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Summary. In this article, we formalized the proof of the so-called Wallis
formula using the Mizar formalism [3].

The purpose of this formalization is to complete the proof of Stirling’s formula
using elementary techniques of calculus. This formalization includes formal proof
of the Wallis integral as well. Throughout the formalization, we used follow the
lines of [9, [{].
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INTRODUCTION

The actual formalization consists of four sections, and we outline each section
below:

In Section 1, we introduced two functions, even_seq(n) and odd_seq(n).
These respectively represent sequences of even and odd natural numbers of
length n, and their products express double factorials. We prepared the proper-
ties of double factorials as theorems to be used in later proofs.

In Section 2, in order to formalize the fact that any positive integer power of
a continuous function f is continuous, we introduced the transformation @ that
treats f as an element of an R-algebra. More precisely, let A be an arbitrary set,
and let RAlgebra(A) denote the set of all real-valued functions on A forming

a R-algebra. When we consider a function f from A to R as an element of
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RAlgebra(A), we write @f. Additionally, when ¢ is an element of RAlgebra(A),
we define the inverse transformation, which regards it as a function from A to
R, using the same symbol @g.

In Section 3, we apply the result from Section 2 to the trigonometric function
sinz and obtain the following recurrence relation from the integration by parts
of sin™ x over 0 to §:

™

-1 z
I(n):n I(n—2), where I(n):/2sin”xdaz.

n 0

Using this recurrence relation, we obtain the result of the Wallis integral:

(2m)!

/ sin" zdx =
0 2m - 7 9
Cemn 2 "rTEm

In Section 4, we use the results from the previous section to derive the Wallis
product formula. Here, for any 0 < 0 < 7, sin?"~ 19 > sin?" 0 > sin?"*t19 > 0
holds, it follows that

I(2n—-1) I(2n)
I@n+ 1)~ I2n+1)

From the recurrence relation and

st (s r) (- 3)

> 1.

I2n+1)

which leads to the inequality

v ()

;)71
—— |7 .
2

We denote this middle term as Wallis_Seq.n in the actual code and derive the
limit formula by computing its limit value.

1. PRELIMINARIES

Now we state the propositions:
(1) Let us consider a natural number n, and a real number z. If 0 <z < 7,
then 0 < (the function sin)(z) < 1.
(2) Let us consider natural numbers n, m, and a real number z. If n < m
and 0 < x < 1, then 2™ < z".
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(3) Let us consider a non zero natural number n, and a real number z.
Suppose 0 < x < . Then

(i) (the function sin)(x)2'" < (the function sin)(x)Q'”*/l

(ii) (the function sin)(z)*" < (the function sin)(x)

, and
2n

The theorem is a consequence of (1) and (2).

2. SOME RESULTS ON DOUBLE FACTORIAL

Let m be a natural number. The functor yielding a finite sequ-
ence of elements of Z is defined by

(Def. 1) lenit = m and for every natural number ¢ such that ¢ € dom it holds
it(i) =2-1.

Let m be a non zero natural number. The functor yielding a finite
sequence of elements of Z is defined by the term

(Def. 2) even-seqm + (dom(even-seqm) — —1).
Now we state the propositions:
(4) Let us consider a non zero natural number n. Then
(i) dom(even-seqn) = Segn, and
(ii) dom(odd-seqn) = Segn, and
(iii) lenodd-seqn = n, and
(iv) leneven-seqn = n.
(5) Let us consider a non zero natural number n, and a natural number 3.
Suppose i € dom(odd-seqn). Then (odd-seqn)(i) = 2-i — 1. The theorem
is a consequence of (4).

Let n be a non zero natural number. Note that even-seqn is positive yielding
and even-seqn is non empty and odd-seqn is positive yielding and odd-seqn is
non empty and even-seqn is increasing and odd-seqn is increasing.

Let us consider a non zero natural number n. Now we state the propositions:

(6) even-seq(n+ 1) = even-seqn " (2 (n +1)).
PROOF: Set p = even-seq(n + 1). Set ¢ = even-seqn. Set x = (2- (n+ 1)).
dom g = Segn. For every natural number k£ such that 1 < k < lenp holds
p(k) = (¢~ x)(k) by [, (13)], [2, (4)]. O

(7) Tleven-seq(n+1)=2-(n+1)- ([]even-seqn). The theorem is a conse-
quence of (6).

