e-ISSN: 1898-9934

Suszko's Non-Fregean Logics. Part I¹

Taneli Huuskonen Tampere, Finland

Summary. The basic properties of non-Fregean logics in general and of Sentential Calculus with Identity in particular, as introduced by Roman Suszko in [4] and [5].

MSC: 68V20

Keywords:

MML identifier: SUSZKO_1, version: 8.1.15 5.96.1499

From now on k, m, n denote elements of \mathbb{N} , i, j denote natural numbers, a, b, c denote objects, y, z denote sets, and p, q, r, s denote finite sequences.

The functor VAR yielding a finite sequence-membered set is defined by the term

(Def. 1) the set of all (0, k) where k is an element of \mathbb{N} .

Observe that VAR is non empty and antichain-like.

A variable is an element of VAR. The functors: true, false, 'not', &, and or yielding finite sequences are defined by terms

(Def. 2) $\langle 1 \rangle$,

(Def. 3) $\langle 2 \rangle$,

(Def. 4) $\langle 11 \rangle$,

(Def. 5) $\langle 21 \rangle$,

(Def. 6) $\langle 22 \rangle$,

respectively. The functors: SCI-unops and SCI-binops yielding non empty, finite sequence-membered sets are defined by terms

(Def. 7) $\{$ 'not' $\}$,

 $^{^1{\}rm This}$ work has been supported by the National Science Centre of Poland, grant number UMO-2017/25/B/HS1/00503.

(Def. 8) $\{\&, \text{ or, 'imp', 'eqv', '='}\},\$

respectively. Now we state the proposition:

- (1) (i) $a \in SCI$ -unops iff a = 'not', and
 - (ii) $a \in SCI$ -binops iff a = & or a = or or a = 'imp' or a = 'eqv' or a = '='.

Let F, G be non empty, finite sequence-membered sets. Observe that $F \cup G$ is non empty and finite sequence-membered.

The functor SCI-ops yielding a non empty, finite sequence-membered set is defined by the term

(Def. 9) SCI-unops $\cup SCI$ -binops.

Now we state the proposition:

- (2) (i) if p = true, then p(1) = 1, and
 - (ii) if p = false, then p(1) = 2, and
 - (iii) if p = 'not', then p(1) = 11, and
 - (iv) if p = &, then p(1) = 21, and
 - (v) if p = or, then p(1) = 22, and
 - (vi) if p = 'imp', then p(1) = 23, and
 - (vii) if p = 'eqv', then p(1) = 24, and
 - (viii) if p = '=', then p(1) = 25.

Observe that SCI-ops is non empty and antichain-like.

The functor SCI-symbols yielding a non empty, finite sequence-membered set is defined by the term

(Def. 10) $VAR \cup SCI$ -ops.

The functors: VAR, SCI-ops, SCI-unops, and SCI-binops yield non empty subsets of SCI-symbols. The functors: 'not', &, or, 'imp', and 'eqv' yield elements of SCI-symbols. Note that SCI-symbols is non trivial and antichain-like.

One can verify that the functor SCI-symbols yields a non trivial Polish language. The functor SCI-op-arity yielding a function from SCI-ops into $\mathbb N$ is defined by the term

(Def. 11) (SCI-binops \longmapsto 2)+·(SCI-unops \longmapsto 1).

The functor SCI-arity yielding a Polish arity-function of SCI-symbols is defined by the term

(Def. 12) SCI-op-arity $+\cdot$ (VAR \longmapsto 0).

Now we state the propositions:

(3) If $a \in VAR$, then (SCI-arity)(a) = 0.

- (4) (i) (SCI-arity)('not') = 1, and
 - (ii) for every a such that $a \in SCI$ -binops holds (SCI-arity)(a) = 2.
- (5) The Polish atoms (SCI-symbols, SCI-arity) = VAR. The theorem is a consequence of (4) and (3).

The functor SCI-formula-set yielding a full Polish language of SCI-symbols is defined by the term

(Def. 13) Polish-WFF-set(SCI-symbols, SCI-arity).

A SCI-formula is a Polish WFF of SCI-symbols and SCI-arity. Let us note that there exists a subset of SCI-formula-set which is non empty.

Let us consider n. The functor \mathbf{x}_n yielding a SCI-formula is defined by the term

(Def. 14) $\langle 0, n \rangle$.

In the sequel X denotes an extension of SCI-arity, L denotes a Polish-ext-set of X, and t, u, v, w denote formulae of L.

