e-ISSN: 1898-9934

Formalization of Wallis Infinite Product Formula for π and the Wallis Integral

Yasushige Watase
Faculty of Data Science
University of Rissho
Magechi Kumagaya, Japan

Summary. In this article, we formalized the proof of the so-called Wallis formula using the Mizar formalism [3].

The purpose of this formalization is to complete the proof of Stirling's formula using elementary techniques of calculus. This formalization includes formal proof of the Wallis integral as well. Throughout the formalization, we used follow the lines of [9, 5].

MSC: 33B10 68V20 68V35

Keywords: Wallis integral; Stirling formula

MML identifier: WALLISO1, version: 8.1.15 5.95.1495

Introduction

The actual formalization consists of four sections, and we outline each section below:

In Section 1, we introduced two functions, even_seq(n) and odd_seq(n). These respectively represent sequences of even and odd natural numbers of length n, and their products express double factorials. We prepared the properties of double factorials as theorems to be used in later proofs.

In Section 2, in order to formalize the fact that any positive integer power of a continuous function f is continuous, we introduced the transformation \mathfrak{C} that treats f as an element of an \mathbb{R} -algebra. More precisely, let A be an arbitrary set, and let $\mathtt{RAlgebra}(A)$ denote the set of all real-valued functions on A forming a \mathbb{R} -algebra. When we consider a function f from A to \mathbb{R} as an element of

RAlgebra(A), we write Qf. Additionally, when g is an element of RAlgebra(A), we define the inverse transformation, which regards it as a function from A to \mathbb{R} , using the same symbol Qg.

In Section 3, we apply the result from Section 2 to the trigonometric function $\sin x$ and obtain the following recurrence relation from the integration by parts of $\sin^n x$ over 0 to $\frac{\pi}{2}$:

$$I(n) = \frac{n-1}{n}I(n-2)$$
, where $I(n) = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$.

Using this recurrence relation, we obtain the result of the Wallis integral:

$$\int_0^{\frac{\pi}{2}} \sin^n x \, dx = \begin{cases} \frac{(2m)!!}{(2m+1)!!} & \text{if } n = 2m+1, \\ \frac{(2m-1)!!}{(2m)!!} \cdot \frac{\pi}{2} & \text{if } n = 2m. \end{cases}$$

In Section 4, we use the results from the previous section to derive the Wallis product formula. Here, for any $0 < \theta < \frac{\pi}{2}$, $\sin^{2n-1}\theta > \sin^{2n}\theta > \sin^{2n+1}\theta > 0$ holds, it follows that

$$\frac{I(2n-1)}{I(2n+1)} > \frac{I(2n)}{I(2n+1)} > 1.$$

From the recurrence relation and

$$\frac{I(2n)}{I(2n+1)} = \left(\frac{(2n-1)(2n-3)\cdots 1}{(2n)(2n-2)\cdots 2}\right)^2 \left(n - \frac{1}{2}\right)\pi,$$

which leads to the inequality

$$1 + \frac{1}{2n} > \left(\frac{(2n-1)(2n-3)\cdots 1}{(2n)(2n-2)\cdots 2}\right)^2 \left(n - \frac{1}{2}\right)\pi > 1.$$

We denote this middle term as Wallis_Seq.n in the actual code and derive the limit formula by computing its limit value.

1. Preliminaries

Now we state the propositions:

- (1) Let us consider a natural number n, and a real number x. If $0 < x < \frac{\pi}{2}$, then 0 < (the function $\sin(x) < 1$.
- (2) Let us consider natural numbers n, m, and a real number x. If n < m and 0 < x < 1, then $x^m < x^n$.

- (3) Let us consider a non zero natural number n, and a real number x. Suppose $0 < x < \frac{\pi}{2}$. Then
 - (i) (the function $\sin(x)^{2\cdot n} < (\text{the function } \sin(x)^{2\cdot n-1}, \text{ and } \cos(x)^{2\cdot n-1})$
 - (ii) (the function $\sin(x)^{2\cdot n+1} < (\text{the function } \sin(x)^{2\cdot n})$.

