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Summary. The concept of surreal numbers, as postulated by John Con-
way, represents a complex and multifaceted structure that encompasses a multi-
tude of familiar number systems, including the real numbers, as integral compo-
nents. In this study, we undertake the construction of the real numbers, commen-
cing with the integers and dyadic rationals as preliminary steps. We proceed to
contrast the resulting set of real numbers derived from our construction with the
axiomatically defined set of real numbers based on Conway’s axiom. Our findings
reveal that both approaches culminate in the same set.
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Introduction

In his seminal book, John Conway introduces an axiomatic definition of real
numbers. Conway call a number x real number if −n < x < n for some integer
n and

x ≈ {x− 1, x− 1
2
, x− 1

3
, . . . |x+ 1, x+

1
2
, x+

1
3
, . . .}. (I.1)

This property is self-contained within the context of the surreal number system,
which is expressed using only the explicitly outlined conditions of the system
itself, and it does not rely on the standard real numbers used in mathematical
analysis. Note that all these real numbers appear in the Day ω which con-
tains other numbers like infinitesimals and ω and the days formed previously
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contain only dyadic rationals surreal numbers. Conway indicates these dyadic
numbers as exemplars of the reals, yet does not formally establish a connection
between the concepts of the reals or dyadic numbers and their counterparts in
mathematical analysis. The map that converts dyadic rationals into their surreal
counterparts, called as Dali function by Tøndering [? ], has been analyzed in [?
11, 6].

In our formalization, we introduce the Dali function in two steps. First, we
define the recursive integer function sZ, as follows: the base step is given as
sZ(0) = 0, while sZ(n+ 1) = {sZ(n) | }, sZ(−n− 1) = { | sZ(−n)} for all n > 0
(see Def.1). Then, sZ is used to define the base step of sD as follows: sD(d) = sZ(d)
for all d ∈ Z and {sD( j2p ) | sD( j+12p )} if d = 2j+1

2p+1 for some j ∈ Z, p ∈ N
(see Def.5). We prove that the values of the function sD have uniq-surreal,
i.e. sD(d) = UniqueNosD(d) for every dyadic rational d, or more formally, sD(d)
is equal to our construction of the ≈ equivalence class representative of sD(d).
This property is important for the next stage of our construction.

We subsequently employ the function sS to establish a homeomorphism be-
tween the real numbers and their Conway representations. The fundamental
premise of this construction is that the sequences of dyadic rational numbers
{ dr·2

n−1e
2n }n>0 and { br·2

n+1c
2n }n>0 represent successive approximations of a given

real number r. Moreover, these sequences are non-decreasing and non-increasing,
respectively, and the relation the inequality dr·2

n−1e
2n < r < br·2n+1c

2n is satisfied
for all values of n > 0. This allows us to associate any real number r with the
Conway number sR(r) (see Def.6, Def.7), which is equal to:

UniqueNo

{{
sD

(dr · 2n − 1e
2n

)
| n ∈ N

}
|
{

sD

(br · 2n + 1c
2n

)
| n ∈ N

}}
(I.2)

Note that we apply additionally UniqueNo to obtain sR(d) = sD(r) for each
dyadic number d.

We prove that that the function sR preserves the identity elements for both
addition (see Th47) and multiplication (see Th48). Furthermore, it is shown that
it respects the operations of addition (see Th55) and multiplication (see Th57).
We conduct also a comparison between the set of values of function sR, and
the set of real numbers that fulfils the Conway property. We prove that sR(r)
satisfies Conway’s property for all r ∈ R and that for each real number x, there
exists a real number r such that x ≈ sR(r).

1. Mappings between Integers and Surreal Integers

From now on A, B, O denote ordinal numbers, o denotes an object, x, y, z
denote surreal numbers, and n, m denote natural numbers.
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The functor uInt yielding a many sorted set indexed by Z is defined by

(Def. 1) it(0) = 0No and it(n+1) = 〈〈{it(n)}, ∅〉〉 and it(−(n+ 1)) = 〈〈∅, {it(−n)}〉〉.
Now we state the proposition:

(1) (uInt)(n), (uInt)(−n) ∈ Dayn.
Proof: Define P[natural number] ≡ (uInt)($1), (uInt)(−$1) ∈ Day$1. For
every n such that P[n] holds P[n + 1] by [2, (6)], [1, (38)], [7, (46)]. For
every n, P[n] from [1, Sch. 2]. �

Let i be an integer. Let us observe that (uInt)(i) is surreal.
Now we state the propositions:

