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Summary.We formalize the semidirect product of groups in Mizar, follo-
wing §10 of Aschbacher [1]. We also prove the universal property for semidirect
products as found in Bourbaki [7, III §2.10] Proposition 27. In an appendix, we
define the dihdral group of the regular n-gon and the infinite dihedral group.
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1. Preliminaries

Now we state the proposition:

(1) Let us consider natural numbers a, b. If a < b and b 6= 0, then 2 ·adiv b <
2.

From now on G, A denote groups and ϕ denotes a homomorphism from A

to AutGroup(G).
Now we state the propositions:

(2) Let us consider a non empty, unital multiplicative magma M . Suppose
for every element h of M , there exists an element g of M such that h · g =
1M and g · h = 1M . Then M is group-like.

(3) Let us consider a group G, and a subgroup H of G. Then the multipli-
cative magma of H is a strict subgroup of G.

(4) Let us consider a group G, and a normal subgroup N of G. Then the mul-
tiplicative magma of N is a strict, normal subgroup of G.
Proof: Reconsider N0 = the multiplicative magma of N as a strict sub-
group of G. For every element g of G, N0g = N0 by [15, (59)]. �
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(5) Let us consider a group G, a subgroup H of G, and a normal subgroup
N of G. Suppose N is a subgroup of H. Then the multiplicative magma
of N = the multiplicative magma of (N)H . The theorem is a consequence
of (4).

Let us consider a group G, subgroups H1, H2, K of G, and subgroups K1,
K2 of K. Now we state the propositions:

(6) Suppose the multiplicative magma of H1 = the multiplicative magma
of K1 and the multiplicative magma of H2 = the multiplicative magma
of K2. Then H1 ∩H2 = K1 ∩K2.
Proof: For every element g of G such that g ∈ H1∩H2 holds g ∈ K1∩K2
by [15, (82)]. For every element g of G such that g ∈ K1 ∩ K2 holds
g ∈ H1 ∩H2 by [15, (82)]. �

(7) Suppose the multiplicative magma of H1 = the multiplicative magma
of K1 and the multiplicative magma of H2 = the multiplicative magma
of K2. Then H1 ·H2 = K1 ·K2.
Proof: For every object x, x ∈ H1 ·H2 iff x ∈ K1 ·K2 by [15, (43), (42)].
�

Now we state the propositions:

(8) Let us consider a group G, and a subset A of G. Suppose A = the carrier
of G. Then gr(A) = the multiplicative magma of G.

(9) A and the multiplicative magma of A are isomorphic.

(10) Let us consider a group G, a normal subgroup N of G, and elements g1,
g2 of G. Suppose g1 ·N = g2 ·N . Then there exists an element n of G such
that

(i) n ∈ N , and

(ii) g1 = g2 · n.

Let us consider a group G and subgroups H1, H2 of G. Now we state the
propositions:

(11) (i) H1 ·H2 ⊆ the carrier of H1 tH2, and

(ii) H2 ·H1 ⊆ the carrier of H1 tH2.
(12) If H1 ·H2 = the carrier of H1 tH2, then H1 ·H2 = H2 ·H1.
Proof: H2 ·H1 ⊆ H1 ·H2. For every element x of G such that x ∈ H1 ·H2
holds x ∈ H2 ·H1 by [15, (51)], [17, (4)], [14, (17)]. �

Now we state the propositions:

(13) Let us consider a group G, subgroups H, K of G, and a subgroup H3 of
K. Suppose the multiplicative magma of H = the multiplicative magma
of H3. Then H = H3.
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(14) Let us consider a group G, and subgroups H, K of G. Suppose H is
a subgroup of K. Let us consider a subgroup N of G. If N is a normal
subgroup of K, then N ·H = H ·N . The theorem is a consequence of (7).

(15) Let us consider a group G, a subgroup H of G, and a normal subgroup
N of G. Suppose N is a subgroup of H. Then the multiplicative magma
of N = the multiplicative magma of (N)H . The theorem is a consequence
of (4).

(16) Let us consider a group G, and subgroups H1, N1, H2, N2 of G. Suppose
the multiplicative magma of H1 = the multiplicative magma of H2 and
the multiplicative magma of N1 = the multiplicative magma of N2. Then

(i) H1 ·N1 = H2 ·N2, and

(ii) H1 ∩N1 = H2 ∩N2.

The theorem is a consequence of (3), (7), and (6).

(17) Let us consider a group G, and strict subgroups H, K of G. Suppose
H 6= K and K is a subgroup of H. Then there exists an element g of G
such that

(i) g ∈ H, and

(ii) g /∈ K.

2. Automorphism Group Results

Let G, A be groups. One can verify that
∏

(the support of 〈A,G〉) is non
empty.

Now we state the propositions:

(18) Let us consider groups G1, G2, and an element x of
∏
〈G1, G2〉. Then

(i) x(1) ∈ G1, and

(ii) x(2) ∈ G2, and

(iii) domx = {1, 2}.

(19) Let us consider groups G1, G2, a subgroup H1 of G1, a subgroup H2 of
G2, and an element h1 of G1. Suppose h1 ∈ H1. Let us consider an element
h2 of G2. Suppose h2 ∈ H2. Then 〈h1, h2〉 ∈

∏
〈H1, H2〉.
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3. Semidirect Products of Groups

From now on G, A denote groups and ϕ denotes a homomorphism from A

to AutGroup(G).
Now we state the propositions:

(20) Let us consider an element g of G. Then ϕ(1A)(g) = g.

