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Summary. This paper presents a formal definition of the Conway normal
form, a structured representation uniquely suited to characterising surreal num-
bers by expressing them as sums within a hierarchically ordered group. To this
end, we formalise the first sections of the chapter The Structure of the Gene-
ral Surreal Number in Conway’s book. In particular, we define omega maps and
prove the existence and uniqueness of the Conway name for surreal numbers.
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Introduction

Conway surreal numbers can be constructed according to two independent
principles: the game-theoretic approach ([5, 9]) and the tree-theoretic approach
([6, 7]). In this formalization we use our construction of the ≈ equivalence class
representative of a surreal number x, called uniq-surreal, denoted as UniqNox
([11]), to unify these two approaches in order to formalize the canonical repre-
sentation, called normal forms by Conway. The definition of the Conway Normal
Form allows an analysis of the structure of surreal numbers as an ordered vector
space over R. This framework provides a path for future research on surreal num-
bers, as it allows e.g. the reformulation of basic arithmetic operations in terms of
vector space operations, thus facilitating the application of vector space theory
to the analysis of surreal numbers.

The formalization follows [5, 8, 7], selected fragments have been described
in [13].
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In Section 1, we define the relation between two numbers, x and y, as com-
mensurate if and only if x < n ·y and y < m ·x, for some n,m ∈ N+ (see Def.1).
Then we prove that this relation is both an equivalence and a convex relation.
Conway defines this relation using only one natural number, which is equivalent
to our approach (see Th7). Additionally, we define and prove the fundamental
property of the infinitesimal less operator (see Def.2), as follows: x <∞ y if
x · n < y for all n ∈ N+.

Section 2 introduces the Conway ω-map ([5]) and demonstrates the funda-
mental property ω0 = 1 (see Th26), ω(x+y) ≈ ωx · ωy (see Th27) which are
typical for the standard power function. Note that it has an additional pro-
perties, namely that ωx <∞ ωy for x < y. We also examines the behaviour
of ω-map in the context of the commensurate and infinitesimal less relations,
as well as applying the standard absolute value to extend context for negative
surreal numbers.

In Section 3 we prove the existence of the unique characterization of non
zero surreal numbers x as pairs consisting of a commensurate leader y and a
non zero real number r for a given x 6≈ 0 such that |x−r ·ωy| <∞ |x|. We define
ωr(x) = r, ωy(x) = y (see Def.7, Def.8)

In the following section, we direct our attention to the convex subclass of
surreal numbers differing from s by infinitesimal less than ωy, which is referred
to as the β-term in Conway’s handbook, where β is defined in the context of this
work. We say that x is (s, y, r)−term if and only if |x−(s+r·ωy)| <∞ ωy (Def.12)
Note that our definition of the β-term is based on an explanation provided by
Ehrlich ([8], Theorem 13).

In Section 5, in accordance with Ehrlich’s approach, we formally introduce
the convex subclass

⋂
s,y, r, α as follows:

x is
⋂
s,y, r, α ⇐⇒ ∀β<α x is (s(β),y(β), r(β))− term,

where s, y are sequences of surreal numbers and r is real numbers, each of at
least α-length. Next proceed to assume that the length of s is at least α+ 1. A
triple (s,y, r) simplest on α if α = 0 and s(α) = 0 or α 6= 0, s(α) is

⋂
s,y, r, α

and has the smallest birth of all
⋂
s,y, r, α surreal numbers (see Def.15). Ad-

ditionally, we call a triple (s,y, r) simplest up to α if (s,y, r, β) simplest for all
β < α (see Def.16). This section is concluded with the proof of two properties
of the sequence s. Firstly, we demonstrate that the sequence s is unique up
to position α if it contains only uniq-surreal numbers and if (s,y, r) is in its
simplest up to α (Th77,Th80) Secondly, we provide an example of a sequen-
ce s of uniq-surreal numbers for which (s,y, r) is simplest up to α under the
assumption that y is a strictly decreasing sequence, and that r is a sequence
of non-zero real numbers (Th82). Using these properties, we define Conway’s
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generalistion of partial sums as follows.

Definition 1 (Def.18) Let α be an ordinal, y = {yβ}β<α be a strictly de-
creasing sequence of surreal numbers, r = {rβ}β<α be a sequence of non-zero
real. Consider s = {sβ}β¬α where the triple (s,y, r) is simplest up to α. For
each each β ¬ α we define unique expression

∑
γ<β ω

yγ · rγ to be sβ called βth
Conway’s partial sum.

In Section 6, we concentrate on the approximation of a given number x 6≈ 0
using commensurate leaders. Applying ω-maps, we get x1 := x−ωy0 · r0 which
is infinitely smaller in absolute terms than x where r0 := ωr(x), y0 := ωy(x).
Then, if x1 6≈ 0, it is possible to produce another r1, y1, x2 in a similar manner
where |x2| <∞ |x1| <∞ |x| and x = ωy0 · r0 + ωy1 · r1 + x2. We call the
constructed sequences (r,y) the α-name of x if the remainder is non-zero in each
iteration β for β < α where α is an ordinal. As we illustrated in Theorem Th101,
for any a strictly decreasing sequence of surreal numbers y = {yβ}β<α and a
sequence of non-zero real r = {rβ}β<α, (r,y) is the α-name of

∑
β<αω

yβ · rβ.
We constructed also an ordinal α and two α-length sequences (r,y), for a given
x such that

∑
β<αω

yβ · rβ ≈ x (see Th100). Finally, we prove that this pair of
sequences is unique (see Th102), known as the Conway Normal Form ([5]).