(2) If x ∈ Dayn, then (uInt)(−n) ¬ x ¬ (uInt)(n).
Proof: Define P[natural number] ≡ for every x such that x ∈ Day$1
holds (uInt)(−$1) ¬ x ¬ (uInt)($1). P[0] by [7, (37)]. For every n such
that P[n] holds P[n+ 1] by [1, (38)], [8, (1)], [7, (35)], [2, (22)]. For every
n, P[n] from [1, Sch. 2]. �

(3) Let us consider integers i, j. If i < j, then (uInt)(i) < (uInt)(j).
Proof: For every natural number k such that k  1 holds (uInt)(n) <
(uInt)(n+k) by [8, (4)]. For every natural number k such that k  1 holds
(uInt)(−(n+ k)) < (uInt)(−n) by [8, (4)]. Consider I being a natural
number such that i = I or i = −I. Consider J being a natural number
such that j = J or j = −J . �

Let n be a positive natural number. Let us observe that (uInt)(n) is positive.
Now we state the propositions:

(4) (i) n = born (uInt)(n), and

(ii) n = born (uInt)(−n).
Proof: (uInt)(n) ∈ Dayn. For every O such that (uInt)(n) ∈ DayO holds
n ⊆ O by [2, (16)], (2), [1, (44)], (3). (uInt)(−n) ∈ Dayn. For every O

such that (uInt)(−n) ∈ DayO holds n ⊆ O by [2, (16)], [1, (44)], (2), (3).
�

(5) (i) born≈(uInt)(n) = n, and

(ii) born≈(uInt)(−n) = n.
Proof: born (uInt)(n) = n. For every surreal number y such that y ≈
(uInt)(n) holds born (uInt)(n) ⊆ born y by (4), [7, (35)], (2), [8, (4)].
born (uInt)(−n) = n. For every surreal number y such that y ≈ (uInt)(−n)
holds born (uInt)(−n) ⊆ born y by (4), [7, (35)], (2), [2, (16)]. �

(6) 0No ¬ (uInt)(n). The theorem is a consequence of (3).

(7) L(uInt)(−n) = ∅ = R(uInt)(n).
Proof: L(uInt)(−n) = ∅ by [1, (20)]. �
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Let i be an integer. Note that (uInt)(i) is unique surreal.
Let us consider integers i, j. Now we state the propositions:

(8) If (uInt)(i) = (uInt)(j), then i = j.

(9) i < j if and only if (uInt)(i) < (uInt)(j).

Now we state the propositions:

(10) Let us consider an integer i, and x. Then

(i) 〈〈{(uInt)(i− 1)}, {(uInt)(i+ 1)}〉〉 is a surreal number, and

(ii) if x = 〈〈{(uInt)(i− 1)}, {(uInt)(i+ 1)}〉〉, then x ≈ (uInt)(i).

Proof: Set S = (uInt)(i). (uInt)(i−1) < S. LS � {x} � RS by [13, (3)],
[1, (20)], [8, (21)], [7, (43)]. S < (uInt)(i+ 1). �

(11) (uInt)(1) = 1No.

(12) Let us consider an integer i. Then −(uInt)(i) = (uInt)(−i).
Proof: Define P[natural number] ≡ −(uInt)($1) = (uInt)(−$1). If P[n],
then P[n+1] by [9, (22), (7), (21)]. P[n] from [1, Sch. 2]. Consider o being
a natural number such that i = o or i = −o. �

(13) (uInt)(n) + (uInt)(m) = (uInt)(n+m).
Proof: Define P[natural number] ≡ (uInt)($1) + 1No = (uInt)($1 + 1).
(uInt)(0) = 0No and (uInt)(1) = 1No. For every n such that P[n] holds
P[n+ 1] by [9, (36)], (7), [9, (27), (28)]. For every n, P[n] from [1, Sch. 2].
Define Q[natural number] ≡ (uInt)(n) + (uInt)($1) = (uInt)(n + $1). For
every m such that Q[m] holds Q[m + 1] by (11), [9, (37)]. For every m,
Q[m] from [1, Sch. 2]. �

Let us consider integers i, j. Now we state the propositions:

(14) (uInt)(i) + (uInt)(j) ≈ (uInt)(i+ j).
Proof: Define P[natural number] ≡ for every n and m such that n+m =
$1 holds (uInt)(n) + (uInt)(−m) ≈ (uInt)(n−m). P[0]. For every natural
number k such that P[k] holds P[k + 1] by [1, (20)], [9, (27), (36)], [8,
(32)]. For every natural number k, P[k] from [1, Sch. 2]. Consider k being
a natural number such that i = k or i = −k. Consider n being a natural
number such that j = n or j = −n. �

