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Summary. In this article, we formalized the proof of the so-called Wallis
formula using the Mizar formalism [3].

The purpose of this formalization is to complete the proof of Stirling’s formula
using elementary techniques of calculus. This formalization includes formal proof
of the Wallis integral as well. Throughout the formalization, we used follow the
lines of [9, 5].
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Introduction

The actual formalization consists of four sections, and we outline each section
below:

In Section 1, we introduced two functions, even seq(n) and odd seq(n).
These respectively represent sequences of even and odd natural numbers of
length n, and their products express double factorials. We prepared the proper-
ties of double factorials as theorems to be used in later proofs.

In Section 2, in order to formalize the fact that any positive integer power of
a continuous function f is continuous, we introduced the transformation @ that
treats f as an element of an R-algebra. More precisely, let A be an arbitrary set,
and let RAlgebra(A) denote the set of all real-valued functions on A forming
a R-algebra. When we consider a function f from A to R as an element of
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RAlgebra(A), we write @f . Additionally, when g is an element of RAlgebra(A),
we define the inverse transformation, which regards it as a function from A to
R, using the same symbol @g.

In Section 3, we apply the result from Section 2 to the trigonometric function
sinx and obtain the following recurrence relation from the integration by parts
of sinn x over 0 to π

2 :

I(n) =
n− 1
n

I(n− 2), where I(n) =
∫ π
2

0
sinn x dx.

Using this recurrence relation, we obtain the result of the Wallis integral:

∫ π
2

0
sinn x dx =


(2m)!!

(2m+ 1)!!
if n = 2m+ 1,

(2m− 1)!!
(2m)!!

· π
2

if n = 2m.

In Section 4, we use the results from the previous section to derive the Wallis
product formula. Here, for any 0 < θ < π

2 , sin2n−1 θ > sin2n θ > sin2n+1 θ > 0
holds, it follows that

I(2n− 1)
I(2n+ 1)

>
I(2n)

I(2n+ 1)
> 1.

From the recurrence relation and

I(2n)
I(2n+ 1)

=
(

(2n− 1)(2n− 3) · · · 1
(2n)(2n− 2) · · · 2

)2 (
n− 1

2

)
π,

which leads to the inequality

1 +
1

2n
>

(
(2n− 1)(2n− 3) · · · 1

(2n)(2n− 2) · · · 2

)2 (
n− 1

2

)
π > 1.

We denote this middle term as Wallis Seq.n in the actual code and derive the
limit formula by computing its limit value.

1. Preliminaries

Now we state the propositions:

(1) Let us consider a natural number n, and a real number x. If 0 < x < π
2 ,

then 0 < (the function sin)(x) < 1.

(2) Let us consider natural numbers n, m, and a real number x. If n < m

and 0 < x < 1, then xm < xn.
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(3) Let us consider a non zero natural number n, and a real number x.
Suppose 0 < x < π

2 . Then

(i) (the function sin)(x)2·n < (the function sin)(x)2·n−
′1, and

(ii) (the function sin)(x)2·n+1 < (the function sin)(x)2·n.

The theorem is a consequence of (1) and (2).

2. Some Results on Double Factorial

Let m be a natural number. The functor even-seqm yielding a finite sequ-
ence of elements of Z is defined by

(Def. 1) len it = m and for every natural number i such that i ∈ dom it holds
it(i) = 2 · i.

Letm be a non zero natural number. The functor odd-seqm yielding a finite
sequence of elements of Z is defined by the term

(Def. 2) even-seqm+ (dom(even-seqm) 7−→ −1).

Now we state the propositions:

(4) Let us consider a non zero natural number n. Then

(i) dom(even-seqn) = Seg n, and

(ii) dom(odd-seqn) = Segn, and

(iii) len odd-seqn = n, and

(iv) len even-seqn = n.

(5) Let us consider a non zero natural number n, and a natural number i.
Suppose i ∈ dom(odd-seqn). Then (odd-seqn)(i) = 2 · i− 1. The theorem
is a consequence of (4).

Let n be a non zero natural number. Note that even-seqn is positive yielding
and even-seqn is non empty and odd-seqn is positive yielding and odd-seqn is
non empty and even-seqn is increasing and odd-seqn is increasing.

Let us consider a non zero natural number n. Now we state the propositions:

(6) even-seq(n+ 1) = even-seqn a 〈2 · (n+ 1)〉.
Proof: Set p = even-seq(n+ 1). Set q = even-seqn. Set x = 〈2 · (n+ 1)〉.
dom q = Seg n. For every natural number k such that 1 ¬ k ¬ len p holds
p(k) = (q a x)(k) by [1, (13)], [2, (4)]. �

(7)
∏

even-seq(n+ 1) = 2 · (n+ 1) · (
∏

even-seqn). The theorem is a conse-
quence of (6).