(21) Let us consider elements a1, a2 of A, and an element g of G. Then
ϕ(a1)(ϕ(a2)(g)) = (ϕ(a1 · a2))(g).

(22) Let us consider an element a of A, and an element g of G. Then

(i) ϕ(a−1)(ϕ(a)(g)) = g, and

(ii) ϕ(a)(ϕ(a−1)(g)) = g.

The theorem is a consequence of (21) and (20).

Let us consider G, A, and ϕ. The functor Goϕ A yielding a non empty,
strict multiplicative magma is defined by

(Def. 1) the carrier of it =
∏

(the support of 〈G,A〉) and for every elements f ,
g of

∏
(the support of 〈G,A〉), there exists a function h and there exists

an element a1 of A and there exists an element g2 of G such that h =
(the multiplication of it)(f, g) and a1 = f(2) and g2 = g(1) and h(1) =
(the multiplication of G)(f(1), ϕ(a1)(g2)) and h(2) = (the multiplication
of A)(f(2), g(2)).

One can check that G oϕ A is constituted functions and every element of
Goϕ A is finite sequence-like.

Now we state the propositions:

(23) The carrier of Goϕ A = the carrier of
∏
〈G,A〉.

(24) Let us consider an element a of A, and an element g of G. Then 〈g, a〉 is
an element of Goϕ A.

Let us consider an element x of Goϕ A. Now we state the propositions:

(25) (i) x(1) ∈ G, and

(ii) x(2) ∈ A, and

(iii) domx = {1, 2}.
The theorem is a consequence of (23) and (18).

(26) There exists an element g of G and there exists an element a of A such
that x = 〈g, a〉. The theorem is a consequence of (25).

Now we state the propositions:

(27) Let us consider elements x, y of G oϕ A, elements a1, a2 of A, and
elements g1, g2, g3 of G. Suppose x = 〈g1, a1〉 and y = 〈g2, a2〉 and g3 =
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ϕ(a1)(g2). Then x · y = 〈g1 · g3, a1 · a2〉. The theorem is a consequence of
(25).

(28) Let us consider elements x, y ofGoϕA, an element a of A, and an element
g of G. Suppose x = 〈g,1A〉 and y = 〈1G, a〉. Then x · y = 〈g, a〉. The
theorem is a consequence of (20) and (27).

Let us consider G, A, and ϕ. One can verify that Goϕ A is unital.
Now we state the propositions:

(29) 1GoϕA = 〈1G,1A〉. The theorem is a consequence of (23).

(30) Let us consider elements x, y ofGoϕA, an element a of A, and an element
g of G. Suppose x = 〈g, a〉 and y = 〈ϕ(a−1)(g−1), a−1〉. Then

(i) x · y = 1GoϕA, and

(ii) y · x = 1GoϕA.

The theorem is a consequence of (22), (27), and (29).

Let G, A be groups and ϕ be a homomorphism from A to AutGroup(G).
One can check that Goϕ A is associative and group-like.

Now we state the propositions:

(31) Let us consider an element a of A, an element g of G, and an element
x of G oϕ A. Suppose x = 〈g, a〉. Then x−1 = 〈ϕ(a−1)(g−1), a−1〉. The
theorem is a consequence of (23) and (30).

(32) Let us consider elements g1, g2 of G, and elements x, y, z of G oϕ A.
Suppose x = 〈g1,1A〉 and y = 〈g2,1A〉 and z = 〈g1 ·g2,1A〉. Then x ·y = z.
The theorem is a consequence of (27) and (20).

(33) Let us consider an element g of G, and an element x of GoϕA. Suppose
x = 〈g,1A〉. Then x−1 = 〈g−1,1A〉. The theorem is a consequence of (31)
and (20).

(34) Let us consider an element x of GoϕA, and an element g of G. Suppose
x = 〈g,1A〉. Let us consider an integer i. Then xi = 〈gi,1A〉.
Proof: Define P[integer] ≡ x$1 = 〈g$1 ,1A〉. P[0] by [14, (25)], (29). For
every integer i such that P[i] holds P[i−1] and P[i+ 1] by (33), (23), [14,
(33), (32)]. For every integer i, P[i] from [13, Sch. 4]. �

(35) Let us consider elements a1, a2 of A, and elements x, y, z of G oϕ A.
Suppose x = 〈1G, a1〉 and y = 〈1G, a2〉 and z = 〈1G, a1 ·a2〉. Then x·y = z.
The theorem is a consequence of (27).

(36) Let us consider an element a of A, and an element x of GoϕA. Suppose
x = 〈1G, a〉. Then x−1 = 〈1G, a−1〉. The theorem is a consequence of (31).