(15) (uInt)(i) · (uInt)(j) ≈ (uInt)(i · j).
Proof: Define P[natural number] ≡ for every n and m such that n+m =
$1 holds (uInt)(n) · (uInt)(m) ≈ (uInt)(n ·m). For every natural number
k such that for every n such that n < k holds P[n] holds P[k] by [1, (20)],
[9, (53), (49)], [1, (13)]. For every natural number k, P[k] from [1, Sch. 4].
Consider k being a natural number such that i = k or i = −k. Consider n
being a natural number such that j = n or j = −n. �

Now we state the propositions:
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(16) If x = 〈〈{y}, ∅〉〉 and y < 0No, then x ≈ 0No.
(17) Suppose x = 〈〈{y}, ∅〉〉 and bornx is finite and 0No ¬ y. Then there exists

a natural number n such that

(i) x ≈ (uInt)(n+ 1), and

(ii) (uInt)(n) ¬ y < (uInt)(n+ 1), and

(iii) n ∈ bornx.

Proof: Reconsider a = bornx as a natural number. Define O[natural
number] ≡ Lx � {(uInt)($1)}. O[a]. Consider k being a natural number
such that O[k] and for every natural number n such that O[n] holds k ¬ n
from [1, Sch. 5]. k 6= 0 by [8, (21)]. Reconsider k1 = k − 1 as a natural
number. For every z such that Lx � {z} � Rx holds born (uInt)(k) ⊆
born z by (4), [2, (16)], [1, (44), (13), (39)]. (uInt)(k1) ¬ y by [8, (21)], [1,
(13)]. k1 ⊆ born y by [1, (20), (38)], [2, (16), (22)]. �

2. Dyadic Numbers

Let r be a rational number. We say that r is dyadic-like if and only if

(Def. 2) there exists a natural number n such that den r = 2n.

Now we state the proposition:

(18) Let us consider a rational number r. Then r is dyadic-like if and only
if there exists an integer i and there exists a natural number n such that
r = i

2n .
Proof: If r is dyadic-like, then there exists an integer i and there exists
a natural number n such that r = i

2n by [4, (15)]. Consider w being
a natural number such that i = (num r) ·w and 2n = (den r) ·w. Consider
t being an element of N such that w = 2t and t ¬ n. �

Let i be an integer and n be a natural number. Let us observe that i
2n is

dyadic-like and every integer is dyadic-like.
Let x be a dyadic-like rational number. Note that −x is dyadic-like.
Let y be a dyadic-like rational number. One can check that x+y is dyadic-like

and x+ y is dyadic-like and x · y is dyadic-like.
The functor DYADIC yielding a set is defined by

(Def. 3) o ∈ it iff o is a dyadic-like rational number.

Let us observe that DYADIC is rational-membered and non empty and every
element of DYADIC is dyadic-like.

A Dyadic is a dyadic-like rational number. From now on d, d1, d2 denote
Dyadics.
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Let n be a natural number. The functor DYADIC(n) yielding a subset of
DYADIC is defined by

(Def. 4) d ∈ it iff there exists an integer i such that d = i
2n .

In the sequel i, j denote integers and n, m, p denote natural numbers.
Now we state the propositions:

(19) If n ¬ m, then DYADIC(n) ⊆ DYADIC(m).

(20) d ∈ (DYADIC(n+1))\(DYADIC(n)) if and only if there exists an integer
i such that d = 2·i+1

2n+1 .
Proof: If d ∈ (DYADIC(n+ 1)) \ (DYADIC(n)), then there exists an in-
teger i such that d = 2·i+1

2n+1 by [12, (11)], [5, (6)], [12, (1)]. d /∈ DYADIC(n)
by [5, (6)]. �

(21) Z = DYADIC(0).

(22) rng uInt ⊆ DayN. The theorem is a consequence of (1).

(23) (i) d is an integer, or

(ii) there exists p and there exists i such that d = 2·i+1
2p+1 .

