from H to ¢/ such that

(i) for every element h of H and for every element g of G such that g = h
holds ¢(h) = ¢ - N, and
(ii) ¢ is bijective.
PROOF: Define Plelement of H, element of ¢/ y] = there exists an element
g of G such that ¢ = $; and $ = ¢ - N. For every element x of H,
there exists an element y of @/ such that P[z,y] by [15, (42)]. Consider
¢ being a function from H into /y such that for every element z of H,
Plz, ¢(z)] from [9] Sch. 3]. For every element h of H and for every element
g of G such that g = h holds ¢(h) = g - N. For every elements a, b of H,
@(a-b) = p(a) - @(b) by [I5, (42), (43)]. For every element y of ¢/, there
exists an element = of H such that ¢(x) =y by [18, (23)], [I7, (4)], [15,
(105), (113)]. For every elements a, b of H such that p(a) = ¢(b) holds
a =b by [15 (42), (114), (51)]. O
(56) If H, N are complements in G, then ©/y and H are isomorphic. The
theorem is a consequence of (55).

Now we state the proposition:

(57) Let us consider a group G, subgroups Hj, Hs of G, and a normal subgro-
up N of G. Suppose Hi, N are complements in G and Hs, N are comple-
ments in G. Then Hy and H, are isomorphic. The theorem is a consequence
of (56).

Now we state the propositions:

(58) BouURBAKI [6], I §6.1], COROLLARY TO PROPOSITION 4:

Let us consider a group G, subgroups H, K of G, and a function ¢ from
[[{H, K) into G. Suppose for every elements h, k of G such that h € H
and k € K holds ¢((h,k)) = h-k. Then ¢ is one-to-one if and only if
HNK = {I}G.

PROOF: If ¢ is one-to-one, then HNK = {1}¢ by (19), [18 (1)], [15, (65)],
(17). If HN K = {1}g, then ¢ is one-to-one by (18), [15, (41)], [5, (2),
(44)]. O
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(59) Let us consider a group G, and subgroups H, K of G. Then there exists
a function ¢ from [](the support of (H, K)) into G such that

(i) for every elements h, k of G such that h € H and k € K holds ¢((h,
k)) = h -k, and

(ii) ¢ is one-to-one iff HN K = {1}¢.
PRrROOF: Define Plelement of [](the support of (H, K)),element of G| =
there exist elements h, k of G such that h € H and k € K and $; = (h,
k) and $2 = h - k. For every element x of [](the support of (H, K)), there
exists an element y of G such that Pz, y] by (18), [15, (40)], [5, (2), (44)].
Consider ¢ being a function from [](the support of (H, K)) into G such
that for every element z of [](the support of (H, K)), Plz, ¢(x)] from [9,
Sch. 3]. For every elements h, k of G such that h € H and k € K holds
©((h, k)) = h -k by (19), [5, (77)]. O

(60) Let us consider a group G, a subgroup H of G, a strict, normal subgroup

N of G, and a homomorphism ¢ from H to AutGroup(N). Then there
exists a function ¢ from N %, H into G such that

(i) for every elements n, h of G such that n € N and h € H holds 1 ((n,
h)) =n-h, and

(ii) 4 is one-to-one iff NN H = {1}¢.

The theorem is a consequence of (59).

(61) Let us consider a group G, a subgroup H of GG, and a normal subgroup

N of G. Suppose H, N are complements in G. Then
(i) H- N = the carrier of G, and
(ii) N - H = the carrier of G.

The theorem is a consequence of (52) and (12).

Now we state the proposition:

(62) ASCHBACHER [1], THEOREM 10.2:
Let us consider a group G, a strict, normal subgroup N of G, and a sub-
group H of G. Suppose H, N are complements in G. Let us consider
a homomorphism « from H to AutGroup(NN). Suppose for every elements
h, n of G such that h € H and n € N for every homomorphism a from
N to N such that a = a(h) holds a(n) = n""'. Then there exists a homo-
morphism § from N X, H to G such that

(i) for every elements g5, g7 of G and for every element h of H and
for every element n of N such that g5 = h and g7 = n holds 3((n,
h)) = g7 - g5, and

(ii) S is bijective.
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PROOF: Set S = N x4 H. Consider 3 being a function from S into G such
that for every elements n, h of G such that n € N and h € H holds 5((n,
h)) =mn-h and (S is one-to-one iff NN H = {1}¢). For every elements z,
y of S, 6(56 'y) = /B(x) 5(3]) by (26)7 [157 (42)]7 [97 (5)]7 [107 (1)] For every
elements g5, g7 of G and for every element h of H and for every element
n of N such that g5 = h and g7 = n holds B((n,h)) = g7 - g5. For every
element y of G, there exists an element x of S such that 3(z) = y by (61),
17, (4)], (23). O