1. Commensurability in Archimedean Classes of Surreal Numbers

From now on A, B denote ordinal numbers, o denotes an object, x, y, z
denote surreal numbers, n denotes a natural number, and r, r1, r2 denote real
numbers.

Now we state the proposition:

(1) (uReal)(r) ∈ Dayω.

The functor No-omega yielding a No-ordinal unique surreal number is de-
fined by the term

(Def. 1) No-uOrdinal-op(ω).

Let x, y be surreal numbers. We say that x, y are commensurate if and
only if

(Def. 2) there exists a positive natural number n such that x < (uInt)(n) · y and
there exists a positive natural number n such that y < (uInt)(n) · x.

Observe that the predicate is symmetric.
Now we state the propositions:

(2) If x is positive, then x, x are commensurate.

(3) If x, y are commensurate, then x is positive.
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Let us consider surreal numbers x, y, z. Now we state the propositions:

(4) If x, y are commensurate and y, z are commensurate, then x, z are
commensurate.
Proof: There exists a positive natural number n such that x < (uInt)(n)·z
by [12, (70), (51), (69)], [? , (15)]. Consider n being a positive natural
number such that y < (uInt)(n) · x. Consider m being a positive natural
number such that z < (uInt)(m) · y. �

(5) If x ≈ y and x, z are commensurate, then y, z are commensurate.
Proof: There exists a positive natural number n such that y < (uInt)(n)·z
by [11, (4)]. Consider n being a positive natural number such that z <
(uInt)(n) · x. �

(6) If x, z are commensurate and x ¬ y ¬ z, then x, y are commensurate
and y, z are commensurate. The theorem is a consequence of (3), (5), and
(2).

Now we state the propositions:

(7) x, y are commensurate if and only if there exists a positive natural
number n such that x < (uInt)(n) · y and y < (uInt)(n) · x.
Proof: If x, y are commensurate, then there exists a positive natural
number n such that x < (uInt)(n) · y and y < (uInt)(n) · x by (3), [12,
(70)], [? , (9)], [11, (4)]. �

(8) If x is positive and x ≈ y, then x, y are commensurate.

Let x, y be surreal numbers. We say that x infinitely〈 y if and only if

(Def. 3) for every positive real number r, x · (uReal)(r) < y.

Now we state the propositions:

(9) If x infinitely〈 y, then x < y.

(10) Let us consider a real number r. Then (uReal)(r) infinitely〈 No-omega.
The theorem is a consequence of (1).

Let us consider surreal numbers x, y, z. Now we state the propositions:

(11) If x ¬ y infinitely〈 z, then x infinitely〈 z.
(12) If x infinitely〈 y ¬ z, then x infinitely〈 z.

Now we state the propositions:

(13) Let us consider a positive real number r, and surreal numbers x, y.
Suppose x infinitely〈 y. Then

(i) x · (uReal)(r) infinitely〈 y, and

(ii) x infinitely〈 y · (uReal)(r).

Proof: x · (uReal)(r) infinitely〈y by [? , (57)], [12, (69), (51)], [11, (4)]. �



Conway’s normal form in the Mizar system 29

(14) Let us consider surreal numbers x, y, z. Suppose xinfinitely〈yinfinitely〈z.
Then x infinitely〈 z.

(15) If x, y are commensurate and y infinitely〈 z, then x infinitely〈 z.
(16) If x, y are commensurate and z infinitely〈 x, then z infinitely〈 y.

(17) If x ≈ y and y infinitely〈 z, then x infinitely〈 z.
(18) If x infinitely〈 z and y infinitely〈 z, then x+ y infinitely〈 z. The theorem

is a consequence of (13).

(19) If x ≈ y and z infinitely〈 x, then z infinitely〈 y.

(20) If 0No ¬ x infinitely〈 y, then x · (uReal)(r) < y. The theorem is a conse-
quence of (9).

2. Conway’s ω-map

Let us consider A. The functor No-omega-op(A) yielding a many sorted
set indexed by DayA is defined by

(Def. 4) there exists a ⊆-monotone, function yielding transfinite sequence S such
that domS = succA and it = S(A) and for every B such that B ∈ succA
there exists a many sorted set S1 indexed by DayB such that S(B) = S1
and for every object x such that x ∈ DayB holds S1(x) = 〈〈{0No} ∪
{(
⋃

rng(S�B))(x3)∗(uReal)(r), where x3 is an element of Lx, r is an element
of R : x3 ∈ Lx and r is positive}, {(

⋃
rng(S�B))(x4) ∗ (uReal)(r), where

x4 is an element of Rx, r is an element of R : x4 ∈ Rx and r is positive}〉〉.
Now we state the proposition:

(21) Let us consider a ⊆-monotone, function yielding transfinite sequence S.
Suppose for every B such that B ∈ domS there exists a many sorted set
S1 indexed by DayB such that S(B) = S1 and for every object x such that
x ∈ DayB holds S1(x) = 〈〈{0No}∪{(

