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A Formal Proof of Stirling’s Formula
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Summary. In this article, we formalized the proof of the Stirling’s formula,
which is considered an essential item in the field of statistics, as shown below:

|
lim ——— = /2r

n— oo n"+§ e~ "

using the Mizar formalism [3]. We referred to [9} [6].
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INTRODUCTION

The formalization of the proof of this Stirling’s formula was based on the
proof by Prof. S. Kurokawa [9], which is constructed using elementary concepts.
The proof is divided into two parts.

In the first part, we formalized the proof of the following lemma which is
essential to compute the integral using the Riemann sum over an equal partition.

Lemma 1(STIRLIN1:11) Let f(z) be a C* function on [0,1] (i.e., f/(z)
exists and is continuous). Then the following holds:

i {21 (7)o [ oo = HOZIE

For this lemma, we defined that the function defined on the open half-interval
] — 1,00[ is of class C! as STIRLIN1:def 5.
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In the second part, we apply the lemma to log(l + x), and obtained the

kzi:l {1og (1 + D - n/ol log(1 + ) dx} log ((273) <4n)n> |

From Lemma 1, the left-hand side limit is evaluated as 1052, and thus:

result:

2 n
i 2 (6) — /2. (STIRLIN1:19,22).
n—oo nl 4n

Considering the ratio between n! and n”*ée_”, then the ratio can be transfor-
med as follows:

L )

The limit left hand side can be calculated, and the denominator on the right-
hand side equals the square root of the Wallis product sequence. It is known
that this limit equals % (see WALLIS01:52), so the final limit is v/27.

(STIRLIN1:25).

1. LEMMA ON THE RIEMANN SUM OVER AN EQUAL PARTITION

Now we state the proposition:
(1) Let us consider a natural number n, and a natural number k. Suppose
k € Seg(n + 1). Then divset(EqDiv([0,1],n + 1), k) = [, k],
The functor yielding a sequence of divs[0, 1] is defined by
(Def. 1) for every element n of N, it(n) = EqDiv([0, 1],n + 1).

Now we state the propositions:

(2) Let us consider a natural number n. Then Sgypiv([0,1)n+1) = n%rl
PROOF: Set A = [0,1]. Set D = EqDiv([0,1],n + 1). For every natural
number 4 such that ¢ € dom D holds (upper_volume(X 4, 4,D))(i) = n-l‘rl
by [8, (20)], [7, (15)]. rngupper_volume(X 4 4, D) = {n+1} by [12} (29)],
[13, (104)], & (3)], [5 (31)]. O

(3) dpjoy) is a O-convergent, non-zero sequence of real numbers. The theorem
is a consequence of (2).

Let a, b be real numbers. The functor fax-+ -b(a, b)| yielding a partial func-
tion from R to R is defined by the term
(Def. 2) AffineMap(a,b).

Let r be a real number. The functor yielding a partial function from
R to R is defined by the term
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(Def. 3) AffineMap(0, 7).
Observe that constr is constant.
The functor - yielding a subset of R is defined by the term
(Def. 4) |1, +o0].
Let f be a partial function from R to R and A be a non empty, closed interval

subset of R. We say that - if and only if

(Def. 5) f is differentiable on |—1,+o00[ and f] 1+00[ 18 continuous and A C
]-1,4+00[ C dom f.

Assume f is C'-Class on A. The functor - yielding a function from
A into R is defined by the term

(Def. 6) ff]_l’Jroo[[A.
Assume A C dom f. The functor ¢(f, A) yielding a function from A into R
is defined by the term
(Def. 7)  fTA.
From now on Z denotes an open subset of R.
Now we state the proposition:

(4) Let us consider a natural number n, a natural number k, a real number
xo, and a partial function f from R to R. Suppose k € Seg(n + 1) and

xy € [’f;_ll, n+1] and f is C'-Class on [0, 1]. Then / ftron(@)dz =
[:L‘o,nLH]
flsuplao, 1) — fintlro, 1))

Let n be a natural number and f be a partial function from R to R. The

functor - yielding a finite sequence of elements of Rp is

defined b

(Def. 8) 1en it = n+ 1 and for every natural number 7 such that i € dom ¢ holds
Zt(Z) = sup rng(ffrohlr %’ nL—H])

The functor - yielding a finite sequence of elements of

Rp is defined by
(Def. 9) lenit =n+ 1 and for every natural number ¢ such that ¢ € dom ¢t holds
it(i) = inf rng(flom ! s mig))-

The functor _ yielding a sequence of R is defined by

. ... > UPBND._ng.d(f,)
(Def. 10) for every natural number i, it(i) = et .