The theorem is a consequence of (1) and (2).

2. Some Results on Double Factorial

Let m be a natural number. The functor even-seq m yielding a finite sequence of elements of \mathbb{Z} is defined by

(Def. 1) len it = m and for every natural number i such that $i \in \text{dom } it$ holds $it(i) = 2 \cdot i$.

Let m be a non zero natural number. The functor odd-seq m yielding a finite sequence of elements of $\mathbb Z$ is defined by the term

(Def. 2) even-seq $m + (\text{dom}(\text{even-seq } m) \longmapsto -1)$.

Now we state the propositions:

- (4) Let us consider a non zero natural number n. Then
 - (i) dom(even-seq n) = Seg n, and
 - (ii) dom(odd-seq n) = Seg n, and
 - (iii) len odd-seq n = n, and
 - (iv) len even-seq n = n.
- (5) Let us consider a non zero natural number n, and a natural number i. Suppose $i \in \text{dom}(\text{odd-seq } n)$. Then $(\text{odd-seq } n)(i) = 2 \cdot i 1$. The theorem is a consequence of (4).

Let n be a non zero natural number. Note that even-seq n is positive yielding and even-seq n is non empty and odd-seq n is positive yielding and odd-seq n is non empty and even-seq n is increasing and odd-seq n is increasing.

Let us consider a non zero natural number n. Now we state the propositions:

- (6) even-seq $(n+1) = \text{even-seq } n \cap \langle 2 \cdot (n+1) \rangle$. PROOF: Set p = even-seq(n+1). Set q = even-seq n. Set $x = \langle 2 \cdot (n+1) \rangle$. dom q = Seg n. For every natural number k such that $1 \leq k \leq \text{len } p$ holds $p(k) = (q \cap x)(k)$ by [1, (13)], [2, (4)]. \square
- (7) \prod even-seq $(n+1) = 2 \cdot (n+1) \cdot (\prod$ even-seqn). The theorem is a consequence of (6).

Now we state the proposition:

(8) (i) even-seq $1 = \langle 2 \rangle$, and

- (ii) even-seq $2 = \langle 2, 4 \rangle$, and
- (iii) even-seq $3 = \langle 2, 4, 6 \rangle$.

The theorem is a consequence of (6).

Let us consider a non zero natural number n. Now we state the propositions:

- (9) odd-seq(n+1) \geqslant Seg n = odd-seq n. The theorem is a consequence of (6).
- (10) odd-seq(n+1) = odd-seq $n \cap \langle 2 \cdot n + 1 \rangle$. The theorem is a consequence of (4) and (9).

Now we state the proposition:

- (11) (i) odd-seq $1 = \langle 1 \rangle$, and
 - (ii) odd-seq $2 = \langle 1, 3 \rangle$, and
 - (iii) odd-seq $3 = \langle 1, 3, 5 \rangle$.

The theorem is a consequence of (4) and (10).

Let us consider a non zero natural number n. Now we state the propositions:

- (12) \prod even-seq $(n+1) = 2 \cdot (n+1) \cdot (\prod$ even-seqn). The theorem is a consequence of (6).
- (13) \prod odd-seq $(n+1) = (2 \cdot n+1) \cdot (\prod$ odd-seqn). The theorem is a consequence of (10).