⋃
rng(S�B))(x3)∗ (uReal)(r), where

x3 is an element of Lx, r is an element of R : x3 ∈ Lx and r is positive},
{(
⋃

rng(S�B))(x4)∗(uReal)(r), where x4 is an element of Rx, r is an element
of R : x4 ∈ Rx and r is positive}〉〉. If A ∈ domS, then No-omega-op(A) =
S(A).
Proof: DefineD(ordinal number) = Day$1. DefineH(object,⊆-monotone , function
yielding transfinite sequence) = 〈〈{0No}∪{(

⋃
rng $2)(x3)∗(uReal)(r), where

x3 is an element of L$1 , r is an element of R : x3 ∈ L$1 and r is positive},
{(
⋃

rng $2)(x4)∗(uReal)(r), where x4 is an element of R$1 , r is an element
of R : x4 ∈ R$1 and r is positive}〉〉. Consider S2 being a ⊆-monotone,
function yielding transfinite sequence such that domS2 = succA and
S2(A) = No-omega-op(A) and for every ordinal number B such that
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B ∈ succA there exists a many sorted set S1 indexed by D(B) such
that S2(B) = S1 and for every object x such that x ∈ D(B) holds
S1(x) = H(x, S2�B). S1� succA = S2� succA from [12, Sch. 2]. �

Let us consider x. The functor No-omegâ (x) yielding a set is defined by
the term

(Def. 5) (No-omega-op(bornx))(x).

Let us observe that No-omegâ (x) is surreal and No-omegâ (x) is positive.
Now we state the propositions:

(22) o ∈ LNo-omegâ (x) if and only if o = 0No or there exists a surreal number
x3 and there exists a positive real number r such that x3 ∈ Lx and o =
(No-omegâ (x3)) · (uReal)(r).

(23) o ∈ RNo-omegâ (x) if and only if there exists a surreal number x4 and there
exists a positive real number r such that x4 ∈ Rx and o = (No-omegâ (x4)) · (uReal)(r).

(24) If x ¬ y, then No-omegâ (x) ¬ No-omegâ (y).

(25) If x < y, then No-omegâ (x) infinitely〈No-omegâ (y).

(26) No-omegâ (0No) = 1No. The theorem is a consequence of (22) and (23).

(27) (No-omegâ (x)) · (No-omegâ (y)) ≈ No-omegâ (x + y).
Proof: Define P[ordinal number] ≡ for every surreal numbers x, y such
that bornx⊕born y = $1 holds (No-omegâ (x)) · (No-omegâ (y)) ≈ No-omegâ (x + y).
For every ordinal number D such that for every ordinal number C such
that C ∈ D holds P[C] holds P[D] by [12, (50), (28)], (23), [? , (55), (48)].
For every ordinal number D, P[D] from [2, Sch. 2]. �

(28) (No-omegâ (x))−1 ≈ No-omegâ (−x). The theorem is a consequence of
(26) and (27).

(29) Let us consider surreal numbers x3, x. Suppose x3 ¬ x and x3, No-omegâ (y)
are commensurate and x, No-omegâ (y) are not commensurate. Then
No-omegâ (y) infinitely〈 x.

(30) Let us consider surreal numbers x, x4. Suppose 0No < x ¬ x4 and x4,
No-omegâ (y) are commensurate and x, No-omegâ (y) are not commen-
surate. Then x infinitely〈No-omegâ (y).

Let x be a surreal number. The functor |x| yielding a surreal number is
defined by the term

(Def. 6)

{
x, if 0No ¬ x,
−x, otherwise.

Now we state the propositions:

(31) 0No ¬ |x|.
(32) (i) |x| = x, or
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(ii) |x| = −x.

(33) x ≈ 0No if and only if |x| ≈ 0No.

(34) −|x| ¬ x ¬ |x|.
(35) −y ¬ x ¬ y if and only if |x| ¬ y.
Proof: If −y ¬ x ¬ y, then |x| ¬ y by [12, (10)]. 0No ¬ |x|. �

(36) If x 6≈ 0No, then |x| is positive.

(37) |x+ y| ¬ |x|+ |y|. The theorem is a consequence of (34) and (35).

(38) If x ≈ 0No, then |−x| ≈ |x|.
(39) If x 6≈ 0No, then |−x| = |x|.
(40) |−x| ≈ |x|.
(41) If |x|infinitely〈z and |y|infinitely〈z, then |x+y|infinitely〈z. The theorem

is a consequence of (13) and (37).

(42) If |x| infinitely〈 z, then |−x| infinitely〈 z. The theorem is a consequence
of (40).

(43) If |x|infinitely〈z and |y|infinitely〈z, then |x−y|infinitely〈z. The theorem
is a consequence of (42) and (41).

Now we state the propositions:

(44) If |y| infinitely〈 x, then x + y 6≈ 0No. The theorem is a consequence of
(9).

(45) If |y| infinitely〈 |x|, then x+ y 6≈ 0No. The theorem is a consequence of
(44), (40), and (17).

(46) If |y| infinitely〈 x, then x 6≈ 0No. The theorem is a consequence of (9)
and (31).

(47) If |y| infinitely〈 |x|, then x 6≈ 0No. The theorem is a consequence of (46).

Now we state the propositions:

(48) If x ≈ y, then |x| ≈ |y|.
(49) ||x| − |y|| ¬ |x − y|. The theorem is a consequence of (37), (48), (39),

(38), and (35).

(50) ||x|| = |x|.
(51) If x ¬ y ¬ z, then |y| ¬ |x|+ |z|. The theorem is a consequence of (31).