Let us consider X. Now we state the propositions:

- (6) SCI-symbols \subseteq dom X.
- (7) (i) 'not $' \in \text{dom } X$, and
 - (ii) X('not') = 1, and
 - (iii) for every a such that $a \in SCI$ -binops holds $a \in dom X$ and X(a) = 2. The theorem is a consequence of (6) and (4).

Let us consider X, L, and n. The functor $\mathbf{x}.(n,L)$ yielding a formula of L is defined by the term

(Def. 15) x_n .

Now we state the proposition:

(8) If $m \neq n$, then $x_m \neq x_n$.

Let us consider p. The functor $\neg p$ yielding a finite sequence is defined by the term

(Def. 16) 'not' p .

Let us consider q. The functors: $p \land q$, $p \lor q$, $p \Rightarrow q$, $p \Leftrightarrow q$, and p=q yielding finite sequences are defined by terms

- (Def. 17) & $(p \cap q)$,
- (Def. 18) or $(p \cap q)$,
- (Def. 19) $'imp' \cap (p \cap q)$,
- (Def. 20) 'eqv $' \cap (p \cap q)$,
- (Def. 21) $'=' \cap (p \cap q)$,

respectively. Let us consider X, L, and t. One can check that the functor $\neg t$ is defined by the term

(Def. 22) (Polish-unOp(X, L, 'not'))(t).

Let us consider u. The functors: $t \wedge u$, $t \vee u$, $t \Rightarrow u$, $t \Leftrightarrow u$, and t=u are defined by terms

- (Def. 23) (Polish-binOp(X, L, &))(t, u),
- (Def. 24) (Polish-binOp(X, L, or))(t, u),
- (Def. 25) (Polish-binOp(X, L, 'imp'))(t, u),
- (Def. 26) (Polish-binOp(X, L, 'eqv'))(t, u),
- (Def. 27) (Polish-binOp(X, L, '='))(t, u),

respectively. The functors: $\neg t$, $t \land u$, $t \lor u$, $t \Rightarrow u$, and $t \Leftrightarrow u$ yield formulae of L. The functor $t \Rightarrow u$ yielding a formula of L is defined by the term

(Def. 28) $t=(t \wedge u)$.

Let u be a SCI-formula. The functors: $t \Rightarrow u$ and t=u yield formulae of L. The functors: $u \Rightarrow t$ and u=t yield formulae of L. We say that t is atomic if and only if

(Def. 29) $t \in \text{the Polish atoms}(\text{SCI-symbols}, \text{SCI-arity}).$

We say that t is negative if and only if

(Def. 30) PolishExtHead(t) = 'not'.

We say that t is conjunctive if and only if

(Def. 31) PolishExtHead(t) = &.

We say that t is disjunctive if and only if

(Def. 32) PolishExtHead(t) = or.

We say that t is conditional if and only if

(Def. 33) PolishExtHead(t) = 'imp'.

We say that t is biconditional if and only if

(Def. 34) PolishExtHead(t) = 'eqv'.

We say that t is an equality if and only if

(Def. 35) PolishExtHead(t) = '='.

Let us consider t. Now we state the propositions:

- (9) t is atomic if and only if $t \in VAR$.
- (10) t is negative if and only if there exists u such that $t = \neg u$. PROOF: 'not' \in dom X and X('not') = 1. If t is negative, then there exists u such that $t = \neg u$ by [1, (9)]. \square
- (11) t is conjunctive if and only if there exists u and there exists v such that $t = u \wedge v$.

PROOF: & \in dom X and X(&) = 2. If t is conjunctive, then there exists u and there exists v such that $t = u \wedge v$ by [1, (11)]. \square

Let us consider X and L. The functors: $\frac{\text{SCI-prop-axioms}(L)}{\text{SCI-id-axioms}(L)}$ and $\frac{\text{SCI-id-axioms}(L)}{\text{SCI-id-axioms}(L)}$