(37) Let us consider an integer i, an element x of Goϕ A, and an element a
of A. Suppose x = 〈1G, a〉. Then xi = 〈1G, ai〉.
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Proof: Define P[integer] ≡ x$1 = 〈1G, a$1〉. P[0] by [14, (25)], (29). For
every integer i such that P[i] holds P[i−1] and P[i+ 1] by (36), (23), [14,
(33), (32)]. For every integer i, P[i] from [13, Sch. 4]. �

Let us consider G, A, and ϕ. The functor incl1(G,A,ϕ) yielding a function
from G into Goϕ A is defined by

(Def. 2) for every element g of G, it(g) = 〈g,1A〉.
Aschbacher [1], THEOREM (10.1.2):
Let us consider G, A, and ϕ. One can check that incl1(G,A,ϕ) is multipli-

cative and one-to-one.
The functor incl2(G,A,ϕ) yielding a function from A into GoϕA is defined

by

(Def. 3) for every element a of A, it(a) = 〈1G, a〉.
Aschbacher [1], THEOREM (10.1.2):
Let us consider G, A, and ϕ. Observe that incl2(G,A,ϕ) is multiplicative

and one-to-one.
Now we state the proposition:

(38) Aschbacher [1], Theorem (10.1.3):
Im incl1(G,A,ϕ) is a normal subgroup of Goϕ A.
Proof: For every elements x, g of G oϕ A such that g is an element
of Im incl1(G,A,ϕ) holds gx ∈ Im incl1(G,A,ϕ) by [18, (45)], (26), (31),
(27). �

Let us consider A, G, and ϕ. Observe that Im incl1(G,A,ϕ) is normal.
Now we state the propositions:

(39) Im incl2(G,A,ϕ) ∩ Im incl1(G,A,ϕ) = {1}GoϕA.
Proof: Set I1 = Im incl2(G,A,ϕ). Set I2 = Im incl1(G,A,ϕ). Set S =
G oϕ A. For every object x such that x ∈ the carrier of I1 ∩ I2 holds
x ∈ {1S} by [15, (82)], [18, (45)], [5, (77)], (29). �

(40) Let us consider an element x of G oϕ A. Then there exists an element
g of G and there exists an element a of A such that (incl1(G,A,ϕ))(g) ·
(incl2(G,A,ϕ))(a) = x. The theorem is a consequence of (26), (27), and
(20).

(41) (Im incl1(G,A,ϕ)) · (Im incl2(G,A,ϕ)) = the carrier of Goϕ A.
Proof: For every element x ofGoϕA, x ∈ (Im incl1(G,A,ϕ))·(Im incl2(G,A,ϕ))
by (40), [18, (45)], [17, (4)]. �

(42) Im incl1(G,A,ϕ) t Im incl2(G,A,ϕ) = Goϕ A. The theorem is a conse-
quence of (41).

Now we state the proposition:
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(43) Aschbacher [1], Theorem (10.1.3):
G and Im incl1(G,A,ϕ) are isomorphic.

Let us consider an element a of A and an element g of G. Now we state the
propositions:

(44) Aschbacher [1], Theorem (10.1.4):
(incl1(G,A,ϕ))(g)(incl2(G,A,ϕ))(a) = 〈ϕ(a−1)(g),1A〉. The theorem is a con-
sequence of (31) and (27).

(45) (incl1(G,A,ϕ))(g)(incl2(G,A,ϕ))(a
−1) = 〈ϕ(a)(g),1A〉. The theorem is a con-

sequence of (44).

Now we state the proposition:

(46) Go(A→{1}AutGroup(G)) A =
∏
〈G,A〉.

Proof: Set S = Go(A→{1}AutGroup(G))A. The carrier of S = the carrier of∏
〈G,A〉. Set B1 = the multiplication of S. Set B2 = the multiplication

of
∏
〈G,A〉. Set U =

∏
(the support of 〈G,A〉). B1 is a binary operation

on U and B2 is a binary operation on U . For every elements x, y of∏
(the support of 〈G,A〉), B1(x, y) = B2(x, y) by (26), [10, (9)], (27), [11,

(29)]. �

4. Complementary Subgroups

Let G, H, N be groups. We say that H, N are complements in G if and
only if

(Def. 4) there exists a strict subgroup H1 of G and there exists a strict, normal
subgroup N1 of G such that H1 = the multiplicative magma of H and
N1 = the multiplicative magma of N and H1 ·N1 = the carrier of G and
H1 ∩N1 = {1}G.

Let G be a group and H, N be subgroups of G. Observe that H, N are
complements in G if and only if the condition (Def. 5) is satisfied.

(Def. 5) N is normal and H ·N = the carrier of G and H ∩N = {1}G.

Let us consider a group G, subgroups H, K of G, and a subgroup N of G.
Now we state the propositions:

(47) Suppose H is a subgroup of K. Then suppose N is a normal subgroup
of K. Then H, N are complements in K if and only if N ·H = the carrier
of K and H ∩ N = {1}K . The theorem is a consequence of (3), (4), (7),
and (6).

(48) Suppose H is a subgroup of K. Then suppose N is a normal subgroup
of K. Then H, N are complements in K if and only if H ·N = the carrier
of K and H ∩N = {1}K . The theorem is a consequence of (14) and (47).
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Let us consider a group G, subgroups H, K of G, and a normal subgroup N
of G. Now we state the propositions:

(49) Suppose H is a subgroup of K. Then suppose N is a subgroup of K.
Then H, (N)K are complements in K if and only if N ·H = the carrier
of K and H ∩N = {1}K . The theorem is a consequence of (3), (15), and
(47).

(50) If H is a subgroup of K, then if N is a subgroup of K, then H, N are
complements in K iff H, (N)K are complements in K. The theorem is
a consequence of (47) and (49).

Now we state the propositions:

(51) Let us consider a group G, a subgroup K of G, a subgroup H of K, and
a normal subgroup N of G. Suppose N is a subgroup of K. Then H, N
are complements in K if and only if H, (N)K are complements in K.