Now we state the proposition:

(63) UNIVERSAL PROPERTY OF SEMIDIRECT PrODUCTS (BOURBAKI [7), ITI
§2.10] PROPOSITION 27):
Let us consider groups H, G, a strict group N, a homomorphism f from
N to G, a homomorphism g from H to GG, and a homomorphism ¢ from H
to AutGroup(N). Suppose for every element n of N for every element h of
H, f(e(h)(n)) = g(h) - f(n) - g(h~!). Then there exists a homomorphism
k from N x, H to G such that

(i) f=Fk- (incll(N, H,¢)), and
(ii) g = k- (incl2(N, H, p)).

PROOF: Set S = N x, H. Define Plelement of S,element of G] = for
every element n of N for every element h of H such that $; = (n, h) holds
$2 = f(n) - g(h). For every element z of S, there exists an element y of G
such that P[z,y] by (26), [5, (77)]. Consider k being a function from S into
G such that for every element x of S, Pz, k(z)] from [9} Sch. 3]. For every
elements x1, 2 of S, k(x1-x2) = k(x1) - k(z2) by (26), (27), [I8, (31)]. For
every element n of N and for every element h of H, k((n,h)) = f(n)-g(h).
For every element n of N, f(n) = (k- (incll(NV, H, ¢)))(n) by [9} (15)], [18
(31)]. For every element h of H, g(h) = (k - (incl2(N, H, ¢)))(h) by [9,
(15)], [18 (31)]. O

Let GG be a finite, strict group, A be a finite group, and ¢ be a homomorphism

from A to AutGroup(G). One can verify that G x, A is finite.
From now on Gy, G2 denote groups.
Now we state the propositions:
(64) If Go is trivial, then for every homomorphism ¢ from G; to Ga, ¢ =
G1 — {1}q,.
(65) Aut({1}6) = {id, )

PROOF: For every object x such that x € {id{y),} holds z € Aut({1}¢) by
[10} (3)]. For every object z such that x € Aut({1}¢) holds = € {idfy},}
by [15 (44)], [18 (31)]. O
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(66) If G is strict and trivial, then AutGroup(G) is trivial. The theorem is
a consequence of (65).

(67) If G is strict and trivial, then ¢ = A — {1} AuGroup(c)- The theorem is
a consequence of (66) and (64).

(68) If Gy is trivial, then [[(G1,G2) and G2 are isomorphic.
PROOF: There exists a homomorphism f from [[(G1, G2) to G2 such that
f is bijective by (18), [5, (2), (44)], [I1} (29)]. O

(69) If G is strict and trivial, then G'x, A and A are isomorphic. The theorem
is a consequence of (66), (64), (46), and (68).

(70) Let us consider finite groups G, A, and a homomorphism ¢ from A to

AutGroup(G). Then G x, A = G - A.

5. APPENDIX 1: RESULTS ABOUT CycLIiC GROUPS

One can check that every group which is infinite is also non trivial and every
group which is trivial is also finite.
Let us consider a non zero natural number n. Now we state the propositions:
(71) The multiplication of Z; = +,,.
(72) The carrier of Z;} = Zy,.
Let us observe that Zf’ is trivial.
Let n be a non zero natural number. One can verify that 7.5 reduces to n.
Now we state the propositions:
(73) Let us consider a group G. Then G is trivial if and only if for every
element = of G, x = 1.
(74) Let us consider a group G, and a subgroup H of G. Then H is trivial if
and only if for every element x of G, x € H iff x = 1.
Proor: If H is trivial, then for every element x of G, z € H iff x = 1¢
by [15, (44)]. For every object x, x € the carrier of H iff z = 14 by [15],
(40)]. O
Let us consider a non zero natural number n. Now we state the propositions:
(75) Z} is trivial if and only if n = 1.
(76) Z;} is not trivial if and only if n > 1.
Let us note that there exists a group which is non trivial, cyclic, strict, and
infinite and there exists a group which is non trivial, cyclic, strict, and finite.
Now we state the propositions:
(77) Let us consider an element g of Z§. If g = 1, then g- g = 1Z2+. The
theorem is a consequence of (72) and (71).
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(78) Let us consider an object z. Then x € Z3 if and only if z = 0 or z = 1.
PROOF: If z € Z3 , then x = 0 or z = 1 by (72), [2, (50)]. O
(79) Let us consider elements z, y of Z3. Then

(i) if x =0, then z - y =y, and
(ii) if y =0, then x -y = z, and
(iii) ifz =1 and y = 1, thenx-yle;.