- (Def. 36) for every $a, a \in \text{SCI-prop-axioms}(L)$ iff there exists t and there exists u and there exists v such that $a = t \Rightarrow u \Rightarrow t$ or $a = t \Rightarrow u \Rightarrow v \Rightarrow t \Rightarrow u \Rightarrow t \Rightarrow v$ or $a = \neg t \Rightarrow \neg u \Rightarrow u \Rightarrow t$ or $a = t \land u \Rightarrow \neg (t \Rightarrow \neg u)$ or $a = \neg (t \Rightarrow \neg u) \Rightarrow t \land u$ or $a = t \lor u \Rightarrow \neg t \Rightarrow u$ or $a = \neg t \Rightarrow u \Rightarrow t \lor u$ or $a = t \Leftrightarrow u \Rightarrow (t \Rightarrow u) \land (u \Rightarrow t)$ or $a = (t \Rightarrow u) \land (u \Rightarrow t) \Rightarrow t \Leftrightarrow u$,
- (Def. 37) for every $a, a \in \text{SCI-id-axioms}(L)$ iff there exists t and there exists u and there exists v and there exists w such that a = t = t or $a = t = u \Rightarrow (\neg t) = (\neg u)$ or $a = t = u \land v = w \Rightarrow (t \land v) = (u \land w)$ or $a = t = u \land v = w \Rightarrow (t \lor v) = (u \lor w)$ or $a = t = u \land v = w \Rightarrow (t \Leftrightarrow v) = (u \Leftrightarrow w)$ or $a = t = u \land v = w \Rightarrow (t \Leftrightarrow v) = (u \Leftrightarrow w)$ or $a = t = u \land v = w \Rightarrow (t \Leftrightarrow v) = (u \Leftrightarrow w)$ or $a = t = u \land v = w \Rightarrow (t \Leftrightarrow v) = (u \Leftrightarrow w)$

respectively. Let B be a subset of L. One can check that there exists a non empty subset of L which is B-extending.

The functor $\frac{\text{SCI-axioms}(L)}{\text{SCI-prop-axioms}(L)}$ yielding a (SCI-prop-axioms(L))-extending subset of L is defined by the term

(Def. 38) SCI-prop-axioms $(L) \cup SCI$ -id-axioms(L).

From now on R, R_1 , R_2 denote rules of L.

Let us consider X and L. The functor $\overline{\text{SCI-MP}(L)}$ yielding a rule of L is defined by the term

(Def. 39) the set of all $\langle \{t, t \Rightarrow u\}, u \rangle$ where t, u are formulae of L.

The functor $\overline{\text{SCI-rules}(L)}$ yielding a rule of L is defined by the term (Def. 40) SCI-MP(L).

A formula-sequence of L is a finite sequence of elements of L.

A formula-finset of L is a finite subset of L. In the sequel A, A_1 , A_2 denote non empty subsets of L, B, B_1 , B_2 denote subsets of L, P, P_1 , P_2 denote formula-sequences of L, and S, S_1 , S_2 denote formula-finsets of L.

Let us consider X, L, and t. Let us note that the functor $\{t\}$ yields a formulafinset of L. Let us consider B and a. We say that a is B-provable if and only if

(Def. 41) a is (B, (SCI-rules(L)))-provable.

Note that every object which is B-axiomatic is also B-provable.

Now we state the proposition:

(12) If t is B-provable and $t \Rightarrow u$ is B-provable, then u is B-provable.

Let us consider X, L, and a. We say that a is L-prop-axiomatic if and only if

(Def. 42) a is (SCI-prop-axioms(L))-axiomatic.

We say that a is L-id-axiomatic if and only if

(Def. 43) a is (SCI-id-axioms(L))-axiomatic.

We say that a is L-SCI-axiomatic if and only if

(Def. 44) a is (SCI-axioms(L))-axiomatic.

We say that a is L-SCI-provable if and only if

(Def. 45) a is (SCI-axioms(L))-provable.

Observe that every element of SCI-prop-axioms(L) is L-prop-axiomatic and every element of SCI-id-axioms(L) is L-id-axiomatic and every element of SCI-axioms(L) is L-SCI-axiomatic and every object which is L-SCI-axiomatic is also L-SCI-provable and every object which is L-prop-axiomatic is also L-SCI-axiomatic and every object which is L-id-axiomatic is also L-SCI-axiomatic.

Let us consider t. Note that t=t is L-id-axiomatic.

Let us consider u. Observe that $t \Rightarrow u \Rightarrow t$ is L-prop-axiomatic and $\neg t \Rightarrow \neg u \Rightarrow u \Rightarrow t$ is L-prop-axiomatic and $t \wedge u \Rightarrow \neg (t \Rightarrow \neg u)$ is L-prop-axiomatic and $\neg (t \Rightarrow \neg u) \Rightarrow t \wedge u$ is L-prop-axiomatic and $t \vee u \Rightarrow \neg t \Rightarrow u$ is L-prop-axiomatic and $\neg t \Rightarrow u \Rightarrow t \vee u$ is L-prop-axiomatic and $t \Leftrightarrow u \Rightarrow (t \Rightarrow u) \wedge (u \Rightarrow t)$ is L-prop-axiomatic and $t \Rightarrow u \Rightarrow (\neg t) = (\neg u)$ is L-id-axiomatic and $t \Rightarrow u \Rightarrow t \Rightarrow u$ is L-id-axiomatic.