(52) −y < x < y if and only if |x| < y.
Proof: If −y < x < y, then |x| < y by [12, (10)]. 0No ¬ |x|. �

(53) If 0No ¬ x infinitely〈 y, then |x · (uReal)(r)| infinitely〈 y. The theorem is
a consequence of (20).
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3. Unique Characterization of Surreal Number

Let x be a surreal number. Assume x 6≈ 0No. The functor omega-y(x)
yielding an unique surreal number is defined by

(Def. 7) |x|, No-omegâ (it) are commensurate.

Now we state the propositions:

(54) Suppose x, No-omegâ (y) are commensurate. Then there exists a positive
real number s such that |x− (No-omegâ (y)) · (uReal)(s)| infinitely〈 x.
Proof: Set N = No-omegâ (y). Define L[object] ≡ $1 is a real number
and for every real number r such that r = $1 holds N · (uReal)(r) ¬ x.
Define R[object] ≡ $1 is a real number and for every real number r such
that r = $1 holds x < N · (uReal)(r). For every extended reals r, s such
that L[r] and R[s] holds r ¬ s by [11, (4)], [? , (51)], [12, (75)]. Consider
s being an extended real such that for every extended real r such that
L[r] holds r ¬ s and for every extended real r such that R[r] holds s ¬ r.
Consider n being a positive natural number such that x < (uInt)(n) · N
and N < (uInt)(n) · x. �

(55) If x is positive and |x− (No-omegâ (y)) · (uReal)(r)| infinitely〈 x, then r
is positive. The theorem is a consequence of (9).

(56) If x 6≈ 0No, then omega-y(x) = omega-y(−x). The theorem is a conse-
quence of (39).

Let x be a surreal number. Assume x 6≈ 0No. The functor omega-r(x)
yielding a non zero real number is defined by

(Def. 8) |x− (No-omegâ (omega-y(x))) · (uReal)(it)| infinitely〈 |x|.
Now we state the propositions:

(57) Let us consider a positive natural number n. Suppose |y|·(uReal)(n+1n ) <
|x|. Then |x|, |x+ y| are commensurate. The theorem is a consequence of
(31), (39), (38), (49), and (37).

(58) If |x| is positive, then x 6≈ 0No.

(59) If x · (uReal)(r1) < y · (uReal)(r2) and 0 < r, then x · (uReal)(r1 · r) <
y · (uReal)(r2 · r).

(60) If x · (uReal)(r1) ¬ y · (uReal)(r2) and 0 ¬ r, then x · (uReal)(r1 · r) ¬
y · (uReal)(r2 · r).

(61) Suppose x 6≈ 0No and y 6≈ 0No. Then omega-y(x) = omega-y(y) if and
only if |x|, |y| are commensurate. The theorem is a consequence of (4).

(62) Suppose x 6≈ 0No and x + y 6≈ 0No and omega-y(x) = omega-y(x + y)
and omega-r(x) = omega-r(x+ y). Then |y| infinitely〈 |x|. The theorem is
a consequence of (16), (4), (48), (37), (59), and (40).
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(63) Suppose |y| infinitely〈 |x|. Then

(i) x 6≈ 0No, and

(ii) x+ y 6≈ 0No, and

(iii) omega-y(x) = omega-y(x+ y), and

(iv) omega-r(x) = omega-r(x+ y).

Proof: |x|, |x+ y| are commensurate. Set N = No-omegâ (omega-y(x)).
|x + y + −N · (uReal)(omega-r(x))| infinitely〈 |x| by [12, (37)], (37), [12,
(67), (75)]. |x+ y −N · (uReal)(omega-r(x))| infinitely〈 |x+ y|. �

(64) If x 6≈ 0No and y ≈ 0No, then y infinitely〈 |x|. The theorem is a conse-
quence of (36).

(65) If (uReal)(r) ≈ 0No, then r = 0.

(66) If x is positive and r 6= 0, then |(uReal)(r) ·x|, x are commensurate. The
theorem is a consequence of (48), (39), (38), and (5).

The scheme Simplest deals with a unary predicate P and states that

(Sch. 1) There exists an unique surreal number s such that P[s] and for every
unique surreal number x such that P[x] and x 6= s holds born s ∈ bornx

provided

• there exists a surreal number x such that P[x] and

• for every surreal numbers x, y, z such that x ¬ y ¬ z and P[x] and P[z]
holds P[y].

Let f be a function. We say that f is surreal-valued if and only if

(Def. 9) rng f is surreal-membered.

Let s be a surreal number. Note that 〈s〉 is surreal-valued and there exists
a transfinite sequence which is surreal-valued.

Let f be a surreal-valued function. Let us note that rng f is surreal-membered.
A Surreal-Sequence is a surreal-valued transfinite sequence. LetX be a surreal-

membered set. Observe that every subset of X is surreal-membered.
Let f be a surreal-valued function and X be a set. One can check that f�X

is surreal-valued.
Let f , g be Surreal-Sequences. One can verify that f a g is surreal-valued.
Let f be a function. We say that f is uniq-surreal-valued if and only if

(Def. 10) rng f is unique surreal-membered.

Let s be an unique surreal number. One can check that 〈s〉 is uniq-surreal-
valued and there exists a transfinite sequence which is uniq-surreal-valued.