(52) Let us consider a group G, a subgroup H of G, and a normal subgro-
up N of G. Then H, N are complements in G if and only if H t N =
the multiplicative magma of G and H ∩N = {1}G.
Proof: If H, N are complements in G, then H tN = the multiplicative
magma of G and H ∩N = {1}G by [16, (50)], (8). �

Now we state the propositions:

(53) Universal Property of Quotient Groups:
Let us consider groups G1, G2, a normal subgroup N of G1, and a homo-
morphism f from G1 to G2. Suppose N is a subgroup of Ker f . Then there
exists a homomorphism f from G1/N to G2 such that f = f ·(the canonical
homomorphism onto cosets of N).
Proof: Define P[element of G1/N , element of G2] ≡ there exists an ele-
ment g of G1 such that $1 = g · N and $2 = f(g). For every element x
of G1/N , there exists an element y of G2 such that P[x, y] by [18, (23)].
Consider f being a function from G1/N into G2 such that for every element
x of G1/N , P[x, f(x)] from [9, Sch. 3]. For every elements x1, x2 of G1/N ,
f(x1 · x2) = f(x1) · f(x2) by (10), [15, (40)], [18, (41)]. For every element
g of G1, f(g) = (f · (the canonical homomorphism onto cosets of N))(g)
by (10), [15, (40)], [18, (41)], [9, (15)]. �

(54) Let us consider groups G1, G2, a normal subgroup N1 of G1, a normal
subgroup N2 of G2, and a homomorphism ϕ from G1 to G2. Suppose ϕ is
bijective and ϕ◦(the carrier of N1) = the carrier of N2. Then G1/N1 and
G2/N2 are isomorphic.
Proof: For every element g ofG1 such that g ∈ N1 holds g ∈ Ker(the canonical
homomorphism onto cosets of N2) ·ϕ by [9, (35)], [18, (24)], [15, (113)], [9,
(15)]. Consider ϕ being a homomorphism from G1/N1 to G2/N2 such that
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(the canonical homomorphism onto cosets of N2) · ϕ = ϕ · (the canonical
homomorphism onto cosets of N1). For every element y of G2/N2 , there
exists an element x of G1/N1 such that ϕ(x) = y by [18, (21), (62)], [9,
(5)], [8, (13)]. For every elements a, b of G1/N1 such that ϕ(a) = ϕ(b) holds
a = b by [18, (21)], [9, (15)], (10), [9, (64)]. �

Let us consider a group G, a subgroup H of G, and a normal subgroup N

of G. Now we state the propositions:

(55) SupposeH,N are complements inG. Then there exists a homomorphism
ϕ from H to G/N such that

(i) for every element h of H and for every element g of G such that g = h

holds ϕ(h) = g ·N , and

(ii) ϕ is bijective.

Proof: Define P[element of H, element of G/N ] ≡ there exists an element
g of G such that g = $1 and $2 = g · N . For every element x of H,
there exists an element y of G/N such that P[x, y] by [15, (42)]. Consider
ϕ being a function from H into G/N such that for every element x of H,
P[x, ϕ(x)] from [9, Sch. 3]. For every element h of H and for every element
g of G such that g = h holds ϕ(h) = g ·N . For every elements a, b of H,
ϕ(a · b) = ϕ(a) ·ϕ(b) by [15, (42), (43)]. For every element y of G/N , there
exists an element x of H such that ϕ(x) = y by [18, (23)], [17, (4)], [15,
(105), (113)]. For every elements a, b of H such that ϕ(a) = ϕ(b) holds
a = b by [15, (42), (114), (51)]. �

(56) If H, N are complements in G, then G/N and H are isomorphic. The
theorem is a consequence of (55).

Now we state the proposition:

(57) Let us consider a group G, subgroups H1, H2 of G, and a normal subgro-
up N of G. Suppose H1, N are complements in G and H2, N are comple-
ments inG. ThenH1 andH2 are isomorphic. The theorem is a consequence
of (56).

Now we state the propositions:

(58) Bourbaki [6, I §6.1], Corollary to Proposition 4:
Let us consider a group G, subgroups H, K of G, and a function ϕ from∏
〈H,K〉 into G. Suppose for every elements h, k of G such that h ∈ H

and k ∈ K holds ϕ(〈h, k〉) = h · k. Then ϕ is one-to-one if and only if
H ∩K = {1}G.
Proof: If ϕ is one-to-one, then H∩K = {1}G by (19), [18, (1)], [15, (65)],
(17). If H ∩ K = {1}G, then ϕ is one-to-one by (18), [15, (41)], [5, (2),
(44)]. �
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(59) Let us consider a group G, and subgroups H, K of G. Then there exists
a function ϕ from

∏
(the support of 〈H,K〉) into G such that

(i) for every elements h, k of G such that h ∈ H and k ∈ K holds ϕ(〈h,
k〉) = h · k, and

(ii) ϕ is one-to-one iff H ∩K = {1}G.