The functor _ yielding a sequence of R is defined by

> LWBND_rng-d(f,i)
i+l :

(Def. 11) for every natural number i, it(i) =
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Let us consider a natural number n, a natural number k, a real number z,
and a partial function f from R to R. Now we state the propositions:

(5) Suppose k € Seg(n+ 1) and zg € [n-&-l , n+1] and fis C!-Class on [0, 1].
Then

(1) / const(UPBND_rng_d(f,n))(k)(z)dz = (UPBND_rng_d(f,n))(k)-

o

(ni T~ x0), and
(i) / const(LWBND _rmg_d(f, n))(k)(z)dz = (LWBND_rng_d(f, n))(k)-
(n—ki:— 1 %o).

PROOF: For every real number ¢ such that t € [z, niﬂ] holds (const(UPBND_rng_d( f
(UPBND_rng_d(f,n))(k) by [4, (3)]. For every real number ¢ such that ¢ €
[0, 725] holds (const(LWBND g d(f, n))(k))(t) = (LWBND_ g d(f, n))(k)

by [, (3)]. O
(6) Suppose k € Seg(n+ 1) and z € [n+1 , n+1] and fis C!-Class on [0, 1].
nil nil
Then / Fhron(z)dz < / const(UPBND_rng_d(f,n))(k)(z)dx.
o xo

(7) Suppose k € Seg(n + 1) and zg € [n+1 , n+1] and fis C'-Class on [0, 1].
k

k
nt+1

nt+1l

Then / const(LWBND _rng_d(f, n)) (k) (z)dz < / Flrom (@) da.

Zo o

(8) Suppose k € Seg(n+ 1) and z¢ € [%, niﬂ] and fis C!-Class on [0, 1].
Then

(i) f(75) — f(x0) < (UPBND.rng d(f,n))(k) - (755 — 0), and
(i) (LWBND.mg-d(f,n)(k) - (77 = 20) < f(77) = f(wo).
The theorem is a consequence of (4), (5), (7), and (6).
Let n be a natural number and f be a partial function from R to R. The

functor ['E(f,m)| yielding a finite sequence of elements of Ry is defined by

(Def. 12) dom it = Seg(n+1) and for every natural number 7 such that ¢ € dom it
=5 ,
i
holds it(i) = t f(——)(x)dx.
olds it(1) / cons f(n+1)(x) x

i—'1
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The functor ‘ yielding a finite sequence of elements of Rg is defined
by

(Def. 13) dom it = Seg(n+1) and for every natural number i such that ¢ € dom it

7

1

holds it (i) — / (—f)(x)da.

n+

The functor - yielding a finite sequence of elements of Rg is defi-
ned by

3
+

-

[un

(Def. 14) dom it = Seg(n+1) and for every natural number i such that ¢ € dom it

holds it (i) = f(;17)-
Now we state the proposition:

(9) Let us consider a natural number n, and a partial function f from R to
0
R. Then /(—f)(a:)d:c =0.
0

Let f be a partial function from R to R. The functor _ yielding
a sequence of real numbers is defined by

(Def. 15) for every natural number n, it(n) = Y step_(f,n).

The functor _ yielding a sequence of real numbers is defined by
1
(Def. 16) for every natural number n, it(n) = (n +1) - (/(—f)(a:)d:c)
0

The functor ‘ yielding a sequence of real numbers is defined by the
term

(Def. 17) Sum_step f + n_Integral f.
Now we state the proposition:

(10) Let us consider a partial function f from R to R. Suppose fis C!-Class on
[0,1]. Then limw_seq f = 3 - (integral Firon 110,1]).

2. APPLY THE LEMMA TO LOG(14X)

Let ¢ be a real number. The functor - yielding a partial function from
R to R is defined by the term

(Def. 18) AffineMap(1, c).