Proof: Consider i being an integer, n being a natural number such that
d = i

2n . Define M[natural number] ≡ d ∈ DYADIC($1 + 1). n 6= 0.
Consider m being a natural number such thatM[m] and for every natural
number n such that M[n] holds m ¬ n from [1, Sch. 5]. d /∈ DYADIC(m)
by (21), [1, (20), (13)]. There exists an integer i such that d = 2·i+1

2m+1 . �

3. Mappings between Dyadic Numbers and Surreal Dyadic Numbers

The functor uDyadic yielding a many sorted set indexed by DYADIC is
defined by

(Def. 5) it(i) = (uInt)(i) and it(2·j+12p+1 ) = 〈〈{it( j2p )}, {it( j+12p )}〉〉.
Let us consider d. Note that (uDyadic)(d) is surreal.
Now we state the propositions:

(24) d1 < d2 if and only if (uDyadic)(d1) < (uDyadic)(d2). The theorem is
a consequence of (18).

(25) (i) if 0No ¬ z and z ∈ Dayn and z 6≈ (uDyadic)(n), then there exist
natural numbers x, y, p such that z ≈ (uDyadic)(x+ y

2p ) and y < 2p

and x+ p < n, and

(ii) for every natural numbers x, y, p such that y < 2p and x + p < n

holds 0No ¬ (uDyadic)(x+ y
2p ) ∈ Dayn.

Proof: Define P[natural number] ≡ for every surreal number s such that
s ∈ Day$1 and 0No ¬ s holds s ≈ (uDyadic)($1) or there exists a Dyadic
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d and there exist natural numbers x, y, p such that s ≈ (uDyadic)(d) and
y < 2p and d = x+ y

2p and x+p < $1 and for every natural numbers x, y, p
such that y < 2p and x+ p < $1 holds 0No ¬ (uDyadic)(x+ y

2p ) ∈ Day$1.
P[0] by [7, (2)]. For every n such that P[n] holds P[n + 1] by [1, (13),
(39), (44)], [7, (35)]. For every n, P[n] from [1, Sch. 2]. If 0No ¬ z and
z ∈ Dayn and z 6≈ (uDyadic)(n), then there exist natural numbers x, y, p
such that z ≈ (uDyadic)(x+ y

2p ) and y < 2p and x+ p < n. �

(26) If 2 ·m+ 1 < 2p, then born (uDyadic)(n+ 2·m+1
2p ) = n+ p+ 1.

Proof: Set d = n+ 2·m+1
2p . (uDyadic)(d) 6≈ (uDyadic)(n+ p) by (24), [1,

(14)], [5, (4)], [1, (13)]. 0No ¬ (uDyadic)(d) ∈ Day(n+ p+ 1). For every O
such that (uDyadic)(d) ∈ DayO holds n+ p+ 1 ⊆ O by [2, (16)], [1, (44),
(13), (39)]. �

(27) (uDyadic)(−d) = −(uDyadic)(d).
Proof: Define P[natural number] ≡ for every d such that d ∈ DYADIC($1)
holds (uDyadic)(−d) = −(uDyadic)(d). P[0]. If P[n], then P[n+1] by (20),
[9, (7), (21)]. P[n] from [1, Sch. 2]. Consider i being an integer, n being
a natural number such that d = i

2n . �

(28) If 0 ¬ d and d is not an integer, then there exist natural numbers n, m,
p such that d = n+ 2·m+1

2p+1 and 2 ·m+ 1 < 2p+1.
Proof: Consider p, i such that d = 2·i+1

2p+1 . i  0 by [13, (7)]. �

(29) 0 ¬ d if and only if 0No ¬ (uDyadic)(d). The theorem is a consequence
of (24).

(30) (uDyadic)(d) ∈ Born≈(uDyadic)(d). The theorem is a consequence of
(28), (29), (26), (27), (24), and (25).

(31) Suppose bornx is finite and Lx ⊕ Rx ⊆ 1. Then there exists an integer
i such that x ≈ (uInt)(i). The theorem is a consequence of (16), (17), and
(12).

Let us consider natural numbers x1, x2, y1, y2, p1, p2. Now we state the
propositions:

(32) If x1 + y1
2p1 = x2 + y2

2p2 and y1 < 2p1 and y2 < 2p2 , then x1 = x2.

(33) If x1 + y1
2p1 < x2 + y2

2p2 and y1 < 2p1 and y2 < 2p2 , then x1 ¬ x2.
Now we state the propositions:

(34) Let us consider natural numbers x1, x2, p1, p2. If 2·x1+12p1 = x2
2p2 , then

p1 ¬ p2.
(35) If x ∈ Dayn, then there exists a Dyadic d such that x ≈ (uDyadic)(d)

and (uDyadic)(d) ∈ Dayn. The theorem is a consequence of (30), (25),
(28), (32), (34), (26), and (27).
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(36) There exists n such that (uDyadic)(d) ∈ Dayn. The theorem is a conse-
quence of (27).

