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Summary. In this article, we formalized the proof of the Stirling’s formula,
which is considered an essential item in the field of statistics, as shown below:

lim
n→∞

n!

nn+
1
2 e−n

=
√

2π

using the Mizar formalism [3]. We referred to [9, 6].
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Introduction

The formalization of the proof of this Stirling’s formula was based on the
proof by Prof. S. Kurokawa [9], which is constructed using elementary concepts.
The proof is divided into two parts.

In the first part, we formalized the proof of the following lemma which is
essential to compute the integral using the Riemann sum over an equal partition.
Lemma 1(STIRLIN1:11) Let f(x) be a C1 function on [0, 1] (i.e., f ′(x)

exists and is continuous). Then the following holds:

lim
n→∞

{
n∑
k=1

f

(
k

n

)
− n

∫ 1
0
f(x) dx

}
=
f(1)− f(0)

2
.

For this lemma, we defined that the function defined on the open half-interval
]− 1,∞[ is of class C1 as STIRLIN1:def 5.
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In the second part, we apply the lemma to log(1 + x), and obtained the
result:

n∑
k=1

{
log

(
1 +

k

n

)
− n

∫ 1
0

log(1 + x) dx
}

= log
(

(2n)!
n!

(
e

4n

)n)
.

From Lemma 1, the left-hand side limit is evaluated as log 22 , and thus:

lim
n→∞

(2n)!
n!

(
e

4n

)n
=
√

2. (STIRLIN1:19,22).

Considering the ratio between n! and nn+
1
2 e−n, then the ratio can be transfor-

med as follows:

n!

nn+
1
2 e−n

=
(2n)!
n!

(
e

4n

)n/√n(2n)!
4n(n!)2

(STIRLIN1:25).

The limit left hand side can be calculated, and the denominator on the right-
hand side equals the square root of the Wallis product sequence. It is known
that this limit equals 1√

π
(see WALLIS01:52), so the final limit is

√
2π.

1. Lemma on the Riemann Sum over an Equal Partition

Now we state the proposition:

(1) Let us consider a natural number n, and a natural number k. Suppose
k ∈ Seg(n+ 1). Then divset(EqDiv([0, 1], n+ 1), k) = [k−

′1
n+1 ,

k
n+1 ].

The functor D[01] yielding a sequence of divs[0, 1] is defined by

(Def. 1) for every element n of N, it(n) = EqDiv([0, 1], n+ 1).

Now we state the propositions:

(2) Let us consider a natural number n. Then δEqDiv([0,1],n+1) = 1
n+1 .

Proof: Set A = [0, 1]. Set D = EqDiv([0, 1], n + 1). For every natural
number i such that i ∈ domD holds (upper volume(χA,A, D))(i) = 1

n+1
by [8, (20)], [7, (15)]. rng upper volume(χA,A, D) = { 1n+1} by [12, (29)],
[13, (104)], [4, (3)], [5, (31)]. �

(3) δD[01] is a 0-convergent, non-zero sequence of real numbers. The theorem
is a consequence of (2).

Let a, b be real numbers. The functor ax + b(a, b) yielding a partial func-
tion from R to R is defined by the term

(Def. 2) AffineMap(a, b).

Let r be a real number. The functor const r yielding a partial function from
R to R is defined by the term
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(Def. 3) AffineMap(0, r).

Observe that const r is constant.
The functor rohl yielding a subset of R is defined by the term

(Def. 4) ]−1,+∞[.

Let f be a partial function from R to R and A be a non empty, closed interval
subset of R. We say that f is C1-Class onA if and only if

(Def. 5) f is differentiable on ]−1,+∞[ and f ′�]−1,+∞[ is continuous and A ⊆
]−1,+∞[ ⊆ dom f .

Assume f is C1-Class on A. The functor @′(f,A) yielding a function from
A into R is defined by the term

(Def. 6) f ′�]−1,+∞[�A.

Assume A ⊆ dom f . The functor @(f,A) yielding a function from A into R
is defined by the term

(Def. 7) f�A.

From now on Z denotes an open subset of R.
Now we state the proposition:

(4) Let us consider a natural number n, a natural number k, a real number
x0, and a partial function f from R to R. Suppose k ∈ Seg(n + 1) and

x0 ∈ [k−
′1

n+1 ,
k

n+1 ] and f is C1-Class on [0, 1]. Then
∫

[x0, kn+1 ]

f ′�rohl(x)dx =

f(sup[x0,
k

n+ 1
])− f(inf[x0,

k

n+ 1
]).