Proof: Define P[element of
∏

(the support of 〈H,K〉), element of G] ≡
there exist elements h, k of G such that h ∈ H and k ∈ K and $1 = 〈h,
k〉 and $2 = h · k. For every element x of

∏
(the support of 〈H,K〉), there

exists an element y of G such that P[x, y] by (18), [15, (40)], [5, (2), (44)].
Consider ϕ being a function from

∏
(the support of 〈H,K〉) into G such

that for every element x of
∏

(the support of 〈H,K〉), P[x, ϕ(x)] from [9,
Sch. 3]. For every elements h, k of G such that h ∈ H and k ∈ K holds
ϕ(〈h, k〉) = h · k by (19), [5, (77)]. �

(60) Let us consider a group G, a subgroup H of G, a strict, normal subgroup
N of G, and a homomorphism ϕ from H to AutGroup(N). Then there
exists a function ψ from N oϕ H into G such that

(i) for every elements n, h of G such that n ∈ N and h ∈ H holds ψ(〈n,
h〉) = n · h, and

(ii) ψ is one-to-one iff N ∩H = {1}G.

The theorem is a consequence of (59).

(61) Let us consider a group G, a subgroup H of G, and a normal subgroup
N of G. Suppose H, N are complements in G. Then

(i) H ·N = the carrier of G, and

(ii) N ·H = the carrier of G.

The theorem is a consequence of (52) and (12).

Now we state the proposition:

(62) Aschbacher [1], Theorem 10.2:
Let us consider a group G, a strict, normal subgroup N of G, and a sub-
group H of G. Suppose H, N are complements in G. Let us consider
a homomorphism α from H to AutGroup(N). Suppose for every elements
h, n of G such that h ∈ H and n ∈ N for every homomorphism a from
N to N such that a = α(h) holds a(n) = nh

−1
. Then there exists a homo-

morphism β from N oα H to G such that

(i) for every elements g5, g7 of G and for every element h of H and
for every element n of N such that g5 = h and g7 = n holds β(〈n,
h〉) = g7 · g5, and

(ii) β is bijective.
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Proof: Set S = N oαH. Consider β being a function from S into G such
that for every elements n, h of G such that n ∈ N and h ∈ H holds β(〈n,
h〉) = n · h and (β is one-to-one iff N ∩H = {1}G). For every elements x,
y of S, β(x ·y) = β(x) ·β(y) by (26), [15, (42)], [9, (5)], [10, (1)]. For every
elements g5, g7 of G and for every element h of H and for every element
n of N such that g5 = h and g7 = n holds β(〈n, h〉) = g7 · g5. For every
element y of G, there exists an element x of S such that β(x) = y by (61),
[17, (4)], (23). �

Now we state the proposition:

(63) Universal Property of Semidirect Products (Bourbaki [7, III
§2.10] Proposition 27):
Let us consider groups H, G, a strict group N , a homomorphism f from
N to G, a homomorphism g from H to G, and a homomorphism ϕ from H

to AutGroup(N). Suppose for every element n of N for every element h of
H, f(ϕ(h)(n)) = g(h) · f(n) · g(h−1). Then there exists a homomorphism
k from N oϕ H to G such that

(i) f = k · (incl1(N,H,ϕ)), and

(ii) g = k · (incl2(N,H,ϕ)).

Proof: Set S = N oϕ H. Define P[element of S, element of G] ≡ for
every element n of N for every element h of H such that $1 = 〈n, h〉 holds
$2 = f(n) · g(h). For every element x of S, there exists an element y of G
such that P[x, y] by (26), [5, (77)]. Consider k being a function from S into
G such that for every element x of S, P[x, k(x)] from [9, Sch. 3]. For every
elements x1, x2 of S, k(x1 ·x2) = k(x1) ·k(x2) by (26), (27), [18, (31)]. For
every element n of N and for every element h of H, k(〈n, h〉) = f(n) ·g(h).
For every element n of N , f(n) = (k · (incl1(N,H,ϕ)))(n) by [9, (15)], [18,
(31)]. For every element h of H, g(h) = (k · (incl2(N,H,ϕ)))(h) by [9,
(15)], [18, (31)]. �

Let G be a finite, strict group, A be a finite group, and ϕ be a homomorphism
from A to AutGroup(G). One can verify that Goϕ A is finite.

From now on G1, G2 denote groups.
Now we state the propositions:

(64) If G2 is trivial, then for every homomorphism ϕ from G1 to G2, ϕ =
G1 → {1}G2 .

(65) Aut({1}G) = {id{1}G}.
Proof: For every object x such that x ∈ {id{1}G} holds x ∈ Aut({1}G) by
[10, (3)]. For every object x such that x ∈ Aut({1}G) holds x ∈ {id{1}G}
by [15, (44)], [18, (31)]. �
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(66) If G is strict and trivial, then AutGroup(G) is trivial. The theorem is
a consequence of (65).

(67) If G is strict and trivial, then ϕ = A → {1}AutGroup(G). The theorem is
a consequence of (66) and (64).

(68) If G1 is trivial, then
∏
〈G1, G2〉 and G2 are isomorphic.

Proof: There exists a homomorphism f from
∏
〈G1, G2〉 to G2 such that

f is bijective by (18), [5, (2), (44)], [11, (29)]. �

(69) If G is strict and trivial, then GoϕA and A are isomorphic. The theorem
is a consequence of (66), (64), (46), and (68).

(70) Let us consider finite groups G, A, and a homomorphism ϕ from A to
AutGroup(G). Then Goϕ A = G · A .

5. Appendix 1: Results about Cyclic Groups

One can check that every group which is infinite is also non trivial and every
group which is trivial is also finite.

Let us consider a non zero natural number n. Now we state the propositions:

(71) The multiplication of Z+n = +n.

(72) The carrier of Z+n = Zn.

Let us observe that Z+1 is trivial.