Let f be an uniq-surreal-valued function. Note that rng f is unique surreal-
membered.
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An uSurreal-Sequence is an uniq-surreal-valued transfinite sequence. Let
X be an unique surreal-membered set. Let us note that every subset of X is
unique surreal-membered.

Let f be an uniq-surreal-valued function and X be a set. One can verify that
f�X is uniq-surreal-valued.

Let f , g be uSurreal-Sequences. Let us observe that f a g is uniq-surreal-
valued and every set which is unique surreal-membered is also surreal-membered
and every function which is uniq-surreal-valued is also surreal-valued.

Let S be a Surreal-Sequence. We say that S is strictly decreasing if and only
if

(Def. 11) for every ordinal numbers a, b such that a ∈ b ∈ domS for every surreal
numbers s5, s6 such that s5 = S(a) and s6 = S(b) holds s6 < s5.

Let s be an unique surreal number. Let us note that 〈s〉 is strictly decreasing
and there exists an uSurreal-Sequence which is strictly decreasing.

Let s1, s2 be non-zero transfinite sequences. Let us note that s1 a s2 is non-
zero and there exists a transfinite sequence of elements of R which is non-zero.

4. α-term - An Essential Component of the Conway Normal Form

Let s be an object, y be a surreal number, r be a real number, and x be
an object. We say that x is (s,y,r)-term if and only if

(Def. 12) x+′ −′s 6≈ 0No and omega-y(x+′ −′s) ≈ y and omega-r(x+′ −′s) = r.

Let s, y be surreal numbers and x be a surreal number. One can check that
x is (s,y,r)-term if and only if the condition (Def. 13) is satisfied.

(Def. 13) x− s 6≈ 0No and omega-y(x− s) ≈ y and omega-r(x− s) = r.

Now we state the propositions:

(67) If r 6= 0, then (uReal)(r) · (No-omegâ (y)) 6≈ 0No. The theorem is a con-
sequence of (66) and (3).

(68) If r 6= 0, then omega-y((uReal)(r)·(No-omegâ (y))) = UniqueNo(y). The
theorem is a consequence of (66), (67), and (5).

(69) Let us consider a surreal number s. Suppose r 6= 0. Then s+(uReal)(r) ·
(No-omegâ (y)) is (s,y,r)-term. The theorem is a consequence of (67), (68),
(36), (48), (8), (61), and (64).

(70) Suppose x ≈ y and x 6≈ 0No. Then

(i) omega-y(x) = omega-y(y), and

(ii) omega-r(x) = omega-r(y).

The theorem is a consequence of (36), (48), (8), (61), (16), and (17).
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Let us consider a surreal number s. Now we state the propositions:

(71) Suppose r 6= 0. Then s+ (uReal)(r) · (No-omegâ (y)) + x is (s,y,r)-term
if and only if |x| infinitely〈No-omegâ (y).
Proof: Set N = No-omegâ (y). Set R = (uReal)(r). Set s10 = s+R·N+x.
Set s9 = s + R · N + −s. R · N 6≈ 0No. |s9| is positive. |s9|, |N · R| are
commensurate. |N ·R|,N are commensurate. |s9|,N are commensurate. s+
R·N is (s,y,r)-term. If s10 is (s,y,r)-term, then |x|infinitely〈N by [11, (4)],
(70), [11, (50)], (16). |x| infinitely〈 |s9|. s9 + x 6≈ 0No and omega-y(s9) =
omega-y(s9 + x) and omega-r(s9) = omega-r(s9 + x). �

(72) If r 6= 0 and x is (s,y,r)-term and x ≈ z, then z is (s,y,r)-term. The
theorem is a consequence of (70).

(73) Suppose r 6= 0. Then x is (s,y,r)-term if and only if |x− (s+ (uReal)(r) ·
(No-omegâ (y)))| infinitely〈No-omegâ (y). The theorem is a consequence
of (72) and (71).

Now we state the proposition:

(74) Let us consider surreal numbers s, p. Suppose r 6= 0. Let us consider
surreal numbers x, y, z. Suppose x is (s,p,r)-term and z is (s,p,r)-term
and x ¬ y ¬ z. Then y is (s,p,r)-term. The theorem is a consequence of
(73), (18), (11), and (51).

5. Conway’s Generalization of Partial Sums

Let r be a transfinite sequence of elements of R, y, s be transfinite se-
quences, α be an ordinal number, and x be a surreal number. We say that
x in meets terms s, y, r, α if and only if

(Def. 14) for every ordinal number β and for every surreal numbers s6, y4 such
that β ∈ α and s6 = s(β) and y4 = y(β) holds x is (s6,y4,(r(β)))-term.

We say that s, y, r simplest on position α if and only if

(Def. 15) for every surreal number s5 such that s5 = s(α) holds if 0 = α, then
s5 = 0No and if 0 6= α, then s5 in meets terms s, y, r, α and for every
unique surreal number x such that x in meets terms s, y, r, α and x 6= s5
holds born s5 ∈ bornx.

Let us consider a transfinite sequence r of elements of R, transfinite sequences
y, s1, s2, and an ordinal number α. Now we state the propositions:

(75) If s1�α = s2�α and x in meets terms s1, y, r, α, then x in meets terms
s2, y, r, α.

(76) Suppose s1(α) is an unique surreal number and s2(α) is an unique surreal
number and s1�α = s2�α and s1, y, r simplest on position α and s2, y, r
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simplest on position α. Then s1(α) = s2(α). The theorem is a consequence
of (75).