Now we state the proposition:

(8) (i) even-seq 1 = 〈2〉, and
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(ii) even-seq 2 = 〈2, 4〉, and

(iii) even-seq 3 = 〈2, 4, 6〉.
The theorem is a consequence of (6).

Let us consider a non zero natural number n. Now we state the propositions:

(9) odd-seq(n+ 1)� Seg n = odd-seqn. The theorem is a consequence of (6).

(10) odd-seq(n + 1) = odd-seqn a 〈2 · n + 1〉. The theorem is a consequence
of (4) and (9).

Now we state the proposition:

(11) (i) odd-seq 1 = 〈1〉, and

(ii) odd-seq 2 = 〈1, 3〉, and

(iii) odd-seq 3 = 〈1, 3, 5〉.
The theorem is a consequence of (4) and (10).

Let us consider a non zero natural number n. Now we state the propositions:

(12)
∏

even-seq(n+ 1) = 2 · (n+ 1) · (
∏

even-seqn). The theorem is a conse-
quence of (6).

(13)
∏

odd-seq(n+1) = (2·n+1)·(
∏

odd-seqn). The theorem is a consequence
of (10).

Let us consider a non zero natural number k. Now we state the propositions:

(14)
∏

even-seq k = 2k · (k!).
Proof: Define P[natural number] ≡

∏
even-seq $1 = 2$1 · ($1!). For every

non zero natural number n such that P[n] holds P[n + 1] by [10, (8)],
(12), [10, (15)]. P[1]. For every non zero natural number n, P[n] from [1,
Sch. 10]. �

(15)
∏

odd-seq k = 2·k!
2k·(k!) .

Proof: Define P[non zero natural number] ≡
∏

odd-seq $1 = 2·$1!
2$1 ·($1!)

. For

every non zero natural number n such that P[n] holds P[n + 1] by [10,
(15), (8)], (13). P[1]. For every non zero natural number n, P[n] from [1,
Sch. 10]. �

3. Treating a Function as Elements of R-algebra

Let A be a set and f be an element of RAlgebraA. The functor @f yielding
an element of RA is defined by the term

(Def. 3) f .

Let f be a function from A into R. The functor @f yielding an element of
RAlgebraA is defined by the term
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(Def. 4) f .

Let f be an element of RAlgebraA. Let us observe that @@f reduces to f .
Let f be a function from A into R. Observe that @@f reduces to f .
Now we state the propositions:

(16) Let us consider a non empty set A, and elements f , g of RAlgebraA.
Then

(i) f · g = @f · @g, and

(ii) @f · g = @f · @g.

(17) Let us consider a non empty set A, an element a of R, and an element
f of RAlgebraA. Then a · @f = a · f .

Let us observe that RAlgebra R is scalar unital.
Now we state the propositions:

(18) RAlgebra R is a real linear space.

(19) Let us consider a non empty set A, and elements f , g of RAlgebraA.
Then +RA(f, g) = +RA(@f,@g).

(20) Let us consider a non empty set A, and an element f of RAlgebraA.
Then

(i) (−1) · f = (−1) · @f , and

(ii) @(−1) · f = −@f , and

(iii) 0RAlgebraA = 0 · @f .

(21) Let us consider a non empty set A, and elements f , g of RAlgebraA.
Then f + g = @f + @g.

(22) Let us consider elements f , g of RAlgebra R. Then f − g = @f −@g. The
theorem is a consequence of (20).

(23) Let us consider a unital, associative, non empty multiplicative magma
M , a natural number n, and an element a of M . Then an+1 = an · a.

(24) Let us consider a natural number n, and a function x from R into R. If
x is continuous, then @(@x)n is continuous.

Proof: Define P[natural number] ≡ @(@x)$1 is continuous. For every na-
tural number n such that P[n] holds P[n+ 1]. For every natural number
n, P[n] from [1, Sch. 2]. �

(25) Let us consider a function x from R into R, a natural number n, and
a real number a. If (@@x)(a) > 0, then (@(@x)n)(a) = (@@x)(a)n.

Proof: Define P[natural number] ≡ (@(@x)$1)(a) = (@@x)(a)$1 . For every
natural number n such that P[n] holds P[n + 1] by (23), (16), [12, (27)].
P[0] by [12, (24)], [15, (7)]. For every natural number n, P[n] from [1,
Sch. 2]. �
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(26) Let us consider a function x from R into R, a non zero natural number
n, and a real number a. If (@@x)(a) = 0, then (@(@x)n)(a) = 0.