PRrROOF: If x = 0, then =z -y =y by [12, (14)]. If y = 0, then x -y = x by
[12, (14)]. O

(80) Let us consider non zero natural numbers n, k, and an element g of Z;}.
If g =k, then g~' = n — k mod n.
PRrROOF: k, n — k mod n € Z, by (72), [13, (57), (58), (3)]. Reconsider
g2 =n —k mod n as an element of Z}. n — k € N by [4, (44)], [13, (3)].
g-g2 = +n(k,n —k mod n). O

(81) Let us consider a non zero natural number n, and an element z of Z;.
Then x~! = 2"~ 1. The theorem is a consequence of (73).

(82) Let us consider a finite group G, and an element z of G. Then 0 <
ord(z) < G.
Let us consider a non zero natural number n and elements g, g1 of Z;. Now
we state the propositions:

(83) If g = 1, then there exists a natural number k such that g = ¢;* and
g = k mod n. The theorem is a consequence of (72) and (71).

(84) 1If g1 = 1, then there exists a natural number &k such that & < n and
g = ¢1¥ and g = k mod n. The theorem is a consequence of (83).

Now we state the propositions:

(85) Let us consider a group G, an element g of G, and integers i, j. If g* = ¢/,
then ¢=% = ¢g~7.

(86) Let us consider a non zero natural number n, and an element g, of Z;.
If gy = 1, then for every natural number 4, g;* = i mod n.
PROOF: Define P[natural number] = ¢;% = $; mod n. P[0] by [14} (25)],
[12, (14)]. For every natural number ¢ such that P[i] holds P[i + 1] by [4]
(44), (53)], [12, (14)], [14, (34)]. For every natural number 4, P[i] from [4,
Sch. 2]. O

(87) Let us consider a non zero natural number n, and an element g, of Z;}.
Suppose g1 = 1. Let us consider natural numbers 4, j. Then g;* = g7 if
and only if ¢ mod n = j mod n. The theorem is a consequence of (86).
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6. APPENDIX 2: DIHEDRAL GROUPS

Now we state the proposition:
(88) If A is commutative, then -, is an automorphism of A.
Let G be a strict, commutative group. The functor inversions G yielding
a function from Z3 into AutGroup(G) is defined by
(Def. 6) it(0) = idg and it(1) = -5
Now we state the proposition:
(89) Let us consider a group G. Then ;' - -5' = idg.

PROOF: For every element x of the carrier of G, (-5' - -5")(z) = (idg)(z)

by [9) (15)]. O
Let us consider a strict, commutative group GG and elements a, b of Z;. Now
we state the propositions:
(90) Suppose b = 0. Then
(i) (inversions G)(b) - (inversions G)(a) = (inversions G)(a), and
(ii) (inversions G)(a) - (inversions G)(b) = (inversions G)(a).
The theorem is a consequence of (78).
(91) Ifa =1andb =1, then (inversions G)(b)-(inversions G)(a) = (inversions G)(a-
b). The theorem is a consequence of (79) and (89).
Let G be a strict, commutative group. Observe that inversions G is multipli-

cative.
One can check that the functor inversions G yields a homomorphism from ZJ

to AutGroup(G). Let n be a non zero extended natural. The functorl Dihedral-group(n) ‘
yielding a strict group is defined by
(Def. 7) if n = +oo, then it = (Z1) X (inversions(z+)) (Z3) and if n # +oo, then
there exists a non zero natural number n; such that n = nqy and it =
(Z3,) X (inversions(Z;, ) (Z3).
Let n be a non zero natural number. Note that the functor Dihedral-group(n)
is defined by the term
(Def. 8) (Z}) X (inversions(Z;)) (Z3).
Now we state the proposition:

(92) Let us consider a non zero natural number n. Then Dihedral-group(n) =
2 - n. The theorem is a consequence of (70).
Let n be a non zero natural number. One can verify that Dihedral-group(n)
is finite.
Let n be a non natural extended natural. One can check that the functor
Dihedral-group(n) is defined by the term
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(Def. 9)  (Z1) X inversions(z+)) (Z3 )-
Now we state the proposition:
(93) Let us consider an element g; of Z*, and an element ay of Z; Suppose
ag = 1. Let us consider elements x, y of Dihedral-group(+4o00). Suppose
T = (91,1Z;> and y = (1z+,as). Then y -2 = x~! . y. The theorem is
a consequence of (33) and (27).
Let us consider a non zero natural number n, an element g1 of Z;", an element
ap of Z3 , and elements z, y of Dihedral-group(n). Now we state the propositions:
(94) Suppose ag = 1. Then if z = (g, 1Z2+> and y = (1,+,az), then y -z =
(27).
7+, 02), then y -z =
(34), and (94).