Let us consider d. One can verify that (uDyadic)(d) is unique surreal.
Now we state the propositions:

(37) x is an unique surreal number and bornx is finite if and only if there exi-
sts a Dyadic d such that x = (uDyadic)(d). The theorem is a consequence
of (35) and (36).

(38) Let us consider an integer i, a natural number p, and a surreal number
x. Then

(i) 〈〈{(uDyadic)( i2p )}, {(uDyadic)( i+22p )}〉〉 is a surreal number, and

(ii) if x = 〈〈{(uDyadic)( i2p )}, {(uDyadic)( i+22p )}〉〉, then x ≈ (uDyadic)( i+12p ).

The theorem is a consequence of (24), (10), and (27).

(39) (uDyadic)(d1) + (uDyadic)(d2) ≈ (uDyadic)(d1 + d2).
Proof: Define P[natural number] ≡ for every natural numbers n1, n2
such that n1 + n2 ¬ $1 and n1 ¬ n2 for every d1 and d2 such that d1 ∈
DYADIC(n1) and d2 ∈ DYADIC(n2) holds (uDyadic)(d1)+(uDyadic)(d2) ≈
(uDyadic)(d1+d2). P[0]. If P[m], then P[m+1] by (21), [1, (20)], (20), [9,
(36)]. P[m] from [1, Sch. 2]. Consider i1 being an integer, n1 being a natural
number such that d1 = i1

2n1 . Consider i2 being an integer, n2 being a natu-
ral number such that d2 = i2

2n2 . d2 ∈ DYADIC(n2) ⊆ DYADIC(n1 + n2).
�

(40) (uDyadic)(d1) · (uDyadic)(d2) ≈ (uDyadic)(d1 · d2).
Proof: Define P[natural number] ≡ for every natural numbers n1, n2
such that n1 + n2 ¬ $1 and n1 ¬ n2 for every d1 and d2 such that d1 ∈
DYADIC(n1) and d2 ∈ DYADIC(n2) holds (uDyadic)(d1)·(uDyadic)(d2) ≈
(uDyadic)(d1 · d2). P[0]. If P[m], then P[m + 1] by (21), [1, (20), (13)],
(20). P[m] from [1, Sch. 2]. Consider i1 being an integer, n1 being a natural
number such that d1 = i1

2n1 . Consider i2 being an integer, n2 being a natu-
ral number such that d2 = i2

2n2 . d2 ∈ DYADIC(n2) ⊆ DYADIC(n1 + n2).
�

4. Mappings between Real Numbers and Surreal Real Numbers

In the sequel r, r1, r2 denote real numbers.
The functor sReal yielding a many sorted set indexed by R is defined by

(Def. 6) it(r) = 〈〈the set of all (uDyadic)( dr·2
n−1e
2n ), the set of all (uDyadic)( br·2

m+1c
2m )

〉〉.
Now we state the proposition:
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(41) dr·2n−1e
2n < r < br·2n+1c

2n .

Let us consider r. Note that (sReal)(r) is surreal.
The functor uReal yielding a many sorted set indexed by R is defined by

(Def. 7) it(r) = UniqueNo((sReal)(r)).

Let us consider r. Note that (uReal)(r) is surreal and (uReal)(r) is unique
surreal.

Now we state the propositions:

(42) x ∈ L(sReal)(r) if and only if there exists n such that x = (uDyadic)( dr·2
n−1e
2n ).

(43) x ∈ R(sReal)(r) if and only if there exists n such that x = (uDyadic)( br·2
n+1c
2n ).

(44) (uDyadic)( dr·2
n−1e
2n ) < (sReal)(r) < (uDyadic)( br·2

n+1c
2n ). The theorem is

a consequence of (42) and (43).

(45) Let us consider integers i1, i2, and natural numbers n1, n2. Suppose
i1
2n1 <

i2
2n2 . Then i1

2n1 <
i1·2n2 ·2+1
2n1+n2+1 ¬

i2·2n1 ·2−1
2n1+n2+1 <

i2
2n2 .

(46) (sReal)(d) ≈ (uDyadic)(d) = (uReal)(d).
Proof: Set R3 = (sReal)(d). Set D2 = (uDyadic)(d). Consider i being
an integer, k being a natural number such that d = i

2k . LR3 � {D2} �
RR3 . For every z such that LR3 � {z} � RR3 holds bornD2 ⊆ born z by
(37), [2, (16)], (35), (18). �

(47) (uReal)(0) = 0No. The theorem is a consequence of (46).