Proof: Define P[natural number] ≡ (@(@x)$1)(a) = 0. For every non zero
natural number n such that P[n] holds P[n+1]. For every non zero natural
number n, P[n] from [1, Sch. 10]. �

(27) Let us consider an open subset Z of R, a non zero natural number n,
and a function x from R into R. Suppose x is differentiable on Z. Then
@(@x)n is differentiable on Z.

Proof: Define P[natural number] ≡ @(@x)$1 is differentiable on Z. For
every non zero natural number n such that P[n] holds P[n + 1] by (23),
(16), [8, (20)]. For every non zero natural number n, P[n] from [1, Sch. 10].
�

(28) Let us consider a natural number n, a non empty, closed interval subset
I of R, and a function x from R into R. Suppose x is continuous. Then

(i) @(@x)n�I is continuous, and

(ii) @(@x)n is integrable on I, and

(iii) @(@x)n�I is bounded.

The theorem is a consequence of (24).

From now on r denotes a real number.
Now we state the proposition:

(29) Let us consider a natural number n, a non empty, closed interval subset
I of R, and a function x from R into R. Suppose x is continuous. Then

(i) (r · @(@x)n)�I is continuous, and

(ii) r · @(@x)n is integrable on I, and

(iii) (r · @(@x)n)�I is bounded.

The theorem is a consequence of (24).

Let us consider a non zero natural number n. Now we state the propositions:

(30) (i) (@(@(the function sin))n)(0) = 0, and

(ii) (@(@(the function sin))n)(π2 ) = 1.
The theorem is a consequence of (25) and (26).

(31) (@(@(the function sin))n+1)′�R = ((n+1)·@(@(the function sin))n)·@@(the function
cos).
Proof: Set Z = R. Set x = the function sin. Define P[natural number] ≡
(@(@x)$1+1)′�Z = (($1+1)·@(@x)$1)·@@(the function cos). For every non zero
natural number n such that P[n] holds P[n + 1] by [17, (68)], (27), (23),
(16). P[1] by [13, (8)], (23), (16), [17, (68)]. For every non zero natural
number n, P[n] from [1, Sch. 10]. �
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4. Recurrence Relation on
∫ π
2
0 sinn x dx and the Wallis Integral

Now we state the propositions:

(32) (@(@(the function sin))1)′�R is differentiable on R.

(33) Let us consider a non zero natural number n. Then (@(@(the function sin))n+1)′�R
is differentiable on R.
Proof: Set Z = R. Set x = the function sin. @(@x)n is differentiable
on Z and @@x is differentiable on Z. ((n + 1) · @(@(the function sin))n) ·
@@(the function cos) is differentiable on Z by [17, (67)], [14, (6), (7)], [6,
(12)]. �

(34) Let us consider a natural number n. Suppose n ­ 2. Then @(@(the function sin))n−
′1

is an integral of ((n−′ 1) ·@(@(the function sin))n−
′2) ·@@(the function cos)

on R. The theorem is a consequence of (16), (27), and (31).

(35)

π
2∫
0

@(@(the function sin))
0
(x)dx =

π

2
.

(36)

π
2∫
0

@(@(the function sin))
1
(x)dx = 1.

(37) (The function sin) · (the function sin)+(the function cos) · (the function
cos) = 1RAlgebraR.
Proof: For every object o such that o ∈ dom(R 7−→ 1) holds ((the function
sin)·(the function sin)+(the function cos)·(the function cos))(o) = (R 7−→
1)(o) by [6, (56)], [17, (28)], [15, (7)]. �

(38) (i) (@(the function sin))2 + (@(the function cos))2 = 1RAlgebraR, and

(ii) (@(the function sin))2 = (the function sin) · (the function sin), and

(iii) (@(the function cos))2 = (the function cos) · (the function cos), and

(iv) (@(the function sin))2 = (@(the function sin)) · (@(the function sin)),
and

(v) (@(the function cos))2 = (@(the function cos)) · (@(the function cos)).
The theorem is a consequence of (23), (16), (21), and (37).

The functor ′I′ yielding a sequence of real numbers is defined by

(Def. 5) for every natural number m, it(m) =

π
2∫
0

@(@(the function sin))
m

(x)dx.
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5. The Wallis Product Formula

Now we state the proposition:

(39) Let us consider a natural number n. Suppose n ­ 2. Then n−′1
n ·(

′I′)(n−′
2) = (′I′)(n). The theorem is a consequence of (23), (16), (24), (34), (38),
(22), (20), (29), (28), and (30).

Let us consider a non zero natural number n. Now we state the propositions:

(40) (′I′)(2 · n+ 1) =
∏
even-seqn∏
odd-seq(n+1) .

Proof: Define P[non zero natural number] ≡ (′I′)(2·$1+1) =
∏
even-seq $1∏
odd-seq($1+1) .