Now we state the proposition:
(8) (i) even-seql = (2), and
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(ii) even-seq2 = (2,4), and
(iii) even-seq3 = (2,4,6).
The theorem is a consequence of (6).
Let us consider a non zero natural number n. Now we state the propositions:
(9) odd-seq(n+1)] Segn = odd-seqn. The theorem is a consequence of (6).
(10) odd-seq(n + 1) = odd-seqmn ™ (2 - n + 1). The theorem is a consequence
of (4) and (9).
Now we state the proposition:
(11) (i) odd-seq1 = (1), and
(ii) odd-seq2 = (1,3), and
(iii) odd-seq3 = (1,3,5).
The theorem is a consequence of (4) and (10).
Let us consider a non zero natural number n. Now we state the propositions:
(12) [leven-seq(n+1) =2-(n+1)- ([]even-seqn). The theorem is a conse-
quence of (6).
(13) [lodd-seq(n+1) = (2-n+1)-([] odd-seqn). The theorem is a consequence
of (10).
Let us consider a non zero natural number k. Now we state the propositions:
(14) Tleven-seqk = 2% - (k!).
PROOF: Define P[natural number] = [] even-seq$; = 2%1 - ($;!). For every
non zero natural number n such that P[n] holds Pln + 1] by [10, (8)],
(12), [10 (15)]. P[1]. For every non zero natural number n, P[n] from [I|

Sch. 10]. O
(15) JJodd-seqk = 2,3"(’2!).
PROOF: Define P[non zero natural number] = [Jodd-seq$; = =231 For

251.($11)
every non zero natural number n such that P[n] holds P[n + 1] by [10),

(15), (8)], (13). P[1]. For every non zero natural number n, P[n] from [1]
Sch. 10]. O

3. TREATING A FUNCTION AS ELEMENTS OF R-ALGEBRA

Let A be a set and f be an element of RAlgebra A. The functor ®f yielding
an element of R4 is defined by the term
(Def. 3) f.

Let f be a function from A into R. The functor @f yielding an element of
RAlgebra A is defined by the term
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(Def. 4) f.

Let f be an element of RAlgebra A. Let us observe that “®f reduces to f.
Let f be a function from A into R. Observe that “®f reduces to f.
Now we state the propositions:

(16) Let us consider a non empty set A, and elements f, g of RAlgebra A.
Then

(i) f-9="f "9, and
(i) °f-g="f-%.
(17) Let us consider a non empty set A, an element a of R, and an element
f of RAlgebra A. Then a - %f =a - f.
Let us observe that RAlgebraR is scalar unital.
Now we state the propositions:
(18) RAlgebraR is a real linear space.
(19) Let us consider a non empty set A, and elements f, g of RAlgebra A.
Then +ga(f, 9) = +ra(®f, ).
(20) Let us consider a non empty set A, and an element f of RAlgebra A.
Then

(i) (=1)-f=(-1)-°f, and
(i) %=1)- f=-Cf, and
(111) ORAlgebraA =0- @f‘

(21) Let us consider a non empty set A, and elements f, g of RAlgebra A.
Then f +g = +%.

(22) Let us consider elements f, g of RAlgebraR. Then f — g = ©f —©g. The
theorem is a consequence of (20).

(23) Let us consider a unital, associative, non empty multiplicative magma
M, a natural number n, and an element a of M. Then a"t! = a" - a.

(24) Let us consider a natural number n, and a function  from R into R. If
 is continuous, then %(®z)" is continuous.
PROOF: Define P[natural number] = 4(%r)
tural number n such that P[n| holds P[n + 1]. For every natural number
n, P[n] from [I, Sch. 2]. O

(25) Let us consider a function x from R into R, a natural number n, and

a real number a. If (*®z)(a) > 0, then (%(%2)")(a) = (%) (a)".
PROOF: Define P[natural number] = (@(@x)$1)(a) = (@@a:)(a)$1. For every
natural number n such that P[n] holds P[n + 1] by (23), (16), [12 (27)].
P[0] by [12, (24)], [15, (7)]. For every natural number n, P[n] from [I,
Sch. 2]. O

$1 . .
is continuous. For every na-
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(26) Let us consider a function x from R into R, a non zero natural number
n, and a real number a. If (“°¢)(a) = 0, then (%(%)")(a) = 0.
PROOF: Define P[natural number| = (@(@x)$1)(a) = 0. For every non zero
natural number n such that P[n] holds P[n+1]. For every non zero natural
number n, P[n] from [I, Sch. 10]. O

(27) Let us consider an open subset Z of R, a non zero natural number n,
and a function  from R into R. Suppose z is differentiable on Z. Then
¥(9z)" is differentiable on Z.