Let r be a transfinite sequence of elements of R, y, s be transfinite sequences,
and α be an ordinal number. We say that s, y, r simplest up to α if and only
if

(Def. 16) for every ordinal number β such that β ∈ α holds s, y, r simplest on
position β.

Now we state the propositions:

(77) Let us consider a transfinite sequence r of elements of R, a transfinite
sequence y, uSurreal-Sequences s1, s2, and an ordinal number α. Suppose
α ⊆ dom s1 and α ⊆ dom s2 and s1, y, r simplest up to α and s2, y, r
simplest up to α. Then s1�α = s2�α.
Proof: Define P[ordinal number] ≡ if $1 ∈ α, then s1($1) = s2($1). For
every ordinal number D such that for every ordinal number C such that
C ∈ D holds P[C] holds P[D] by [14, (62)], [4, (49), (2)], (76). For every
ordinal number D, P[D] from [2, Sch. 2]. For every object x such that
x ∈ α holds (s1�α)(x) = (s2�α)(x) by [4, (49)]. �

(78) Let us consider a transfinite sequence r of elements of R, transfinite
sequences y, s, and ordinal numbers α, β. Suppose β ⊆ α and s, y, r
simplest up to α. Then s, y, r simplest up to β.

Let us consider a transfinite sequence r of elements of R, transfinite sequences
y, s, and an ordinal number α. Now we state the propositions:

(79) x in meets terms s, y, r, α if and only if x in meets terms s� succα, y,
r, α.
Proof: If x in meets terms s, y, r, α, then x in meets terms s� succα, y,
r, α by [2, (8)], [4, (49)]. �

(80) s� succα, y, r simplest on position α if and only if s, y, r simplest on
position α. The theorem is a consequence of (79).

Now we state the propositions:

(81) Let us consider a non-zero transfinite sequence r of elements of R, trans-
finite sequences p, s, and an ordinal number α. Suppose α ⊆ dom r. Let
us consider surreal numbers x, y, z. Suppose x ¬ y ¬ z and x in meets
terms s, p, r, α and z in meets terms s, p, r, α. Then y in meets terms s,
p, r, α. The theorem is a consequence of (74).

(82) Let us consider a non-zero transfinite sequence r of elements of R, and
a strictly decreasing Surreal-Sequence y. Then there exists an uSurreal-
Sequence s such that

(i) dom s = succ(dom r ∩ dom y), and
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(ii) s, y, r simplest up to dom s.

Proof: Define P[ordinal number] ≡ if $1 ⊆ dom r ∩ dom y, then there
exists an uSurreal-Sequence s such that dom s = succ $1 and s, y, r sim-
plest up to dom s. For every ordinal number D such that for every ordinal
number C such that C ∈ D holds P[C] holds P[D] by [2, (8), (6), (28)],
[14, (62)]. For every ordinal number D, P[D] from [2, Sch. 2]. �

Let r be a non-zero transfinite sequence of elements of R and y be a strictly
decreasing Surreal-Sequence. The functor Partial-Sums(r, y) yielding an uSurreal-
Sequence is defined by

(Def. 17) dom it = succ(dom r ∩ dom y) and for every A such that A ∈ dom it
holds it, y, r simplest on position A.

The functor
∑y
κ=0 r(κ) yielding an unique surreal number is defined by the

term

(Def. 18) (Partial-Sums(r, y))(dom r ∩ dom y).

Let s be a strictly decreasing Surreal-Sequence and A be an ordinal number.
Note that s�A is strictly decreasing.

Let R be a non-zero binary relation and X be a set. Let us note that R�X
is non-zero.

Let us consider a transfinite sequence r of elements of R, transfinite sequences
y, s, and ordinal numbers A, B. Now we state the propositions:

(83) If A ⊆ B, then x in meets terms s, y, r, A iff x in meets terms s, y�B,
r�B, A.
Proof: If x in meets terms s, y, r, α, then x in meets terms s, y�B, r�B,
α by [4, (49)]. �

(84) If B ⊆ A, then s, y�A, r�A simplest on position B iff s, y, r simplest on
position B. The theorem is a consequence of (83).

Now we state the proposition:

(85) Let us consider a non-zero transfinite sequence r of elements of R,
a strictly decreasing Surreal-Sequence y, and an ordinal number A. Then
Partial-Sums(r, y)� succA = Partial-Sums(r�A, y�A).
Proof: succ(dom r ∩ dom y) ∩ succA = succ(dom(r�A) ∩ dom(y�A)) by
[2, (16), (22), (21)]. Partial-Sums(r, y)� succA, y�A, r�A simplest up to
dom(Partial-Sums(r, y)� succA) by [2, (21), (22)], [14, (74)], (84). �

6. Conway Names for Surreal Numbers

Let r be a non-zero transfinite sequence of elements of R, y be a strictly
decreasing Surreal-Sequence, α be an ordinal number, and x be a surreal number.
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We say that r, y, α name like x if and only if

(Def. 19) α ⊆ dom r = dom y and for every ordinal number β such that β ∈ α

for every surreal number P1 such that P1 = (Partial-Sums(r, y))(β) holds
x 6≈ P1 and r(β) = omega-r(x− P1) and y(β) = omega-y(x− P1).