(48) (uReal)(1) = 1No. The theorem is a consequence of (46) and (11).

(49) born (sReal)(r) ⊆ ω.

(50) (sReal)(r1) < (sReal)(r2) if and only if r1 < r2.
Proof: Set R1 = (sReal)(r1). Set R2 = (sReal)(r2). If R1 < R2, then
r1 < r2 by [8, (3)], [10, (92)], [5, (6)], (42). Consider k being a natural
number such that 1

2k ¬ r2 − r1. Set K2 = 2k+1. (uDyadic)( bK2·r1+1cK2
) ¬

(uDyadic)( dr2·K2−1eK2
). R1 < (uDyadic)( bK2·r1+1cK2

). (uDyadic)( dr2·K2−1eK2
) ¬

R2. �

(51) (uReal)(r1) < (uReal)(r2) if and only if r1 < r2.
Proof: If (uReal)(r1) < (uReal)(r2), then r1 < r2 by [8, (4)], (50).
(uReal)(r1) < (sReal)(r2). �

Let r be a positive real number. One can check that (uReal)(r) is positive.
Now we state the propositions:

(52) born (uReal)(r) = ω if and only if r is not a Dyadic. The theorem is
a consequence of (37), (46), (49), (35), and (51).

(53) If r1 < r2, then there exists n such that br1·2
n+1c
2n < r2.

(54) If r1 < r2, then there exists n such that r1 <
dr2·2n−1e
2n .
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(55) (uReal)(r1) + (uReal)(r2) ≈ (uReal)(r1 + r2).

(56) −(uReal)(r) ≈ (uReal)(−r).
(57) (uReal)(r1) · (uReal)(r2) ≈ (uReal)(r1 · r2).
(58) If n > 0, then (uInt)(n)−1 ≈ (uReal)( 1n). The theorem is a consequence

of (9), (46), (57), and (48).

5. *Real Surreal Numbers

Let x be a surreal number. The functor real-qua(x) yielding a surreal num-
ber is defined by

(Def. 8) Lit = the set of all x−(uInt)(n)−1 where n is a positive natural number
and Rit = the set of all x + (uInt)(n)−1 where n is a positive natural
number.

We say that x is *real if and only if

(Def. 9) x ≈ real-qua(x) and there exists a natural number n such that (uInt)(−n) <
x < (uInt)(n).

Now we state the propositions:

(59) Let us consider a positive natural number n. Then x − (uInt)(n)−1 <
real-qua(x) < x+ (uInt)(n)−1.

(60) If x ≈ y, then real-qua(x) ≈ real-qua(y).

(61) If x ≈ y and x is *real, then y is *real.

Let r be a real number. One can check that (sReal)(r) is *real and (uReal)(r)
is *real and there exists an unique surreal number which is *real.

Now we state the proposition:

(62) x is *real if and only if there exists r such that x ≈ (uReal)(r).
Proof: If x is *real, then there exists r such that x ≈ (uReal)(r) by [8,
(4)], (51), (46), [8, (13)]. �

Let x be a *real surreal number. One can check that −x is *real.
Let y be a *real surreal number. Let us note that x+ y is *real and x · y is

*real.

6. Surreal Ordinals

Let x be a surreal number. We say that x is No-ordinal if and only if

(Def. 10) Rx = ∅.
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Let us observe that 0No is No-ordinal.
Let us consider n. One can check that (uInt)(n) is No-ordinal and there

exists an unique surreal number which is No-ordinal.
Let A be an ordinal number. The functor No-Ordinal-op(A) yielding a set

is defined by

(Def. 11) there exists a transfinite sequence S such that it = S(A) and domS =
succA and for every O such that succO ∈ succA holds S(succO) =
〈〈{S(O)}, ∅〉〉 and for every O such that O ∈ succA and O is limit ordinal
holds S(O) = 〈〈 rng(S�O), ∅〉〉.

Now we state the propositions:

(63) Let us consider a transfinite sequence S. Suppose domS = succA and
for every O such that succO ∈ succA holds S(succO) = 〈〈{S(O)}, ∅〉〉 and
for every O such that O ∈ succA and O is limit ordinal holds S(O) =
〈〈 rng(S�O), ∅〉〉. If O ∈ succA, then S(O) = No-Ordinal-op(O).
Proof: Consider S1 being a transfinite sequence such that No-Ordinal-op(O) =
S1(O) and domS1 = succO and for every B such that succB ∈ succO
holds S1(succB) = 〈〈{S1(B)}, ∅〉〉 and for every B such that B ∈ succO
and B is limit ordinal holds S1(B) = 〈〈 rng(S1�B), ∅〉〉. Define P[ordinal
number] ≡ if $1 ⊆ O, then S1($1) = S($1). For every ordinal number B
such that for every ordinal number C such that C ∈ B holds P[C] holds
P[B] by [2, (22), (12), (29)]. For every ordinal number B, P[B] from [2,
Sch. 2]. �

(64) No-Ordinal-op(0) = 0No.