PROOF: Define P[natural number| = @(@x)$1 is differentiable on Z. For
every non zero natural number n such that P[n] holds P[n + 1] by (23),
(16), [8, (20)]. For every non zero natural number n, P[n] from [I, Sch. 10].
U

(28) Let us consider a natural number n, a non empty, closed interval subset
I of R, and a function z from R into R. Suppose x is continuous. Then
(1) %(%)" T is continuous, and
(ii) %®z)" is integrable on I, and
(iii) ()" |I is bounded.
The theorem is a consequence of (24).
From now on r denotes a real number.
Now we state the proposition:
(29) Let us consider a natural number n, a non empty, closed interval subset
I of R, and a function z from R into R. Suppose x is continuous. Then
(1) (r-%%)™)|I is continuous, and
(ii) 7 - %®x)" is integrable on I, and
(iii) (- %®)")|I is bounded.
The theorem is a consequence of (24).
Let us consider a non zero natural number n. Now we state the propositions:
(30) (i) (*(*(the function sin))")(0) = 0, and
(i) (*(®(the function sin))")(%Z) = 1.
The theorem is a consequence of (25) and (26).
(31)  (*(%(the function sin))nH)’rR = ((n+1)-4(%(the function sin))")-®%(the function
cos).
PROOF: Set Z = R. Set z = the function sin. Define P[natural number] =
(@(@$)$1+1)/FZ = (($1+1) -@(@x)$1 )-®(the function cos). For every non zero
natural number n such that P[n] holds P[n + 1] by [I7, (68)], (27), (23),

(16). P[1] by [13 (8)], (23), (16), [17, (68)]. For every non zero natural
number n, P[n] from [I, Sch. 10]. O
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4. RECURRENCE RELATION ON [ sin” # dz AND THE WALLIS INTEGRAL

Now we state the propositions:

(32)  (Y(“(the function Sin))l)’rR is differentiable on R.

n+1),

(33) Let us consider a non zero natural number n. Then (%(®(the function sin)) R

is differentiable on R.

PROOF: Set Z = R. Set x = the function sin. %®%)" is differentiable

on Z and % is differentiable on Z. ((n + 1) - %%(the function sin))") -
@9(the function cos) is differentiable on Z by [I7, (67)], [14, (6), (7)], [6,

(12)]. O

(34) Let us consider a natural number n. Suppose n > 2. Then %(®(the function sin))"” /

is an integral of ((n —'1) - %(®(the function sin)) _/2) -@%(the function cos)
on R. The theorem is a consequence of (16), (27), and (31).

™
5 .

bl
(35) /@(@(the function sin))o(ac)dx =
/ (the function sm))l(x)da: =1.
0
(37) (The function sin) - (the function sin) -+ (the function cos) - (the function
cos) = 1R AlgebraR-
PROOF: For every object o such that o € dom(R —— 1) holds ((the function
sin)-(the function sin)+(the function cos)-(the function cos))(0) = (R —

1)(0) by [6, (56)], [I7, (28)], [15, (7)]. O

(38) (i) (“(the function si]ﬂ))2 + (%(the function cos))2 = 1RAlgebraR, and
(i) (%(the function sin))2 = (the function sin) - (the function sin), and
(iii) (®(the function cos)) (the function cos) - (the function cos), and
(iv) (®(the function sin)) (%(the function sin)) - (%(the function sin)),

and

(v) (%(the function cos))2 = (%(the function cos)) - (%(the function cos)).
The theorem is a consequence of (23), (16), (21), and (37).

The functor yielding a sequence of real numbers is defined by

us

2

(Def. 5) for every natural number m, it(m) = /@(@(the function sin))"" (z)dz.
0
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5. THE WaALLIS ProbpucT FORMULA

Now we state the proposition:

(39) Let us consider a natural number n. Suppose n > 2. Then ”%/1 (T (n—'
2) = ('I')(n). The theorem is a consequence of (23), (16), (24), (34), (38),
(22), (20), (29), (28), and (30).