21 y. The theorem is a consequence of (33) and

(95) Suppose az = 1. Then if z = (g1, 1ZQ+> and y =

2"~ 1. y. The theorem is a consequence of (33), (81

(1
)
Now we state the propositions:

(96) Let us consider a non zero natural number n, an element g; of Z,
and an element x of Dihedral-group(n). Suppose z = (g1,1, ) Then

2" = 1pihedral-group(n)- L he theorem is a consequence of (34) and (29).

(97) Let us consider a non zero natural number n, and an element g; of
Z}. Suppose g1 = 1. Let us consider an element z of Dihedral-group(n).
Suppose x = (g1,1,+). Let us consider a natural number k. If & # 0 and

2

k <mn, then " 7& 1Dihedral—group(n)'
PROOF: Define P[natural number| = there exists an element g of Z;} such
that ¢ = $; mod n and g = ¢;%'. P[0] by [12, (14)], [14, (25)]. For every
natural number j such that P[j] holds P[j + 1] by [12, (14)], [14, (35)],
12, (9)], [4, (53), (44)]. For every natural number j, P[j] from [4, Sch. 2]
Con81der ge being an element of Z; such that gs = & mod n and gg = g1*.
- <91 7]"Z§r>‘ O]

(98) Let us consider a non zero natural number n, an element g; of Z},

and an element x of Dihedral-group(n). Suppose z = (g1,1, ) Then

271 = 2771 The theorem is a consequence of (96).

(99) Let us consider a non zero natural number n, an element g; of Z;}, and
an element x of Dihedral-group(n). Suppose x = (g1, lzﬁ- Let us consider

a natural number j. Then /=1 = g7,
PROOF: g1/ ™! = g1/ by [[4, (33)], 12 (9)], 14 (5)]. 27 = (917, 14). O
(100) Let us consider a non zero natural number n, an element g; of Z},
and an element as of Z; . Suppose as = 1. Let us consider elements x,
y of Dihedral-group(n). Suppose =z = (g1, 1ZZ+> and y = (1;+,a2). Then

y-x =2 ! -y. The theorem is a consequence of (98) and (95).
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(101) Let us consider a non zero natural number n, an element g; of Z},
and an element ao of Z; . Suppose as = 1. Let us consider elements =,
y of Dihedral-group(n). Suppose = = <g1, Z+> and y = (122, az). Let us
consider a natural number 4. Then y - 2° = 2" - .
PROOF: Define P[natural number] = y - 2% = 2751 .4 P[0] by [14, (25)],
(96). For every natural number k such that P[k] holds P[k + 1] by [14,
(34)], (100), [14, (33)]. For every natural number k, P[k] from [4, Sch. 2].
]
Let us consider a non zero natural number n, an element g7 of Z;}', an element
as of Z3 , elements z, y of Dihedral-group(n), and an element z of Dihedral-group(n).
Now we state the propositions:
(102) Suppose g1 = 1. Then suppose az = 1. Then suppose x = (g1, 1Z,j> and
y = (1, az). Then there exists a natural number k such that z = zk .y or
z = z¥. The theorem is a consequence of (26), (83), (34), (78), and (28).
(103) Suppose g1 = 1. Then suppose az = 1. Then suppose = = (g1, 1ZQ+> and
y = (1;+,a2). Then there exists a natural number k such that
(i) k <n, and
(ii) z=2% -y or z = 2F.
The theorem is a consequence of (102), (87), and (34).
Now we state the propositions:
(104) Let us consider a non zero natural number n, an element g; of Z;,
and an element ao of Z; . Suppose as = 1. Let us consider elements =,
y of Dihedral-group(n). Suppose z = (g1, 1ZQ+> and y = (1ZT+L, az). Let us
consider natural numbers i, j. Then 2’ -y - 2/ = 2"T"~J . yy. The theorem
is a consequence of (101).
(105) Let us consider a non zero natural number n, an element ag of Z;‘,
and an element y of Dihedral-group(n). Suppose y = <1Zi7a2>' Then
Y+ Y = Ipihedral-group(n)- L he theorem is a consequence of (37) and (29).
(106) (i) Dihedral-group(1) and Zj are isomorphic, and
(ii) Dihedral-group(1) is commutative.
The theorem is a consequence of (69).
(107) Dihedral-group(2) is commutative.
PROOF: 1 € Z. Reconsider g = 1, az = 1 as an element of Z3 . Reconsider
z = (g1, 1Z;>, y = <1Z;,a2> as an element of Dihedral-group(2). For every
natural number k such that k < 2 holds 2* -y = y - 2¥ by [ (23)], [14
(25)], (101). For every natural numbers ki, ko, 21 - £F2 = 2F2 . 2P by [14]
(33)]. For every elements z1, 2o of Dihedral-group(2), z1 - 20 = 22 - z1. O
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(108) Let us consider a non zero natural number n. If n > 2, then Dihedral-group(n)