Now we state the propositions:
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(11) (The function In) - (x4 _1[rohl) is differentiable on |—1, 4o0].

PROOF: Set Z = |—1,+o0]. For every real number xy such that xy € Z
holds (the function In) - (x_ + _1[rohl) is differentiable in z¢ by [10, (20)].
O

(12) Let us consider an open subset Z of R. Suppose Z C dom((the function
In) - (x-+ _1[rohl)). Then

(i) (the function In) - (x-+ _1[rohl) is differentiable on Z, and

(ii) for every real number z such that z € Z holds ((the function In) -
(x-+ ,1[roh1))’rz(a:) = 1—&-%
PRrROOF: Set f = x_+ _1]rohl. For every real number = such that x € Z
holds f(z) =1+ z and f(z) > 0 by [4, (49)]. O
(13)  ((The function In) - (x_+ _1[rohl))} , = Xf#il[rohl. The theorem is
a consequence of (12).
In the sequel x, z(, x1, 2 denote real numbers.
Now we state the propositions:
(14)  (x-+ -1-(the function In)-(x_+ _1rohl)+—1-x_+ _0)},; = (the function
In) - (x-+ _1[ rohl).
PROOF: Set f; = x_+ _1. Set fo = (the function In) - (x_+ _1]rohl). fo
is differentiable on rohl. f; - (%[rohl) = rohl — 1 by [4, (49)], [LT}, (7)].
(rohl — 1) - fa + (rohl —— 1) + (—=1) - (rohl — 1) = f3 by [11} (7)]. O
1
(15) /(the function In) - (x_ 4 _1]rohl)(z)dz = log %. The theorem is a con-

0
sequence of (12) and (14).

(16) / ((the function In) - (x_ 4 _1] rohl))},,p(#)dz = (the function In)(2).
[0,1]
(17) limw_seq(the function In)- (x-+ _1Jrohl) = 1 - (the function In)(2). The
theorem is a consequence of (10) and (16).

Let m be a non zero natural number and f be a partial function from R to
R. The functor | Step-(f,m)| yielding a sequence of real numbers is defined by

(Def. 19) for every natural number i, it(i) = f(:1).

m
Let us consider a non zero natural number m and a partial function f from

R to R. Now we state the propositions:
(18) XFS2FS(Step-(f,m)[Zm+1) = (f(0)) ™ step_(f,m —"1).
ProoF: Reconsider mq; = m + 1 as a natural number. Reconsider > =
m —' 1 as a natural number. For every natural number x such that x €
dom(Shift(Step_( f,m)[Zm,, 1)) holds (Shift(Step_( f,m)[Zm,,1))(z) = ((f(0))"
step_(f, >1))(z) by [2, (1)], [1, (44)], [4, (49)], [1} (14)]. O
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(19) Suppose f is C1-Class on [0, 1]. Then 3 XFS2FS(Step_(f,m)[Zm+1) =
f(0) + > step_(f,m —'1). The theorem is a consequence of (18).
Let us consider a non zero natural number m. Now we state the propositions:

(20) > XFS2FS(Step-((the function In)-(x- + _1[rohl), m)[Zy,+1) = > step_((the funct

In) - (x-+ -1 rohl),m —'1). The theorem is a consequence of (19).
(21) (w_seq(the function In)-(x_+ _1]rohl))(m—'1) = (the function ln)(%"?'

(1% 7~ m)). The theorem is a consequence of (15).

The functor f[W_STIRL yielding a sequence of real numbers is defined by

(Def. 20) for every natural number n, it(n) = 2(7(11%?' . (4.(ne+1) ~(n+1)).

Now we state the propositions:

(22) Let us consider a natural number n. Then (w_seq(the function In) -
(x4 _1Jrohl))(n) = (the function In)((W_STIRL)(n)). The theorem is
a consequence of (15).

(23) (i) lim W_STIRL = /2, and
(i) W_STIRL is convergent.

The theorem is a consequence of (17).

The functor [StirlSeq| yielding a sequence of real numbers is defined by
n!

(™ (nt3))-(e (=n))”

(Def. 21) for every natural number n, it(n) =

Now we state the proposition:
(24) lim StirlSeq = v/2 - 7. The theorem is a consequence of (23).
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