Let us consider a non zero natural number n. Now we state the propositions:

Heven—seqn
(40) (T)(2-n+1) = [ortamiers

PROOF: Define P[non zero natural number| = ('I')(2-$;+1) = [Leven-sea $y

Hodd seq($1+1) "
For every non zero natural number n such that P[n] holds P[n + 1]. P[1]

by (39), (36), (8), (11). For every non zero natural number n, P[n| from
[, Sch. 10]. O

(41) (T)(2-n) = LLeddsean x

H even-seqn 2°

PROOF: Define P[non zero natural number| = ('T')(2-$;1) = %%.

For every non zero natural number n such that P[n| holds P[n + 1]. P[1].
For every non zero natural number n, P[n] from [I, Sch. 10]. O

6. THE WALLIS PrRoDUCT

Now we state the proposition:

(42) Let us consider a non zero natural number n, and a real number z.
Suppose 0 < x < 5. Then

(i) (%(*(the function sin))z'n)(x) < (Y(“(the function sin))z'n_/l)(x), and
(i) (%(®(the function sin))”" ) (z) < (Y %(the function sin))*")(z).
The theorem is a consequence of (1), (25), and (3).

Let us consider a non zero natural number n. Now we state the propositions:
(43) () (T)2-n) < (T)(2-n—'1), and
(i) (T2 -n+1) < (T')(2n).

PROOF: Set Iy = %(“(the function sin))z’n_/l. Set I; = %(“(the function sin))zn
Set I = %(“(the function sin))Q'nH. Io1[0, 3] is continuous and I is inte-
grable on [0, §] and Iy[[0, 5] is bounded. I1[[0, 5] is continuous and I is
integrable on [0, 7] and I; [[0, §] is bounded. I5[[0, 5] is continuous and I
is integrable on [0, 5] and I1[]0, g] is bounded. For every real number x
such that = € [0, 5] holds Iz(z) < I1(z) by [LI}, (5)], (42), (30). For every
real number x such that = € [0, 5] holds I1(x) < Io(z) by [11} (5)], (42),

(30). O
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(44) () 1< oAh2m and

.. Y(2-n ( odd—seqn)2
(i) iyt = (geven-seqn>2 (14 g5) )

The theorem is a consequence of (41), (13), (40), and (43).

(45) 1 < (l_Iodd—seqn)2

(1+ﬁ)'7" = (l_leven—seqn)2

(46) (,%/()2% < 1+ 5. The theorem is a consequence of (40), (39), and

(43).
(H odd-seq n)2
47) H——— -
( ) ([T even-seq n)2

The functor | WallisSeq | yielding a sequence of real numbers is defined by

- (H odd—seq(k—i—l))2 )

o (H even—seq(kz—i—l))2 (k + 1)
The functor yielding a sequence of real numbers is defined by
1

(1+ﬁ)~7r ’

-n. The theorem is a consequence of (44).

n < 1. The theorem is a consequence of (44) and (46).

(Def. 6) for every natural number k, it(k)

(Def. 7) for every natural number n, it(n) =

Now we state the propositions:
(48) (i) lim WallisSeq = 1, and

K
(ii) WallisSeq is convergent.
PRrROOF: For every real number r such that » > 0 there exists a natural
number ng such that for every natural number n such that ng < n holds
|(WallisSeq) (n) — 1| < r by (47), [4, (60)], (45). Consider a being a real
number such that a = % and for every real number r such that r > 0 there
exists a natural number ng such that for every natural number n such that
no < n holds |(WallisSeq)(n) — a| < r. O
(49) WallisSeq is positive yielding.
Let us observe that WallisSeq is positive yielding.
Now we state the propositions:
(50) Let us consider a positive yielding sequence s of real numbers. Suppose
59 is convergent. Then

(i) \/s2 is convergent, and
(i) lim./s2 = v/lim sa.
ProoOF: Consider a being a real number such that for every real number r

such that 0 < r there exists a natural number n such that for every natural
number m such that n < m holds |sy(m) — a| < r. For every natural

number k, \/so(k) = /s2(k). /52 is convergent and lim ,/s3 = v/lim s, by
[7, (17)], [16, (27), (22)], [4, (43)]. O

(51) lim /WallisSeq = ﬁ The theorem is a consequence of (48) and (50).
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(52) Let us consider a non zero natural number n. Then /WallisSeq(n—'"1) =

[1]

8]

(10]
(11]
(12]
(13]

(14]

(15]
(16]

(17]

/- (2n))

() The theorem is a consequence of (15) and (14).
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