is not commutative.
PROOF: 1 € the carrier of Z;. Reconsider g1 = 1 as an element of Z;.
1 € Z3 . Reconsider az = 1 as an element of Z3 . Reconsider x = (g1, 12;),
y = (1;+,a2) as an element of Dihedral-group(n). y-z # x-y by [14, (34)],
(96), (97), [14, (27), (6)]. O

(109) Let us consider a non zero natural number n, and an element g; of Z; .
Suppose g1 = 1. Let us consider an element as of Z; . Suppose as = 1.
Let us consider elements z, y, z of Dihedral-group(n). Suppose = = (g1,
1Z;> and y = (1;+,a2). Then z € Z(Dihedral-group(n)) if and only if
y -z = z -y and for every natural number i, ' - z = z - *. The theorem is
a consequence of (102).

(110) Let us consider a non zero natural number n, and an element z of
Dihedral-group(n). Then z € Z(Dihedral-group(n)) if and only if for every
element g of Z} such that g; = 1 for every element as of Zj such that
ay = 1 for every elements z, y of Dihedral-group(n) such that z = (g1,
1Z2+> and y = <1Z$’ az) holds y - z = z - y and for every natural number i,
z=2z- 2"

PROOF: For every element g of Dihedral-group(n), z-g = g-z by [4, (53)],
(106), [4, (44)], (72). O

(111) Z(Dihedral-group(1)) = Dihedral-group(1).

(112) Let us consider an odd, non zero natural number n, and an element g; of
Z}. Suppose g1 = 1. Let us consider an element x of Dihedral-group(n).
Suppose x = (g1, 123). Let us consider a natural number 4. If i < n, then
i=0orz’ #z",

PROOF: For every natural number j, g1/ = j mod n. g;* # ¢1" ¢ by [13]
3). @' # 91", 1,). O

(113) Let us consider an odd natural number n. If n > 1, then Z(Dihedral-group(n))

is trivial.
PROOF: For every element z of Dihedral-group(n), z = 1pihedral-group(n) 1ff
z € Z(Dihedral-group(n)) by [15, (46)], [4, (44)], (72), (78). O
Let us consider an even, non zero natural number n, a natural number k&,
an element g; of Z;}, and an element x of Dihedral-group(n). Now we state the
propositions:

(114) If n = 2 -k, then if g1 = 1, then if z = (g1, 1Z§r>7 then (ack)2 =
1pjihedral-group(n)- Lhe theorem is a consequence of (86), (34), and (29).

(115) Ifn = 2-k,thenif g; = 1, thenifz = (g, 12;), then ¥ € Z(Dihedral-group(n)).
ProoOF: 1 € Z;. Reconsider as = 1 as an element of Z;. Reconsider y =
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<1Zi’ as) as an element of Dihedral-group(n). Set z = z¥. y .z = 2" % . y.

For every natural number i, 2 - z = z - ' by [14, (33)]. O

Now we state the propositions:

(116)

Let us consider an even, non zero natural number n, and a natural
number k. Suppose n = 2 - k and n > 2. Let us consider an element ¢ of
Z;}. Suppose g1 = 1. Let us consider an element x of Dihedral-group(n).
Suppose z = (g1, 123). Let us consider an element g of Dihedral-group(n).

Then g € Z(Dihedral-group(n)) if and only if g = Ipinedral-group(n) OF
g ="
PrOOF: 1 € ZF. If g € Z(Dihedral-group(n)), then g = 1Dihedral-group(n)

or g = a* by (103), [14, (26)], (104), [I4, (33), (34)]. O

Let us consider an even, non zero natural number n. Suppose n > 2.
Then Z3 and Z(Dihedral-group(n)) are isomorphic.
PRroOOF: Consider k being a natural number such that n = 2-k. 1 € Z.
Reconsider g1 = 1 as an element of Z}. Reconsider z = <gl,lzz+> as

an element of Dihedral-group(n). For every object z, z € the carrier of
Z(Dihedral'group(n)) iff z € {1Dihedral—group(n)7xk} by [157 (40)]7 (116)

Z(Dihedral-group(n)) = 2 by (97), [3, (57)]. O
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