Now we state the propositions:

(86) Let us consider a non-zero transfinite sequence r of elements of R, a stric-
tly decreasing Surreal-Sequence y, and ordinal numbers α, β. Suppose
α ⊆ β and r, y, β name like x. Then r, y, α name like x.

(87) Let us consider non-zero transfinite sequences r1, r2 of elements of R,
strictly decreasing Surreal-Sequences y1, y2, and an ordinal number A.
Suppose r1, y1, A name like x and r2, y2, A name like x. Then

(i) r1�A = r2�A, and

(ii) y1�A = y2�A.

Proof: Define P[ordinal number] ≡ if r1, y1, $1 name like x and r2, y2,
$1 name like x, then r1�$1 = r2�$1 and y1�$1 = y2�$1. For every ordinal
number D such that for every ordinal number C such that C ∈ D holds
P[C] holds P[D] by [14, (62)], [4, (49)], [2, (22), (6)]. For every ordinal
number D, P[D] from [2, Sch. 2]. �

(88) Let us consider a non-zero transfinite sequence r of elements of R, a stric-
tly decreasing Surreal-Sequence y, and an ordinal number A. Suppose r,
y, A name like x. Then x in meets terms Partial-Sums(r, y), y, r, A. The
theorem is a consequence of (16) and (73).

(89) Let us consider a non-zero transfinite sequence r of elements of R, and
a strictly decreasing Surreal-Sequence y. Then

∑y
κ=0 r(κ) in meets terms

Partial-Sums(r, y), y, r, dom r ∩ dom y.

(90) Let us consider a non-zero transfinite sequence r of elements of R, a trans-
finite sequence y, a Surreal-Sequence s, and ordinal numbers A, B. Sup-
pose B ∈ A ⊆ dom r ∩ dom y and A ⊆ dom s. Let us consider a surreal
number y4. Suppose y4 = y(B) and x in meets terms s, y, r, A and z in
meets terms s, y, r, A. Then |x−z| infinitely〈No-omegâ (y4). The theorem
is a consequence of (73), (43), (48), and (11).

(91) Let us consider a non-zero transfinite sequence r of elements of R, a stric-
tly decreasing Surreal-Sequence y, and an ordinal number α. Suppose r, y,
α name like x. Then r�α, y�α, α name like x. The theorem is a consequence
of (85).

(92) Let us consider a non-zero transfinite sequence r of elements of R,
and a strictly decreasing Surreal-Sequence y. Suppose z in meets terms
Partial-Sums(r, y), y, r, dom r∩dom y and z 6≈

∑y
κ=0 r(κ). Let us consider
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an ordinal number A, and a surreal number y3. Suppose A ∈ dom r∩dom y

and y3 = y(A). Then omega-y(
∑y
κ=0 r(κ)−z) < y3. The theorem is a con-

sequence of (89), (90), (9), and (15).

(93) Let us consider a non-zero transfinite sequence r of elements of R, a stric-
tly decreasing Surreal-Sequence y, and an ordinal number A. Suppose
A ⊆ dom r ∩ dom y. Then (Partial-Sums(r, y))(A) =

∑y�A
κ=0(r�A)(κ). The

theorem is a consequence of (85).

(94) Let us consider a non-zero transfinite sequence r of elements of R,
and a strictly decreasing Surreal-Sequence y. Suppose x in meets terms
Partial-Sums(r, y), y, r, dom r∩dom y and z in meets terms Partial-Sums(r, y),
y, r, dom r ∩ dom y and x 6≈ z. Let us consider an ordinal number A, and
a surreal number y3. Suppose A ∈ dom r ∩ dom y and y3 = y(A). Then
omega-y(x− z) < y3. The theorem is a consequence of (90), (9), and (15).

(95) Suppose for every non-zero transfinite sequence r of elements of R and
for every strictly decreasing uSurreal-Sequence y such that dom r = dom y

and r, y, dom r name like x holds
∑y
κ=0 r(κ) 6≈ x. Let us consider an ordinal

number α. Then there exists a non-zero transfinite sequence r of elements
of R and there exists a strictly decreasing uSurreal-Sequence y such that
dom r = succα = dom y and r, y, succα name like x.
Proof: Define P[ordinal number] ≡ there exists a non-zero transfinite
sequence r of elements of R and there exists a strictly decreasing uSurreal-
Sequence y such that dom r = succ $1 = dom y and r, y, succ $1 name like
x. For every ordinal number D such that for every ordinal number C such
that C ∈ D holds P[C] holds P[D] by [2, (6), (21)], [14, (62)], [2, (10)].
For every ordinal number D, P[D] from [2, Sch. 2]. �

Let s be a Surreal-Sequence. The functor born s yielding a sequence of ordinal
numbers is defined by

(Def. 20) dom it = dom s and for every ordinal number α such that α ∈ dom s for
every surreal number s5 such that s5 = s(α) holds it(α) = born s5.