Let n be a non zero natural number. One can verify that Z+n reduces to n.
Now we state the propositions:

(73) Let us consider a group G. Then G is trivial if and only if for every
element x of G, x = 1G.

(74) Let us consider a group G, and a subgroup H of G. Then H is trivial if
and only if for every element x of G, x ∈ H iff x = 1G.
Proof: If H is trivial, then for every element x of G, x ∈ H iff x = 1G
by [15, (44)]. For every object x, x ∈ the carrier of H iff x = 1G by [15,
(40)]. �

Let us consider a non zero natural number n. Now we state the propositions:

(75) Z+n is trivial if and only if n = 1.

(76) Z+n is not trivial if and only if n > 1.

Let us note that there exists a group which is non trivial, cyclic, strict, and
infinite and there exists a group which is non trivial, cyclic, strict, and finite.

Now we state the propositions:

(77) Let us consider an element g of Z+2 . If g = 1, then g · g = 1Z+2
. The

theorem is a consequence of (72) and (71).
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(78) Let us consider an object x. Then x ∈ Z+2 if and only if x = 0 or x = 1.
Proof: If x ∈ Z+2 , then x = 0 or x = 1 by (72), [2, (50)]. �

(79) Let us consider elements x, y of Z+2 . Then

(i) if x = 0, then x · y = y, and

(ii) if y = 0, then x · y = x, and

(iii) if x = 1 and y = 1, then x · y = 1Z+2
.

Proof: If x = 0, then x · y = y by [12, (14)]. If y = 0, then x · y = x by
[12, (14)]. �

(80) Let us consider non zero natural numbers n, k, and an element g of Z+n .
If g = k, then g−1 = n− k mod n.
Proof: k, n − k mod n ∈ Zn by (72), [13, (57), (58), (3)]. Reconsider
g2 = n − k mod n as an element of Z+n . n − k ∈ N by [4, (44)], [13, (3)].
g · g2 = +n(k, n− k mod n). �

(81) Let us consider a non zero natural number n, and an element x of Z+n .
Then x−1 = xn−1. The theorem is a consequence of (73).

(82) Let us consider a finite group G, and an element x of G. Then 0 <

ord(x) ¬ G .

Let us consider a non zero natural number n and elements g, g1 of Z+n . Now
we state the propositions:

(83) If g1 = 1, then there exists a natural number k such that g = g1
k and

g = k mod n. The theorem is a consequence of (72) and (71).

(84) If g1 = 1, then there exists a natural number k such that k < n and
g = g1

k and g = k mod n. The theorem is a consequence of (83).

Now we state the propositions:

(85) Let us consider a group G, an element g of G, and integers i, j. If gi = gj ,
then g−i = g−j .

(86) Let us consider a non zero natural number n, and an element g1 of Z+n .
If g1 = 1, then for every natural number i, g1i = i mod n.
Proof: Define P[natural number] ≡ g1

$1 = $1 mod n. P[0] by [14, (25)],
[12, (14)]. For every natural number i such that P[i] holds P[i+ 1] by [4,
(44), (53)], [12, (14)], [14, (34)]. For every natural number i, P[i] from [4,
Sch. 2]. �

(87) Let us consider a non zero natural number n, and an element g1 of Z+n .
Suppose g1 = 1. Let us consider natural numbers i, j. Then g1

i = g1
j if

and only if i mod n = j mod n. The theorem is a consequence of (86).
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6. Appendix 2: Dihedral Groups

Now we state the proposition:

(88) If A is commutative, then ·−1A is an automorphism of A.

Let G be a strict, commutative group. The functor inversionsG yielding
a function from Z+2 into AutGroup(G) is defined by

(Def. 6) it(0) = idG and it(1) = ·−1G .

Now we state the proposition:

(89) Let us consider a group G. Then ·−1G · ·
−1
G = idG.

Proof: For every element x of the carrier of G, (·−1G · ·
−1
G )(x) = (idG)(x)

by [9, (15)]. �

Let us consider a strict, commutative group G and elements a, b of Z+2 . Now
we state the propositions:

(90) Suppose b = 0. Then

(i) (inversionsG)(b) · (inversionsG)(a) = (inversionsG)(a), and

(ii) (inversionsG)(a) · (inversionsG)(b) = (inversionsG)(a).

The theorem is a consequence of (78).

(91) If a = 1 and b = 1, then (inversionsG)(b)·(inversionsG)(a) = (inversionsG)(a·
b). The theorem is a consequence of (79) and (89).

Let G be a strict, commutative group. Observe that inversionsG is multipli-
cative.

One can check that the functor inversionsG yields a homomorphism from Z+2
to AutGroup(G). Let n be a non zero extended natural. The functor Dihedral-group(n)
yielding a strict group is defined by

(Def. 7) if n = +∞, then it = (Z+) o(inversions(Z+)) (Z+2 ) and if n 6= +∞, then
there exists a non zero natural number n1 such that n = n1 and it =
(Z+n1) o(inversions(Z+n1 )) (Z+2 ).

Let n be a non zero natural number. Note that the functor Dihedral-group(n)
is defined by the term

(Def. 8) (Z+n ) o(inversions(Z+n )) (Z+2 ).

Now we state the proposition:

(92) Let us consider a non zero natural number n. Then Dihedral-group(n) =
2 · n. The theorem is a consequence of (70).

Let n be a non zero natural number. One can verify that Dihedral-group(n)
is finite.