Let us consider a non zero natural number k. Now we state the propositions:

(14) $\prod \text{ even-seq } k = 2^k \cdot (k!).$

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \prod \text{even-seq} \$_1 = 2^{\$_1} \cdot (\$_1!)$. For every non zero natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [10, (8)], (12), [10, (15)]. $\mathcal{P}[1]$. For every non zero natural number n, $\mathcal{P}[n]$ from [1, Sch. 10]. \square

(15) $\prod \text{odd-seq } k = \frac{2 \cdot k!}{2^k \cdot (k!)}.$

PROOF: Define $\mathcal{P}[\text{non zero natural number}] \equiv \prod \text{odd-seq } \$_1 = \frac{2 \cdot \$_1!}{2^{\$_1} \cdot (\$_1!)}$. For every non zero natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [10, (15), (8)], (13). $\mathcal{P}[1]$. For every non zero natural number n, $\mathcal{P}[n]$ from [1, Sch. 10]. \square

3. Treating a Function as Elements of \mathbb{R} -algebra

Let A be a set and f be an element of RAlgebra A. The functor ${}^{@}f$ yielding an element of \mathbb{R}^{A} is defined by the term

(Def. 3) f.

Let f be a function from A into \mathbb{R} . The functor ${}^{@}f$ yielding an element of RAlgebra A is defined by the term

(Def. 4) f.

Let f be an element of RAlgebra A. Let us observe that ${}^{@@}f$ reduces to f. Let f be a function from A into \mathbb{R} . Observe that ${}^{@@}f$ reduces to f. Now we state the propositions:

- (16) Let us consider a non empty set A, and elements f, g of RAlgebra A. Then
 - (i) $f \cdot g = {}^{@}f \cdot {}^{@}g$, and
 - (ii) ${}^{@}f \cdot g = {}^{@}f \cdot {}^{@}g$.
- (17) Let us consider a non empty set A, an element a of \mathbb{R} , and an element f of RAlgebra A. Then $a \cdot {}^{\textcircled{0}}f = a \cdot f$.

Let us observe that RAlgebra \mathbb{R} is scalar unital.

Now we state the propositions:

- (18) RAlgebra \mathbb{R} is a real linear space.
- (19) Let us consider a non empty set A, and elements f, g of RAlgebra A. Then $+_{\mathbb{R}^A}(f,g) = +_{\mathbb{R}^A}({}^{@}f, {}^{@}g)$.
- (20) Let us consider a non empty set A, and an element f of RAlgebra A. Then
 - (i) $(-1) \cdot f = (-1) \cdot {}^{@}f$, and
 - (ii) $^{@}(-1) \cdot f = -^{@}f$, and
 - (iii) $0_{\text{RAlgebra }A} = 0 \cdot {}^{\text{@}}f.$
- (21) Let us consider a non empty set A, and elements f, g of RAlgebra A. Then $f + g = {}^{@}f + {}^{@}g$.
- (22) Let us consider elements f, g of RAlgebra \mathbb{R} . Then $f g = {}^{@}f {}^{@}g$. The theorem is a consequence of (20).
- (23) Let us consider a unital, associative, non empty multiplicative magma M, a natural number n, and an element a of M. Then $a^{n+1} = a^n \cdot a$.
- (24) Let us consider a natural number n, and a function x from \mathbb{R} into \mathbb{R} . If x is continuous, then $(x)^n$ is continuous.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv {}^{@}({}^{@}x)^{\$_1}$ is continuous. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number n, $\mathcal{P}[n]$ from [1, Sch. 2]. \square

(25) Let us consider a function x from \mathbb{R} into \mathbb{R} , a natural number n, and a real number a. If $({}^{@@}x)(a) > 0$, then $({}^{@}({}^{@}x)^n)(a) = ({}^{@@}x)(a)^n$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv (^{@}(^{@}x)^{\$_1})(a) = (^{@@}x)(a)^{\$_1}$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by (23), (16), [12, (27)]. $\mathcal{P}[0]$ by [12, (24)], [15, (7)]. For every natural number n, $\mathcal{P}[n]$ from [1, Sch. 2]. \square