Let n be a natural number and f be a partial function from R to R. The
functor UPBND rng d(f, n) yielding a finite sequence of elements of RF is
defined by

(Def. 8) len it = n+ 1 and for every natural number i such that i ∈ dom it holds
it(i) = sup rng(f ′�rohl�[

i−′1
n+1 ,

i
n+1 ]).

The functor LWBND rng d(f, n) yielding a finite sequence of elements of
RF is defined by

(Def. 9) len it = n+ 1 and for every natural number i such that i ∈ dom it holds
it(i) = inf rng(f ′�rohl�[

i−′1
n+1 ,

i
n+1 ]).

The functor Sum UPBND rng d f yielding a sequence of R is defined by

(Def. 10) for every natural number i, it(i) =
∑
UPBND rng d(f,i)

i+1 .

The functor Sum LWBND rng d f yielding a sequence of R is defined by

(Def. 11) for every natural number i, it(i) =
∑
LWBND rng d(f,i)

i+1 .
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Let us consider a natural number n, a natural number k, a real number x0,
and a partial function f from R to R. Now we state the propositions:

(5) Suppose k ∈ Seg(n+ 1) and x0 ∈ [k−
′1

n+1 ,
k

n+1 ] and f is C1-Class on [0, 1].
Then

(i)

k
n+1∫
x0

const(UPBND rng d(f, n))(k)(x)dx = (UPBND rng d(f, n))(k) ·

(
k

n+ 1
− x0), and

(ii)

k
n+1∫
x0

const(LWBND rng d(f, n))(k)(x)dx = (LWBND rng d(f, n))(k)·

(
k

n+ 1
− x0).

Proof: For every real number t such that t ∈ [x0, k
n+1 ] holds (const(UPBND rng d(f, n))(k))(t) =

(UPBND rng d(f, n))(k) by [4, (3)]. For every real number t such that t ∈
[x0, k

n+1 ] holds (const(LWBND rng d(f, n))(k))(t) = (LWBND rng d(f, n))(k)
by [4, (3)]. �

(6) Suppose k ∈ Seg(n+ 1) and x0 ∈ [k−
′1

n+1 ,
k

n+1 ] and f is C1-Class on [0, 1].

Then

k
n+1∫
x0

f ′�rohl(x)dx ¬

k
n+1∫
x0

const(UPBND rng d(f, n))(k)(x)dx.

(7) Suppose k ∈ Seg(n+ 1) and x0 ∈ [k−
′1

n+1 ,
k

n+1 ] and f is C1-Class on [0, 1].

Then

k
n+1∫
x0

const(LWBND rng d(f, n))(k)(x)dx ¬

k
n+1∫
x0

f ′�rohl(x)dx.

(8) Suppose k ∈ Seg(n+ 1) and x0 ∈ [k−
′1

n+1 ,
k

n+1 ] and f is C1-Class on [0, 1].
Then

(i) f( k
n+1)− f(x0) ¬ (UPBND rng d(f, n))(k) · ( k

n+1 − x0), and

(ii) (LWBND rng d(f, n))(k) · ( k
n+1 − x0) ¬ f( k

n+1)− f(x0).

The theorem is a consequence of (4), (5), (7), and (6).

Let n be a natural number and f be a partial function from R to R. The
functor ′F′(f, n) yielding a finite sequence of elements of RF is defined by

(Def. 12) dom it = Seg(n+ 1) and for every natural number i such that i ∈ dom it

holds it(i) =

i
n+1∫
i−′1
n+1

const f(
i

n+ 1
)(x)dx.
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The functor ′G′(f, n) yielding a finite sequence of elements of RF is defined
by

(Def. 13) dom it = Seg(n+ 1) and for every natural number i such that i ∈ dom it

holds it(i) =

i
n+1∫
i−′1
n+1

(−f)(x)dx.

The functor step (f, n) yielding a finite sequence of elements of RF is defi-
ned by

(Def. 14) dom it = Seg(n+ 1) and for every natural number i such that i ∈ dom it
holds it(i) = f( i

n+1).

Now we state the proposition:

(9) Let us consider a natural number n, and a partial function f from R to

R. Then
0∫
0

(−f)(x)dx = 0.

Let f be a partial function from R to R. The functor Sum step f yielding
a sequence of real numbers is defined by

(Def. 15) for every natural number n, it(n) =
∑

step (f, n).

The functor n Integral f yielding a sequence of real numbers is defined by

(Def. 16) for every natural number n, it(n) = (n+ 1) · (
1∫
0

(−f)(x)dx).

The functor w seq f yielding a sequence of real numbers is defined by the
term

(Def. 17) Sum step f + n Integral f .

Now we state the proposition:

(10) Let us consider a partial function f from R to R. Suppose f is C1-Class on
[0, 1]. Then lim w seq f = 1

2 · (integral f ′�rohl � [0, 1]).