(65) No-Ordinal-op(succA) = 〈〈{No-Ordinal-op(A)}, ∅〉〉. The theorem is a con-
sequence of (63).

(66) Suppose A is limit ordinal. Then there exists a set X such that

(i) No-Ordinal-op(A) = 〈〈X, ∅〉〉, and

(ii) for every o, o ∈ X iff there exists B such that B ∈ A and o =
No-Ordinal-op(B).

Proof: Set B = succA. Consider S being a transfinite sequence such
that No-Ordinal-op(A) = S(A) and domS = B and for every O such that
succO ∈ B holds S(succO) = 〈〈{S(O)}, ∅〉〉 and for every O such that
O ∈ B and O is limit ordinal holds S(O) = 〈〈 rng(S�O), ∅〉〉. If o ∈ X, then
there exists B such that B ∈ A and o = No-Ordinal-op(B) by (63), [2,
(10)], [3, (47)]. No-Ordinal-op(C) = S(C) = (S�A)(C). �

(67) No-Ordinal-op(A) ∈ DayA.
Proof: Define P[ordinal number] ≡ No-Ordinal-op($1) ∈ Day$1. For eve-
ry ordinal number D such that for every ordinal number C such that
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C ∈ D holds P[C] holds P[D] by (66), [7, (46)], [2, (29), (6)]. For every
ordinal number D, P[D] from [2, Sch. 2]. �

Let us consider A. One can check that No-Ordinal-op(A) is surreal and
No-Ordinal-op(A) is No-ordinal.

Now we state the propositions:

(68) No-Ordinal-op(A) < No-Ordinal-op(B) if and only if A ∈ B.
Proof: If No-Ordinal-op(A) < No-Ordinal-op(B), then A ∈ B by [2,
(16)], [8, (3)], [2, (11)]. �

(69) If x ∈ DayA, then x ¬ No-Ordinal-op(A).
Proof: Define P[ordinal number] ≡ for every x such that x ∈ Day$1 holds
x ¬ No-Ordinal-op($1). For every ordinal number D such that for every
ordinal number C such that C ∈ D holds P[C] holds P[D] by [8, (1)],
(68), [2, (5)], [8, (4)]. For every ordinal number D, P[D] from [2, Sch. 2].
�

(70) born No-Ordinal-op(A) = A.
Proof: No-Ordinal-op(A) ∈ DayA. For everyO such that No-Ordinal-op(A) ∈
DayO holds A ⊆ O by (68), [2, (16)], (69). �

(71) If x ∈ LNo-Ordinal-op(A), then there exists B such that B ∈ A and x =
No-Ordinal-op(B). The theorem is a consequence of (66) and (65).

(72) (uInt)(n) = No-Ordinal-op(n).
Proof: Define P[natural number] ≡ (uInt)($1) = No-Ordinal-op($1).
P[0]. If P[m], then P[m + 1] by [1, (38)], (65). P[m] from [1, Sch. 2].
�

Let O be a No-ordinal surreal number. One can verify that UniqueNo(O) is
No-ordinal.

Let A be an ordinal number. The functor No-uOrdinal-op(A) yielding a No-
ordinal unique surreal number is defined by the term

(Def. 12) UniqueNo(No-Ordinal-op(A)).

Now we state the propositions:

(73) (i) No-uOrdinal-op(A) ≈ No-Ordinal-op(A), and

(ii) born No-uOrdinal-op(A) = A.
Proof: born≈No-uOrdinal-op(A) = born≈No-Ordinal-op(A) ⊆ born No-Ordinal-op(A) =
A. A ⊆ born No-uOrdinal-op(A) by (68), [2, (16)], (69), [8, (4)]. �

(74) No-uOrdinal-op(A) ∈ DayA. The theorem is a consequence of (73).