Let us consider v. Note that $t \Rightarrow u \Rightarrow v \Rightarrow t \Rightarrow u \Rightarrow t \Rightarrow v$ is L-propaxiomatic.

Let us consider w. Let O be an element of SCI-binops. One can verify that $t=u \wedge v=w \Rightarrow (\operatorname{Polish-binOp}(X,L,O))(t,v)=(\operatorname{Polish-binOp}(X,L,O))(u,w)$ is L-id-axiomatic and there exists a formula of L which is L-prop-axiomatic and there exists a formula of L which is L-id-axiomatic.

In the sequel C denotes a (SCI-prop-axioms(L))-extending subset of L.

Let us consider X and L. One can check that every formula of L which is L-prop-axiomatic is also (SCI-prop-axioms(L))-provable.

Let us consider C. One can check that every formula of L which is non C-provable is also non (SCI-prop-axioms(L))-provable and there exists a formula of L which is C-provable.

Let us consider t. Let u be a C-provable formula of L. Note that $t \Rightarrow u$ is C-provable.

Now we state the propositions:

- (13) If $t \Rightarrow u$ is C-provable and $u \Rightarrow v$ is C-provable, then $t \Rightarrow v$ is C-provable. The theorem is a consequence of (12).
- (14) $t \Rightarrow t$ is C-provable. The theorem is a consequence of (12).

Let us consider X, L, and t. Let us note that $t \Rightarrow t$ is (SCI-prop-axioms(L))-provable.

Let us consider C. Let t be a C-provable formula of L. Let us consider u. Note that $t \Rightarrow u \Rightarrow u$ is C-provable.

Let us consider t. Let u be a C-provable formula of L. Let us consider v. One can verify that $t \Rightarrow u \Rightarrow v \Rightarrow t \Rightarrow v$ is C-provable.

Now we state the propositions:

- (15) If $t \Rightarrow t \Rightarrow u$ is C-provable, then $t \Rightarrow u$ is C-provable. The theorem is a consequence of (12).
- (16) If $t \Rightarrow u \Rightarrow v$ is C-provable, then $u \Rightarrow t \Rightarrow v$ is C-provable. The theorem is a consequence of (12) and (13).

Let us consider X, L, t, and u. Let us note that $t \Rightarrow t \Rightarrow u \Rightarrow t \Rightarrow u$ is (SCI-prop-axioms(L))-provable.

Let us consider X, L, C, and t. Now we state the propositions:

- (17) $\neg \neg t \Rightarrow t$ is C-provable. The theorem is a consequence of (12).
- (18) $t \Rightarrow \neg \neg t$ is C-provable. The theorem is a consequence of (17).

Let us consider X, L, and t. Note that $\neg \neg t \Rightarrow t$ is (SCI-prop-axioms(L))-provable and $t \Rightarrow \neg \neg t$ is (SCI-prop-axioms(L))-provable.

Let us consider u. One can check that $t \Rightarrow u \Rightarrow \neg u \Rightarrow \neg t$ is (SCI-prop-axioms(L))-provable.

Let us consider X, L, C, t, and u. Now we state the propositions:

- (19) If $\neg t \Rightarrow u$ is C-provable, then $\neg u \Rightarrow t$ is C-provable. The theorem is a consequence of (13).
- (20) If $t \Rightarrow \neg u$ is C-provable, then $u \Rightarrow \neg t$ is C-provable. The theorem is a consequence of (13).
- (21) $\neg t \Rightarrow \neg u$ is C-provable if and only if $u \Rightarrow t$ is C-provable. The theorem is a consequence of (13).

Let us consider X, L, C, and t. Let u be a C-provable formula of L. Note that $\neg u \Rightarrow t$ is C-provable and $t \Rightarrow t$ is L-SCI-provable and $t \Rightarrow \neg \tau$ is L-SCI-provable and $\neg \tau t \Rightarrow t$ is L-SCI-provable.

Let u be a L-SCI-provable formula of L. Note that $t \Rightarrow u$ is L-SCI-provable. Now we state the proposition:

(22) $\neg t \Rightarrow t \Rightarrow u \text{ is } C\text{-provable.}$

Let us consider X, L, t, and u. Observe that $\neg t \Rightarrow u$ is (SCI-prop-axioms(L))-provable and $t \Rightarrow \neg t \Rightarrow u$ is (SCI-prop-axioms(L))-provable.