- (26) Let us consider a function x from \mathbb{R} into \mathbb{R} , a non zero natural number n, and a real number a. If $({}^{@@}x)(a) = 0$, then $({}^{@}({}^{@}x)^n)(a) = 0$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv ({}^{@}({}^{@}x)^{\$_1})(a) = 0$. For every non zero natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every non zero natural number n, $\mathcal{P}[n]$ from [1, Sch. 10]. \square
- (27) Let us consider an open subset Z of \mathbb{R} , a non zero natural number n, and a function x from \mathbb{R} into \mathbb{R} . Suppose x is differentiable on Z. Then $(^{\mathbb{Q}}(^{\mathbb{Q}}x)^n)$ is differentiable on Z.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv {}^{@}({}^{@}x)^{\$_1}$ is differentiable on Z. For every non zero natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by (23), (16), [8, (20)]. For every non zero natural number n, $\mathcal{P}[n]$ from [1, Sch. 10]. \square

- (28) Let us consider a natural number n, a non empty, closed interval subset I of \mathbb{R} , and a function x from \mathbb{R} into \mathbb{R} . Suppose x is continuous. Then
 - (i) $(x)^n \mid I$ is continuous, and
 - (ii) $(x)^n$ is integrable on I, and
 - (iii) $(x)^n \mid I$ is bounded.

The theorem is a consequence of (24).

From now on r denotes a real number.

Now we state the proposition:

- (29) Let us consider a natural number n, a non empty, closed interval subset I of \mathbb{R} , and a function x from \mathbb{R} into \mathbb{R} . Suppose x is continuous. Then
 - (i) $(r \cdot {}^{@}({}^{@}x)^{n}) \upharpoonright I$ is continuous, and
 - (ii) $r \cdot {}^{@}({}^{@}x)^{n}$ is integrable on I, and
 - (iii) $(r \cdot {}^{@}({}^{@}x)^{n}) \upharpoonright I$ is bounded.

The theorem is a consequence of (24).

Let us consider a non zero natural number n. Now we state the propositions:

- (30) (i) $({}^{@}(\text{(infinite function sin)})^{n})(0) = 0$, and
 - (ii) $\binom{@(@(\text{the function sin}))^n}{(\frac{\pi}{2})} = 1$.

The theorem is a consequence of (25) and (26).

(31) $(^{@}(^{@}(\text{the function sin}))^{n+1})'_{|\mathbb{R}} = ((n+1)\cdot ^{@}(^{@}(\text{the function sin}))^{n})\cdot ^{@@}(\text{the function sin}))^{n})$

PROOF: Set $Z = \mathbb{R}$. Set x = the function sin. Define $\mathcal{P}[\text{natural number}] \equiv ({}^{@}({}^{@}x)^{\$_1+1})'_{|Z} = ((\$_1+1)\cdot{}^{@}({}^{@}x)^{\$_1})\cdot{}^{@@}(\text{the function cos})$. For every non zero natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [17, (68)], (27), (23), (16). $\mathcal{P}[1]$ by [13, (8)], (23), (16), [17, (68)]. For every non zero natural number n, $\mathcal{P}[n]$ from [1, Sch. 10]. \square

4. Recurrence Relation on $\int_0^{\frac{\pi}{2}} \sin^n x \ dx$ and the Wallis Integral

Now we state the propositions:

- $(^{@}(\text{the function sin}))^{1})'_{\mathbb{N}\mathbb{R}}$ is differentiable on \mathbb{R} .
- (33) Let us consider a non zero natural number n. Then $(^{@}(^{@}(\text{the function sin}))^{n+1})'_{\cap \mathbb{R}}$ is differentiable on \mathbb{R} .