2. Apply the Lemma to log(1+x)

Let c be a real number. The functor x + c yielding a partial function from
R to R is defined by the term

(Def. 18) AffineMap(1, c).

Now we state the propositions:
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(11) (The function ln) · (x + 1� rohl) is differentiable on ]−1,+∞[.
Proof: Set Z = ]−1,+∞[. For every real number x0 such that x0 ∈ Z
holds (the function ln) · (x + 1� rohl) is differentiable in x0 by [10, (20)].
�

(12) Let us consider an open subset Z of R. Suppose Z ⊆ dom((the function
ln) · (x + 1� rohl)). Then

(i) (the function ln) · (x + 1� rohl) is differentiable on Z, and

(ii) for every real number x such that x ∈ Z holds ((the function ln) ·
(x + 1� rohl))′�Z(x) = 1

1+x .

Proof: Set f = x + 1� rohl. For every real number x such that x ∈ Z
holds f(x) = 1 + x and f(x) > 0 by [4, (49)]. �

(13) ((The function ln) · (x + 1� rohl))′�rohl = 1
x + 1� rohl. The theorem is

a consequence of (12).

In the sequel x, x0, x1, x2 denote real numbers.
Now we state the propositions:

(14) (x + 1·(the function ln)·(x + 1� rohl)+−1 · x + 0)′�rohl = (the function
ln) · (x + 1� rohl).
Proof: Set f1 = x + 1. Set f2 = (the function ln) · (x + 1� rohl). f2
is differentiable on rohl. f1 · ( 1f1 � rohl) = rohl 7−→ 1 by [4, (49)], [11, (7)].
(rohl 7−→ 1) · f2 + (rohl 7−→ 1) + (−1) · (rohl 7−→ 1) = f2 by [11, (7)]. �

(15)
1∫
0

(the function ln) · (x + 1� rohl)(x)dx = log
e

4
e

. The theorem is a con-

sequence of (12) and (14).

(16)
∫
[0,1]

((the function ln) · (x + 1� rohl))′�rohl(x)dx = (the function ln)(2).

(17) lim w seq(the function ln) · (x + 1� rohl) = 1
2 · (the function ln)(2). The

theorem is a consequence of (10) and (16).

Let m be a non zero natural number and f be a partial function from R to
R. The functor Step (f,m) yielding a sequence of real numbers is defined by

(Def. 19) for every natural number i, it(i) = f( i
m).

Let us consider a non zero natural number m and a partial function f from
R to R. Now we state the propositions:

(18) XFS2FS(Step (f,m)�Zm+1) = 〈f(0)〉 a step (f,m−′ 1).
Proof: Reconsider m1 = m + 1 as a natural number. Reconsider m1 =
m −′ 1 as a natural number. For every natural number x such that x ∈
dom(Shift(Step (f,m)�Zm1 , 1)) holds (Shift(Step (f,m)�Zm1 , 1))(x) = (〈f(0)〉a
step (f,m1))(x) by [2, (1)], [1, (44)], [4, (49)], [1, (14)]. �
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(19) Suppose f is C1-Class on [0, 1]. Then
∑

XFS2FS(Step (f,m)�Zm+1) =
f(0) +

∑
step (f,m−′ 1). The theorem is a consequence of (18).

Let us consider a non zero natural number m. Now we state the propositions:

(20)
∑

XFS2FS(Step ((the function ln)·(x + 1� rohl),m)�Zm+1) =
∑

step ((the function
ln) · (x + 1� rohl),m−′ 1). The theorem is a consequence of (19).

(21) (w seq(the function ln)·(x + 1� rohl))(m−′1) = (the function ln)(2·m!m! ·
( e4·m

a m)). The theorem is a consequence of (15).

The functor W STIRL yielding a sequence of real numbers is defined by

(Def. 20) for every natural number n, it(n) = 2·(n+1)!
(n+1)! · (

e
4·(n+1)

a (n+ 1)).

Now we state the propositions:

(22) Let us consider a natural number n. Then (w seq(the function ln) ·
(x + 1� rohl))(n) = (the function ln)((W STIRL)(n)). The theorem is
a consequence of (15).

(23) (i) lim W STIRL =
√

2, and

(ii) W STIRL is convergent.
The theorem is a consequence of (17).

The functor StirlSeq yielding a sequence of real numbers is defined by

(Def. 21) for every natural number n, it(n) = n!
(na(n+ 12 ))·(ea(−n))

.

Now we state the proposition:

(24) lim StirlSeq =
√

2 · π. The theorem is a consequence of (23).
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