Now we state the proposition:

(23) If $\neg t$ is C-provable, then $t \Rightarrow u$ is C-provable.

Let us consider X, L, t, and u. One can check that $t \Rightarrow t \Rightarrow u \Rightarrow u$ is (SCI-prop-axioms(L))-provable.

Now we state the proposition:

(24) $t \Rightarrow u \Rightarrow v$ is C-provable if and only if $t \Rightarrow \neg v \Rightarrow \neg u$ is C-provable. The theorem is a consequence of (12), (13), and (16).

Let us consider X, L, C, t, and u. Now we state the propositions:

- (25) (i) $t \wedge u \Rightarrow t$ is C-provable, and
 - (ii) $t \wedge u \Rightarrow u$ is C-provable.

The theorem is a consequence of (19) and (13).

(26) $t \Rightarrow u \Rightarrow t \land u$ is C-provable. The theorem is a consequence of (21), (13), (16), and (24).

Let us consider X, L, t, and u. Note that $t \wedge u \Rightarrow t$ is (SCI-prop-axioms(L))-provable and $t \wedge u \Rightarrow u$ is (SCI-prop-axioms(L))-provable and $t \Rightarrow u \Rightarrow t \wedge u$ is (SCI-prop-axioms(L))-provable.

Let us consider C. Let u be a C-provable formula of L. Observe that $t \Rightarrow t \land u$ is C-provable and $t \Rightarrow u \land t$ is C-provable.

Let t, u be C-provable formulae of L. One can check that $t \wedge u$ is C-provable. Now we state the propositions:

- (27) $t \wedge u \Rightarrow v$ is C-provable if and only if $t \Rightarrow u \Rightarrow v$ is C-provable. The theorem is a consequence of (12), (13), (16), and (15).
- (28) $t \wedge u$ is C-provable if and only if t is C-provable and u is C-provable. The theorem is a consequence of (12).
- (29) $t \Rightarrow u \land v$ is C-provable if and only if $t \Rightarrow u$ is C-provable and $t \Rightarrow v$ is C-provable. The theorem is a consequence of (13), (16), and (12).
- (30) (i) $t \Rightarrow t \lor u$ is C-provable, and
 - (ii) $u \Rightarrow t \vee u$ is C-provable.

The theorem is a consequence of (13).

Let us consider X, L, and t. Let us note that $t \vee \neg t$ is (SCI-prop-axioms(L))-provable.

Let us consider u. One can verify that $t \Rightarrow t \lor u$ is (SCI-prop-axioms(L))-provable and $u \Rightarrow t \lor u$ is (SCI-prop-axioms(L))-provable.

Let us consider C. Let t be a C-provable formula of L. Let us observe that $t \vee u$ is C-provable and $u \vee t$ is C-provable.

Now we state the propositions:

- (31) $\neg t \Rightarrow t \Rightarrow t$ is C-provable. The theorem is a consequence of (12) and (13).
- (32) $t \lor u \Rightarrow v$ is C-provable if and only if $t \Rightarrow v$ is C-provable and $u \Rightarrow v$ is C-provable. The theorem is a consequence of (13), (21), and (31).
- (33) Suppose $t \Rightarrow v$ is C-provable and $u \Rightarrow w$ is C-provable. Then
 - (i) $t \lor u \Rightarrow v \lor w$ is C-provable, and

(ii) $t \wedge u \Rightarrow v \wedge w$ is C-provable.

The theorem is a consequence of (13), (32), and (29).

(34) $t \Rightarrow u$ is C-provable if and only if u is $(C \cup \{t\})$ -provable. PROOF: Set $D = C \cup \{t\}$. If $t \Rightarrow u$ is C-provable, then u is D-provable by [2, (6)], (12). \square

From now on D denotes a (SCI-axioms(L))-extending subset of L.

Let us consider X, L, and D. One can check that every formula of L which is non D-provable is also non L-SCI-provable and there exists a formula of L which is D-provable.

Let us consider X, L, D, t, and u. Now we state the propositions:

- (35) If t=u is *D*-provable, then $t \Rightarrow u$ is *D*-provable. The theorem is a consequence of (12).
- (36) If t=u is D-provable, then $(\neg t)=(\neg u)$ is D-provable. The theorem is a consequence of (12).
- (37) $t=u \Rightarrow u=t$ is *D*-provable. The theorem is a consequence of (13), (16), and (12).
- (38) If t=u is D-provable, then u=t is D-provable. The theorem is a consequence of (37) and (12).