Let n be a non natural extended natural. One can check that the functor
Dihedral-group(n) is defined by the term
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(Def. 9) (Z+) o(inversions(Z+)) (Z+2 ).

Now we state the proposition:

(93) Let us consider an element g1 of Z+, and an element a2 of Z+2 . Suppose
a2 = 1. Let us consider elements x, y of Dihedral-group(+∞). Suppose
x = 〈g1,1Z+2

〉 and y = 〈1Z+ , a2〉. Then y · x = x−1 · y. The theorem is
a consequence of (33) and (27).

Let us consider a non zero natural number n, an element g1 of Z+n , an element
a2 of Z+2 , and elements x, y of Dihedral-group(n). Now we state the propositions:

(94) Suppose a2 = 1. Then if x = 〈g1,1Z+2
〉 and y = 〈1Z+n , a2〉, then y · x =

x−1 · y. The theorem is a consequence of (33) and (27).

(95) Suppose a2 = 1. Then if x = 〈g1,1Z+2
〉 and y = 〈1Z+n , a2〉, then y · x =

xn−1 · y. The theorem is a consequence of (33), (81), (34), and (94).

Now we state the propositions:

(96) Let us consider a non zero natural number n, an element g1 of Z+n ,
and an element x of Dihedral-group(n). Suppose x = 〈g1,1Z+2

〉. Then
xn = 1Dihedral-group(n). The theorem is a consequence of (34) and (29).

(97) Let us consider a non zero natural number n, and an element g1 of
Z+n . Suppose g1 = 1. Let us consider an element x of Dihedral-group(n).
Suppose x = 〈g1,1Z+2

〉. Let us consider a natural number k. If k 6= 0 and

k < n, then xk 6= 1Dihedral-group(n).
Proof: Define P[natural number] ≡ there exists an element g of Z+n such
that g = $1 mod n and g = g1

$1 . P[0] by [12, (14)], [14, (25)]. For every
natural number j such that P[j] holds P[j + 1] by [12, (14)], [14, (35)],
[12, (9)], [4, (53), (44)]. For every natural number j, P[j] from [4, Sch. 2].
Consider g6 being an element of Z+n such that g6 = k mod n and g6 = g1

k.
xk = 〈g1k,1Z+2

〉. �

(98) Let us consider a non zero natural number n, an element g1 of Z+n ,
and an element x of Dihedral-group(n). Suppose x = 〈g1,1Z+2

〉. Then

x−1 = xn−1. The theorem is a consequence of (96).

(99) Let us consider a non zero natural number n, an element g1 of Z+n , and
an element x of Dihedral-group(n). Suppose x = 〈g1,1Z+2

〉. Let us consider

a natural number j. Then xj−1 = xn−j .
Proof: g1j−1 = g1

n−j by [14, (33)], [12, (9)], [14, (5)]. xj = 〈g1j ,1Z+2
〉. �

(100) Let us consider a non zero natural number n, an element g1 of Z+n ,
and an element a2 of Z+2 . Suppose a2 = 1. Let us consider elements x,
y of Dihedral-group(n). Suppose x = 〈g1,1Z+2

〉 and y = 〈1Z+n , a2〉. Then

y · x = x−1 · y. The theorem is a consequence of (98) and (95).
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(101) Let us consider a non zero natural number n, an element g1 of Z+n ,
and an element a2 of Z+2 . Suppose a2 = 1. Let us consider elements x,
y of Dihedral-group(n). Suppose x = 〈g1,1Z+2

〉 and y = 〈1Z+n , a2〉. Let us

consider a natural number i. Then y · xi = xn−i · y.
Proof: Define P[natural number] ≡ y ·x$1 = xn−$1 · y. P[0] by [14, (25)],
(96). For every natural number k such that P[k] holds P[k + 1] by [14,
(34)], (100), [14, (33)]. For every natural number k, P[k] from [4, Sch. 2].
�

Let us consider a non zero natural number n, an element g1 of Z+n , an element
a2 of Z+2 , elements x, y of Dihedral-group(n), and an element z of Dihedral-group(n).
Now we state the propositions:

(102) Suppose g1 = 1. Then suppose a2 = 1. Then suppose x = 〈g1,1Z+2
〉 and

y = 〈1Z+n , a2〉. Then there exists a natural number k such that z = xk ·y or
z = xk. The theorem is a consequence of (26), (83), (34), (78), and (28).

(103) Suppose g1 = 1. Then suppose a2 = 1. Then suppose x = 〈g1,1Z+2
〉 and

y = 〈1Z+n , a2〉. Then there exists a natural number k such that

(i) k < n, and

(ii) z = xk · y or z = xk.

The theorem is a consequence of (102), (87), and (34).

Now we state the propositions:

(104) Let us consider a non zero natural number n, an element g1 of Z+n ,
and an element a2 of Z+2 . Suppose a2 = 1. Let us consider elements x,
y of Dihedral-group(n). Suppose x = 〈g1,1Z+2

〉 and y = 〈1Z+n , a2〉. Let us

consider natural numbers i, j. Then xi · y · xj = xn+i−j · y. The theorem
is a consequence of (101).

(105) Let us consider a non zero natural number n, an element a2 of Z+2 ,
and an element y of Dihedral-group(n). Suppose y = 〈1Z+n , a2〉. Then
y · y = 1Dihedral-group(n). The theorem is a consequence of (37) and (29).

(106) (i) Dihedral-group(1) and Z+2 are isomorphic, and

(ii) Dihedral-group(1) is commutative.
The theorem is a consequence of (69).