(75) No-uOrdinal-op(A) < No-uOrdinal-op(B) if and only if A ∈ B.
Proof: No-uOrdinal-op(A) ≈ No-Ordinal-op(A) and No-uOrdinal-op(B) ≈
No-Ordinal-op(B). If No-uOrdinal-op(A) < No-uOrdinal-op(B), then A ∈
B by [8, (4)], (68). No-uOrdinal-op(A) < No-Ordinal-op(B). �
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(76) If x ∈ DayA, then x ¬ No-uOrdinal-op(A). The theorem is a consequ-
ence of (69) and (73).

(77) If x is No-ordinal, then there exists A such that x ≈ No-uOrdinal-op(A).
The theorem is a consequence of (73).

(78) (uInt)(n) = No-uOrdinal-op(n). The theorem is a consequence of (72)
and (73).

(79) No-uOrdinal-op(succA) = 〈〈{No-uOrdinal-op(A)}, ∅〉〉.
Proof: Set O1 = No-uOrdinal-op(A). Set x = 〈〈{O1}, ∅〉〉. bornO1 =
A. If o ∈ {O1} ∪ ∅, then there exists O such that O ∈ succA and
o ∈ DayO by [2, (6)]. No-Ordinal-op(succA) = 〈〈{No-Ordinal-op(A)},
∅〉〉. O1 ≈ No-Ordinal-op(A). For every surreal number y such that y ≈ x

holds succA ⊆ born y by (75), (73), [2, (16)], [8, (4)]. For every z such that
z ∈ Born≈x and Lz ∪Rz is unique surreal-membered and x 6= z holds Lx⊕
Rx ∈ Lz ⊕ Rz by [7, (43)], [8, (13), (21), (1)]. No-Ordinal-op(succA) ≈
No-uOrdinal-op(succA). �

(80) There exists a No-ordinal surreal number x such that

(i) bornx = A, and

(ii) No-uOrdinal-op(A) ≈ x, and

(iii) for every o, o ∈ Lx iff there exists B such that B ∈ A and o =
No-uOrdinal-op(B).

Proof: Define P[object] ≡ there exists B such that B ∈ A and $1 =
No-uOrdinal-op(B). Consider X being a set such that o ∈ X iff o ∈ DayA
and P[o]. If o ∈ X∪∅, then there exists O such that O ∈ A and o ∈ DayO.
Reconsider x = 〈〈X, ∅〉〉 as a surreal number. For every O such that x ∈
DayO holds A ⊆ O by (74), [7, (35)], [2, (16)], [8, (11)]. LNo-Ordinal-op(A) �
{x} by (71), (74), [7, (35)], [8, (11)]. Lx � {No-Ordinal-op(A)} by (75),
(73), [8, (4)]. No-uOrdinal-op(A) ≈ No-Ordinal-op(A) ≈ x. o ∈ DayB ⊆
DayA. �

Let α, β be No-ordinal surreal numbers. Observe that α + β is No-ordinal
and α · β is No-ordinal.
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Parity of dyadic rationals and surreal numbers. Far East Journal of Mathematical Sciences
(FJMS), (2):155–167, May 2024. doi:https://doi.org/10.17654/0972087124010.

[7] Karol Pąk. Conway numbers – formal introduction. Formalized Mathematics, 31(1):
193–203, 2023. doi:10.2478/forma-2023-0018.

[8] Karol Pąk. Integration of game theoretic and tree theoretic approaches to Conway num-
bers. Formalized Mathematics, 31(1):205–213, 2023. doi:10.2478/forma-2023-0019.

[9] Karol Pąk. The ring of Conway numbers in Mizar. Formalized Mathematics, 31(1):
215–228, 2023. doi:10.2478/forma-2023-0020.

[10] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125–
130, 1991.

[11] Matthew Roughan. Practically surreal: Surreal arithmetic in Julia. SoftwareX, 9:293–298,
2019. doi:https://doi.org/10.1016/j.softx.2019.03.005.

[12] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-
matics, 6(3):335–338, 1997.

[13] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.

Accepted April 10, 2025

http://fm.mizar.org/1990-1/pdf1-5/newton.pdf
http://dx.doi.org/https://doi.org/10.17654/0972087124010
http://dx.doi.org/10.2478/forma-2023-0018
http://dx.doi.org/10.2478/forma-2023-0019
http://dx.doi.org/10.2478/forma-2023-0020
http://fm.mizar.org/1991-2/pdf2-1/prepower.pdf
http://dx.doi.org/https://doi.org/10.1016/j.softx.2019.03.005
http://fm.mizar.org/1997-6/pdf6-3/abian.pdf
http://fm.mizar.org/1990-1/pdf1-3/int_1.pdf

	=0pt Surreal Dyadic and Real Numbers: A Formal Construction  By Karol Pak  