Now we state the propositions:

- (39) $t=u \land v=u \Rightarrow t=v$ is *D*-provable. The theorem is a consequence of (37), (13), (16), and (12).
- (40) If t is D-provable and $t \Rightarrow u$ is D-provable, then u is D-provable. The theorem is a consequence of (35), (12), and (28).
- (41) Suppose t=u is D-provable and v=w is D-provable. Then
 - (i) $(t \wedge v) = (u \wedge w)$ is *D*-provable, and
 - (ii) $t \wedge v \Rightarrow u \wedge w$ is *D*-provable, and
 - (iii) if $t \wedge v$ is D-provable, then $u \wedge w$ is D-provable, and
 - (iv) $(t \vee v) = (u \vee w)$ is *D*-provable, and
 - (v) $t \lor v \Rightarrow u \lor w$ is *D*-provable, and
 - (vi) if $t \vee v$ is *D*-provable, then $u \vee w$ is *D*-provable, and
 - (vii) $(t \Rightarrow v)=(u \Rightarrow w)$ is *D*-provable, and
 - (viii) $t \Rightarrow v \Rightarrow u \Rightarrow w$ is *D*-provable, and
 - (ix) if $t \Rightarrow v$ is *D*-provable, then $u \Rightarrow w$ is *D*-provable, and
 - (x) $(t \Leftrightarrow v) = (u \Leftrightarrow w)$ is *D*-provable, and
 - (xi) $t \Leftrightarrow v \Rightarrow u \Leftrightarrow w$ is *D*-provable, and

- (xii) if $t \Leftrightarrow v$ is D-provable, then $u \Leftrightarrow w$ is D-provable, and
- (xiii) (t=v)=(u=w) is D-provable, and
- (xiv) $t=v \Rightarrow u=w$ is D-provable, and
- (xv) if t=v is D-provable, then u=w is D-provable, and
- (xvi) $(t \Rightarrow v) = (u \Rightarrow w)$ is D-provable, and
- (xvii) $t \Rightarrow v \Rightarrow u \Rightarrow w$ is D-provable, and
- (xviii) if $t \Rightarrow v$ is D-provable, then $u \Rightarrow w$ is D-provable.

The theorem is a consequence of (12) and (35).

Let us consider X, L, D, t, u, and v. Now we state the propositions:

- (42) (i) $t=u \Rightarrow (t \wedge v)=(u \wedge v)$ is D-provable, and
 - (ii) $t=u \Rightarrow (v \land t)=(v \land u)$ is D-provable, and
 - (iii) $t=u \Rightarrow (t \lor v)=(u \lor v)$ is *D*-provable, and
 - (iv) $t=u \Rightarrow (v \lor t)=(v \lor u)$ is *D*-provable, and
 - (v) $t=u \Rightarrow (t \Rightarrow v)=(u \Rightarrow v)$ is D-provable, and
 - (vi) $t=u \Rightarrow (v \Rightarrow t)=(v \Rightarrow u)$ is D-provable, and
 - (vii) $t=u \Rightarrow (t \Leftrightarrow v)=(u \Leftrightarrow v)$ is D-provable, and
 - (viii) $t=u \Rightarrow (v \Leftrightarrow t)=(v \Leftrightarrow u)$ is D-provable, and
 - (ix) $t=u \Rightarrow (t=v)=(u=v)$ is D-provable, and
 - (x) $t=u \Rightarrow (v=t)=(v=u)$ is D-provable, and
 - (xi) $t=u \Rightarrow (t \Rightarrow v)=(u \Rightarrow v)$ is D-provable, and
 - (xii) $t=u \Rightarrow (v \Rightarrow t)=(v \Rightarrow u)$ is D-provable.

The theorem is a consequence of (13) and (29).