Now we state the proposition:

(96) Let us consider a transfinite sequence r of elements of R, a Surreal-
Sequence y, an uSurreal-Sequence s, and an ordinal number A. Suppose
s, y, r simplest up to A and A ⊆ succ dom y. Then s�A is one-to-one.
Proof: For every ordinal numbers a, b such that a ∈ b ∈ dom(s�A) holds
(s�A)(a) 6= (s�A)(b) by [14, (57)], [2, (10)], [4, (47)], [2, (21), (22), (6)].
For every objects x1, x2 such that x1, x2 ∈ dom(s�A) and (s�A)(x1) =
(s�A)(x2) holds x1 = x2 by [2, (14)]. �

Let r be a non-zero transfinite sequence of elements of R and y be a strictly
decreasing Surreal-Sequence. One can verify that Partial-Sums(r, y) is one-to-
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one.
Now we state the proposition:

(97) Let us consider a transfinite sequence r of elements of R, a Surreal-
Sequence y, an uSurreal-Sequence s, and an ordinal number α. Suppose s,
y, r simplest up to α and s�α is one-to-one. Then born s�α is increasing.
Proof: For every ordinal numbers A, B such that A ∈ B ∈ dom(born s�α)
holds (born s�α)(A) ∈ (born s�α)(B) by [14, (57)], [2, (10)], [4, (49)], [10,
(37)]. �

Let r be a non-zero transfinite sequence of elements of R and y be a stric-
tly decreasing Surreal-Sequence. One can check that born Partial-Sums(r, y) is
increasing.

Now we state the propositions:

(98) Let us consider a non-zero transfinite sequence r of elements of R, a stric-
tly decreasing Surreal-Sequence y, an uSurreal-Sequence s, and an ordinal
number A. Suppose A ⊆ dom r and x in meets terms s, y, r, A and s,
y, r simplest up to succA. Then rng born (s� succA) ⊆ succ born≈x. The
theorem is a consequence of (81).

(99) Let us consider a non-zero transfinite sequence r of elements of R, and
a strictly decreasing Surreal-Sequence y. Then dom r∩dom y ⊆ born

∑y
κ=0 r(κ).

Proof: Set s = Partial-Sums(r, y).
∑y
κ=0 r(κ) in meets terms s, y, r,

dom r ∩ dom y and s, y, r simplest up to dom s. rng born (s� dom s) ⊆
succ born≈

∑y
κ=0 r(κ). succ(dom r ∩ dom y) ⊆ succ born

∑y
κ=0 r(κ) by [3,

(10)], [2, (12)]. �

Now we state the propositions:

(100) Conway Normal Form::
Let us consider a surreal number x. Then there exists a non-zero transfinite
sequence r of elements of R and there exists a strictly decreasing uSurreal-
Sequence y such that dom r = dom y ⊆ born≈x and

∑y
κ=0 r(κ) ≈ x.

Proof: There exists a non-zero transfinite sequence r of elements of R and
there exists a strictly decreasing uSurreal-Sequence y such that dom r =
dom y and r, y, dom r name like x and

∑y
κ=0 r(κ) ≈ x by (95), (88), (98),

[1, (11)]. Consider r being a non-zero transfinite sequence of elements of R,
y being a strictly decreasing uSurreal-Sequence such that dom r = dom y

and r, y, dom r name like x and
∑y
κ=0 r(κ) ≈ x. �

(101) Let us consider a non-zero transfinite sequence r of elements of R, and
a strictly decreasing uSurreal-Sequence y. Suppose dom r = dom y. Then
r, y, dom r name like

∑y
κ=0 r(κ).

Proof: Set s =
∑y
κ=0 r(κ). s 6≈ P1 by [12, (43), (39)], [11, (4)]. �

(102) Let us consider non-zero transfinite sequences r1, r2 of elements of R, and
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strictly decreasing uSurreal-Sequences y1, y2. Suppose dom r1 = dom y1
and dom r2 = dom y2 and

∑y1
κ=0 r1(κ) ≈

∑y2
κ=0 r2(κ). Then

(i) r1 = r2, and

(ii) y1 = y2.

The theorem is a consequence of (101), (87), and (85).

(103) Let us consider a non-zero transfinite sequence r of elements of R, a stric-
tly decreasing uSurreal-Sequence y, and an ordinal number A. Suppose
A ⊆ dom r = dom y. Let us consider surreal numbers x, z. If r, y, A name
like x and x ≈ z, then r, y, A name like z. The theorem is a consequence
of (70).

Let x be a surreal number. The functor name-ord(x) yielding an ordinal
number is defined by

(Def. 21) there exists a non-zero transfinite sequence r of elements of R and there
exists a strictly decreasing uSurreal-Sequence y such that it = dom r =
dom y and

∑y
κ=0 r(κ) ≈ x.

Now we state the proposition:

(104) Let us consider a non-zero transfinite sequence r of elements of R, a stric-
tly decreasing uSurreal-Sequence y, and a surreal number x. Suppose
dom r = dom y and

∑y
κ=0 r(κ) ≈ x. Then name-ord(x) = dom r. The

theorem is a consequence of (102).

Let x be a surreal number. The functor name-r(x) yielding a non-zero
transfinite sequence of elements of R is defined by

(Def. 22) there exists a strictly decreasing uSurreal-Sequence y such that dom y =
dom it and

∑y
κ=0 it(κ) ≈ x.

The functor name-y(x) yielding a strictly decreasing uSurreal-Sequence is
defined by

(Def. 23) dom(name-r(x)) = dom it and
∑it
κ=0 name-r(x)(κ) ≈ x.

Now we state the propositions:

(105) dom(name-r(x)) = name-ord(x) = dom(name-y(x)). The theorem is
a consequence of (104).

(106) name-r(x), name-y(x), name-ord(x) name like x. The theorem is a con-
sequence of (105), (101), and (103).
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