For every non zero natural number n such that P[n] holds P[n+ 1]. P[1]
by (39), (36), (8), (11). For every non zero natural number n, P[n] from
[1, Sch. 10]. �

(41) (′I′)(2 · n) =
∏
odd-seqn∏
even-seqn ·

π
2 .

Proof: Define P[non zero natural number] ≡ (′I′)(2·$1) =
∏
odd-seq $1∏
even-seq $1 ·

π
2 .

For every non zero natural number n such that P[n] holds P[n+ 1]. P[1].
For every non zero natural number n, P[n] from [1, Sch. 10]. �

6. The Wallis Product

Now we state the proposition:

(42) Let us consider a non zero natural number n, and a real number x.
Suppose 0 < x < π

2 . Then

(i) (@(@(the function sin))2·n)(x) < (@(@(the function sin))2·n−
′1)(x), and

(ii) (@(@(the function sin))2·n+1)(x) < (@(@(the function sin))2·n)(x).

The theorem is a consequence of (1), (25), and (3).

Let us consider a non zero natural number n. Now we state the propositions:

(43) (i) (′I′)(2 · n) ¬ (′I′)(2 · n−′ 1), and

(ii) (′I′)(2 · n+ 1) ¬ (′I′)(2 · n).

Proof: Set I0 = @(@(the function sin))2·n−
′1. Set I1 = @(@(the function sin))2·n.

Set I2 = @(@(the function sin))2·n+1. I0�[0, π2 ] is continuous and I0 is inte-
grable on [0, π2 ] and I0�[0, π2 ] is bounded. I1�[0, π2 ] is continuous and I1 is
integrable on [0, π2 ] and I1�[0, π2 ] is bounded. I2�[0, π2 ] is continuous and I2
is integrable on [0, π2 ] and I2�[0, π2 ] is bounded. For every real number x
such that x ∈ [0, π2 ] holds I2(x) ¬ I1(x) by [11, (5)], (42), (30). For every
real number x such that x ∈ [0, π2 ] holds I1(x) ¬ I0(x) by [11, (5)], (42),
(30). �
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(44) (i) 1 ¬ (′I′)(2·n)
(′I′)(2·n+1) , and

(ii) (′I′)(2·n)
(′I′)(2·n+1) = (

∏
odd-seqn)2

(
∏
even-seqn)2 · n · ((1 + 1

2·n) · π).

The theorem is a consequence of (41), (13), (40), and (43).

(45) 1
(1+ 1

2·n )·π
¬ (

∏
odd-seqn)2

(
∏
even-seqn)2 · n. The theorem is a consequence of (44).

(46) (′I′)(2·n)
(′I′)(2·n+1) ¬ 1 + 1

2·n . The theorem is a consequence of (40), (39), and
(43).

(47) (
∏
odd-seqn)2

(
∏
even-seqn)2 · n ¬

1
π . The theorem is a consequence of (44) and (46).

The functor WallisSeq yielding a sequence of real numbers is defined by

(Def. 6) for every natural number k, it(k) = (
∏
odd-seq(k+1))2

(
∏
even-seq(k+1))2 · (k + 1).

The functor w seq yielding a sequence of real numbers is defined by

(Def. 7) for every natural number n, it(n) = 1
(1+ 1

2·(n+1) )·π
.

Now we state the propositions:

(48) (i) lim WallisSeq = 1
π , and

(ii) WallisSeq is convergent.
Proof: For every real number r such that r > 0 there exists a natural
number n0 such that for every natural number n such that n0 ¬ n holds
|(WallisSeq)(n) − 1π | < r by (47), [4, (60)], (45). Consider a being a real
number such that a = 1

π and for every real number r such that r > 0 there
exists a natural number n0 such that for every natural number n such that
n0 ¬ n holds |(WallisSeq)(n)− a| < r. �

(49) WallisSeq is positive yielding.

Let us observe that WallisSeq is positive yielding.
Now we state the propositions:

(50) Let us consider a positive yielding sequence s2 of real numbers. Suppose
s2 is convergent. Then

(i)
√
s2 is convergent, and

(ii) lim
√
s2 =

√
lim s2.

Proof: Consider a being a real number such that for every real number r
such that 0 < r there exists a natural number n such that for every natural
number m such that n ¬ m holds |s2(m) − a| < r. For every natural
number k,

√
s2(k) =

√
s2(k).

√
s2 is convergent and lim

√
s2 =

√
lim s2 by

[7, (17)], [16, (27), (22)], [4, (43)]. �

(51) lim
√

WallisSeq = 1√
π

. The theorem is a consequence of (48) and (50).
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(52) Let us consider a non zero natural number n. Then
√

WallisSeq(n−′1) =√
n·(2·n!)
4n·(n!)2 . The theorem is a consequence of (15) and (14).
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