(107) Dihedral-group(2) is commutative.
Proof: 1 ∈ Z+2 . Reconsider g1 = 1, a2 = 1 as an element of Z+2 . Reconsider
x = 〈g1,1Z+2

〉, y = 〈1Z+2
, a2〉 as an element of Dihedral-group(2). For every

natural number k such that k < 2 holds xk · y = y · xk by [4, (23)], [14,
(25)], (101). For every natural numbers k1, k2, xk1 · xk2 = xk2 · xk1 by [14,
(33)]. For every elements z1, z2 of Dihedral-group(2), z1 · z2 = z2 · z1. �
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(108) Let us consider a non zero natural number n. If n > 2, then Dihedral-group(n)
is not commutative.
Proof: 1 ∈ the carrier of Z+n . Reconsider g1 = 1 as an element of Z+n .
1 ∈ Z+2 . Reconsider a2 = 1 as an element of Z+2 . Reconsider x = 〈g1,1Z+2

〉,
y = 〈1Z+n , a2〉 as an element of Dihedral-group(n). y ·x 6= x ·y by [14, (34)],
(96), (97), [14, (27), (6)]. �

(109) Let us consider a non zero natural number n, and an element g1 of Z+n .
Suppose g1 = 1. Let us consider an element a2 of Z+2 . Suppose a2 = 1.
Let us consider elements x, y, z of Dihedral-group(n). Suppose x = 〈g1,
1Z+2
〉 and y = 〈1Z+n , a2〉. Then z ∈ Z(Dihedral-group(n)) if and only if

y · z = z · y and for every natural number i, xi · z = z · xi. The theorem is
a consequence of (102).

(110) Let us consider a non zero natural number n, and an element z of
Dihedral-group(n). Then z ∈ Z(Dihedral-group(n)) if and only if for every
element g1 of Z+n such that g1 = 1 for every element a2 of Z+2 such that
a2 = 1 for every elements x, y of Dihedral-group(n) such that x = 〈g1,
1Z+2
〉 and y = 〈1Z+n , a2〉 holds y · z = z · y and for every natural number i,

xi · z = z · xi.
Proof: For every element g of Dihedral-group(n), z · g = g · z by [4, (53)],
(106), [4, (44)], (72). �

(111) Z(Dihedral-group(1)) = Dihedral-group(1).

(112) Let us consider an odd, non zero natural number n, and an element g1 of
Z+n . Suppose g1 = 1. Let us consider an element x of Dihedral-group(n).
Suppose x = 〈g1,1Z+2

〉. Let us consider a natural number i. If i < n, then

i = 0 or xi 6= xn−i.
Proof: For every natural number j, g1j = j mod n. g1i 6= g1

n−i by [13,
(3)]. xi 6= 〈g1n−i,1Z+2

〉. �

(113) Let us consider an odd natural number n. If n > 1, then Z(Dihedral-group(n))
is trivial.
Proof: For every element z of Dihedral-group(n), z = 1Dihedral-group(n) iff
z ∈ Z(Dihedral-group(n)) by [15, (46)], [4, (44)], (72), (78). �

Let us consider an even, non zero natural number n, a natural number k,
an element g1 of Z+n , and an element x of Dihedral-group(n). Now we state the
propositions:

(114) If n = 2 · k, then if g1 = 1, then if x = 〈g1,1Z+2
〉, then (xk)

2
=

1Dihedral-group(n). The theorem is a consequence of (86), (34), and (29).

(115) If n = 2·k, then if g1 = 1, then if x = 〈g1,1Z+2
〉, then xk ∈ Z(Dihedral-group(n)).

Proof: 1 ∈ Z+2 . Reconsider a2 = 1 as an element of Z+2 . Reconsider y =
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〈1Z+n , a2〉 as an element of Dihedral-group(n). Set z = xk. y · z = xn−k · y.
For every natural number i, xi · z = z · xi by [14, (33)]. �

Now we state the propositions:

(116) Let us consider an even, non zero natural number n, and a natural
number k. Suppose n = 2 · k and n > 2. Let us consider an element g1 of
Z+n . Suppose g1 = 1. Let us consider an element x of Dihedral-group(n).
Suppose x = 〈g1,1Z+2

〉. Let us consider an element g of Dihedral-group(n).
Then g ∈ Z(Dihedral-group(n)) if and only if g = 1Dihedral-group(n) or
g = xk.
Proof: 1 ∈ Z+2 . If g ∈ Z(Dihedral-group(n)), then g = 1Dihedral-group(n)
or g = xk by (103), [14, (26)], (104), [14, (33), (34)]. �

(117) Let us consider an even, non zero natural number n. Suppose n > 2.
Then Z+2 and Z(Dihedral-group(n)) are isomorphic.
Proof: Consider k being a natural number such that n = 2 · k. 1 ∈ Z+n .
Reconsider g1 = 1 as an element of Z+n . Reconsider x = 〈g1,1Z+2

〉 as
an element of Dihedral-group(n). For every object z, z ∈ the carrier of
Z(Dihedral-group(n)) iff z ∈ {1Dihedral-group(n), xk} by [15, (40)], (116).

Z(Dihedral-group(n)) = 2 by (97), [3, (57)]. �

Acknowledgement: The author would like to dedicate this to his grandpa-
rents. “There are only two precious things on earth: the first is love; the second,
a long way behind it, is intelligence.”
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