- (43) Suppose t=u is D-provable. Then
 - (i) t is D-provable iff u is D-provable, and
 - (ii) $(t \wedge v) = (u \wedge v)$ is D-provable, and
 - (iii) $t \wedge v \Rightarrow u \wedge v$ is D-provable, and
 - (iv) if $t \wedge v$ is D-provable, then $u \wedge v$ is D-provable, and
 - (v) $(v \wedge t) = (v \wedge u)$ is *D*-provable, and
 - (vi) $v \wedge t \Rightarrow v \wedge u$ is D-provable, and
 - (vii) if $v \wedge t$ is D-provable, then $v \wedge u$ is D-provable, and
 - (viii) $(t \vee v) = (u \vee v)$ is *D*-provable, and
 - (ix) $t \lor v \Rightarrow u \lor v$ is *D*-provable, and

- (x) if $t \vee v$ is D-provable, then $u \vee v$ is D-provable, and
- (xi) $(v \lor t) = (v \lor u)$ is *D*-provable, and
- (xii) $v \lor t \Rightarrow v \lor u$ is *D*-provable, and
- (xiii) if $v \vee t$ is D-provable, then $v \vee u$ is D-provable, and
- (xiv) $(t \Rightarrow v) = (u \Rightarrow v)$ is *D*-provable, and
- (xv) $t \Rightarrow v \Rightarrow u \Rightarrow v$ is *D*-provable, and
- (xvi) if $t \Rightarrow v$ is D-provable, then $u \Rightarrow v$ is D-provable, and
- (xvii) $(v \Rightarrow t)=(v \Rightarrow u)$ is D-provable, and
- (xviii) $v \Rightarrow t \Rightarrow v \Rightarrow u$ is *D*-provable, and
 - (xix) if $v \Rightarrow t$ is D-provable, then $v \Rightarrow u$ is D-provable, and
 - (xx) $(t \Leftrightarrow v)=(u \Leftrightarrow v)$ is *D*-provable, and
 - (xxi) $t \Leftrightarrow v \Rightarrow u \Leftrightarrow v$ is *D*-provable, and
- (xxii) if $t \Leftrightarrow v$ is D-provable, then $u \Leftrightarrow v$ is D-provable, and
- (xxiii) $(v \Leftrightarrow t)=(v \Leftrightarrow u)$ is *D*-provable, and
- (xxiv) $v \Leftrightarrow t \Rightarrow v \Leftrightarrow u$ is *D*-provable, and
- (xxv) if $v \Leftrightarrow t$ is D-provable, then $v \Leftrightarrow u$ is D-provable, and
- (xxvi) (t=v)=(u=v) is *D*-provable, and
- (xxvii) $t=v \Rightarrow u=v$ is *D*-provable, and
- (xxviii) if t=v is D-provable, then u=v is D-provable, and
 - (xxix) (v=t)=(v=u) is *D*-provable, and
 - (xxx) $v=t \Rightarrow v=u$ is *D*-provable, and
 - (xxxi) if v=t is D-provable, then v=u is D-provable, and
- (xxxii) $(t \Rightarrow v)=(u \Rightarrow v)$ is *D*-provable, and
- (xxxiii) $t \Rightarrow v \Rightarrow u \Rightarrow v$ is *D*-provable, and
- (xxxiv) if $t \Rightarrow v$ is *D*-provable, then $u \Rightarrow v$ is *D*-provable, and
- (xxxv) $(v \Rightarrow t)=(v \Rightarrow u)$ is *D*-provable, and
- (xxxvi) $v \Rightarrow t \Rightarrow v \Rightarrow u$ is *D*-provable, and
- (xxxvii) if $v \Rightarrow t$ is *D*-provable, then $v \Rightarrow u$ is *D*-provable.

The theorem is a consequence of (38), (35), (12), and (42). Let us consider X and L.

A congruence of L is an equivalence relation of L defined by

(Def. 46) for every t, u, v, and w such that $\langle t, u \rangle$, $\langle v, w \rangle \in it$ holds $\langle \neg t, \neg u \rangle$, $\langle t \wedge v, u \wedge w \rangle$, $\langle t \vee v, u \vee w \rangle$, $\langle t \Rightarrow v, u \Rightarrow w \rangle$, $\langle t \Leftrightarrow v, u \Leftrightarrow w \rangle$, $\langle t = v, u = w \rangle \in it$.

In the sequel E denotes a congruence of L.

Let us consider X and L. Let us observe that there exists a family of subsets of L which is non empty.

Let us consider E.

A \square -equivalence class of E is an element of Classes E. Let us consider t. The functor E-class t yielding a \square -equivalence class of E is defined by the term (Def. 47) $[t]_E$.

Now we state the proposition:

(44) $\langle t, u \rangle \in E$ if and only if E-class t = E-class u.

PROOF: If $\langle t, u \rangle \in E$, then E-class t = E-class u by [3, (18), (23)]. \square

From now on d, e denote \square -equivalence classes of E.

Now we state the proposition:

(45) There exists t such that d = E-class t.

Let us consider X, L, E, and d. The functor $\neg d$ yielding a \square -equivalence class of E is defined by

(Def. 48) there exists t such that d = E-class t and it = E-class $\neg t$.

Let us consider e. The functors: $d \wedge e$, $d \vee e$, $d \Rightarrow e$, and $d \Leftrightarrow e$ yielding \square -equivalence classes of E are defined by conditions

- (Def. 49) there exists t and there exists u such that d = E-class t and e = E-class u and $d \wedge e = E$ -class $t \wedge u$,
- (Def. 50) there exists t and there exists u such that d = E-class t and e = E-class u and $d \lor e = E$ -class $(t \lor u)$,
- (Def. 51) there exists t and there exists u such that d = E-class t and e = E-class u and $d \Rightarrow e = E$ -class $(t \Rightarrow u)$,
- (Def. 52) there exists t and there exists u such that d = E-class t and e = E-class u and $d \Leftrightarrow e = E$ -class $(t \Leftrightarrow u)$,

respectively. Let us consider D. The functor EqRel(D) yielding a congruence of L is defined by

(Def. 53) for every t and u, $\langle t, u \rangle \in it$ iff t=u is D-provable.

A \square -equivalence class of D is a \square -equivalence class of EqRel(D). Let us consider t. The functor D-class t yielding a \square -equivalence class of D is defined by the term

(Def. 54) EqRel(D)-class t.

Now we state the proposition:

(46) t=u is D-provable if and only if D-class t=D-class u. The theorem is a consequence of (44).

In the sequel x, y, z denote \square -equivalence classes of D.

Now we state the proposition:

(47) There exists t such that x = D-class t. The theorem is a consequence of (45).

Let us consider X, L, D, and x. We say that x is D-provable if and only if (Def. 55)—there exists t such that x = D-class t and t is D-provable.

Now we state the proposition:

(48) $y = \neg x$ if and only if there exists t such that x = D-class t and y = D-class $\neg t$.

Let us consider X, L, and D. Let t be a D-provable formula of L. Note that D-class t is D-provable and there exists a \square -equivalence class of D which is D-provable.

Now we state the proposition:

(49) If D-class t is D-provable, then t is D-provable. The theorem is a consequence of (46), (35), and (12).

Let us consider X, L, and D. Let x be a D-provable \square -equivalence class of D. Let us observe that every element of x is D-provable.

Let us consider x and y. Now we state the propositions:

- (50) $x \wedge y$ is *D*-provable if and only if x is *D*-provable and y is *D*-provable. The theorem is a consequence of (47), (49), and (28).
- (51) x=y is *D*-provable if and only if x=y. The theorem is a consequence of (47), (46), and (49).

Now we state the propositions:

- (52) (i) D-class $\neg t = \neg (D$ -class t), and
 - (ii) D-class $t \wedge u = (D$ -class $t) \wedge (D$ -class u), and
 - (iii) D-class $(t \lor u) = (D$ -class $t) \lor (D$ -classu), and
 - (iv) D-class $(t \Rightarrow u) = D$ -class $t \Rightarrow D$ -class u, and
 - (v) D-class $(t \Leftrightarrow u) = D$ -class $t \Leftrightarrow D$ -class u, and
 - (vi) D-class t=u=(D-class t)=(D-class u).
- (53) If x is D-provable, then $x \vee y$ is D-provable and $y \vee x$ is D-provable. The theorem is a consequence of (47) and (49).

Let us consider X, L, D, t, and u. Now we state the propositions:

(54) $t \Leftrightarrow u$ is *D*-provable if and only if $t \Rightarrow u$ is *D*-provable and $u \Rightarrow t$ is *D*-provable. The theorem is a consequence of (12) and (28).

(55) If $t \Leftrightarrow u$ is *D*-provable, then $u \Leftrightarrow t$ is *D*-provable. The theorem is a consequence of (54).

References

- [1] Taneli Huuskonen. Extensions of languages in Polish notation. Formalized Mathematics, 33(1):57–64, 2025. doi:10.2478/forma-2025-0005.
- [2] Taneli Huuskonen. Fundamentals of finitary proofs. Formalized Mathematics, 32(1):213–222, 2024. doi:10.2478/forma-2024-0018.
- [3] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [4] Roman Suszko. Non-Fregean logic and theories. Analele Universitatii Bucuresti. Acta Logica, 9:105–125, 1968.
- [5] Roman Suszko. Semantics for the sentential calculus with identity. *Studia Logica*, 28:77–81, 1971.

Received December 2, 2025