PROOF: Set $Z = \mathbb{R}$. Set x = the function sin. $(x)^n$ is differentiable on Z and $^{@@}x$ is differentiable on Z. $((n+1)\cdot ^{@}(^{@}(\text{the function sin}))^{n})\cdot$ ^{@©}(the function cos) is differentiable on Z by [17, (67)], [14, (6), (7)], [6,(12)]. \square

- (34) Let us consider a natural number n. Suppose $n \ge 2$. Then [@](*(the function sin)) $^{n-1}$ is an integral of $((n-'1)\cdot {}^{@}({}^{@}(\text{the function sin}))^{n-'2})\cdot {}^{@@}(\text{the function cos})$ on \mathbb{R} . The theorem is a consequence of (16), (27), and (31).
- (35) $\int_{0}^{\frac{\pi}{2}} {}^{@}({}^{@}(\text{the function sin}))^{0}(x)dx = \frac{\pi}{2}.$ (36) $\int_{0}^{\frac{\pi}{2}} {}^{@}({}^{@}(\text{the function sin}))^{1}(x)dx = 1.$
- (37) (The function \sin) · (the function \sin) + (the function \cos) · (the function \cos) = $1_{\text{RAlgebra}\mathbb{R}}$.

PROOF: For every object o such that $o \in \text{dom}(\mathbb{R} \longrightarrow 1)$ holds ((the function $\sin(\cdot)$ (the function $\sin(\cdot)$) + (the function $\cos(\cdot)$) (the function $\cos(\cdot)$) (o) = ($\mathbb{R} \mapsto \sin(\cdot)$ 1)(o) by $[6, (56)], [17, (28)], [15, (7)]. \square$

- (i) $(^{\circ}(\text{the function sin}))^2 + (^{\circ}(\text{the function cos}))^2 = 1_{\text{RAlgebra}\mathbb{R}}, \text{ and }$
 - (ii) $\binom{\text{@}}{\text{(the function sin)}}^2 = \text{(the function sin)} \cdot \text{(the function sin)}, and$
 - (iii) $(^{\circ}(\text{the function cos}))^2 = (\text{the function cos}) \cdot (\text{the function cos}), \text{ and}$
 - (iv) $(^{@}(\text{the function sin}))^2 = (^{@}(\text{the function sin})) \cdot (^{@}(\text{the function sin})),$ and
 - (v) $(^{@}(\text{the function cos}))^2 = (^{@}(\text{the function cos})) \cdot (^{@}(\text{the function cos}))$. The theorem is a consequence of (23), (16), (21), and (37).

The functor 'I' yielding a sequence of real numbers is defined by

(Def. 5) for every natural number $m, it(m) = \int_{0}^{\frac{\pi}{2}} {}^{@}\!\! \left({}^{@}\!\! \left(\text{the function sin} \right) \right)^{m}(x) dx.$

5. The Wallis Product Formula

Now we state the proposition:

(39) Let us consider a natural number n. Suppose $n \ge 2$. Then $\frac{n-'1}{n} \cdot ('I')(n-'2) = ('I')(n)$. The theorem is a consequence of (23), (16), (24), (34), (38), (22), (20), (29), (28), and (30).

Let us consider a non zero natural number n. Now we state the propositions:

$$(40) \quad ('\mathrm{I}')(2 \cdot n + 1) = \frac{\prod \operatorname{even-seq} n}{\prod \operatorname{odd-seq}(n+1)}.$$

PROOF: Define $\mathcal{P}[\text{non zero natural number}] \equiv ('I')(2 \cdot \$_1 + 1) = \frac{\prod \text{even-seq} \$_1}{\prod \text{odd-seq}(\$_1 + 1)}$. For every non zero natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. $\mathcal{P}[1]$ by (39), (36), (8), (11). For every non zero natural number n, $\mathcal{P}[n]$ from [1, Sch. 10]. \square

(41)
$$(I')(2 \cdot n) = \prod_{\text{If even-seq } n} \frac{1}{2} \cdot \frac{\pi}{2}$$
.

PROOF: Define $\mathcal{P}[\text{non zero natural number}] \equiv ('I')(2 \cdot \$_1) = \frac{\prod \text{odd-seq} \$_1}{\prod \text{even-seq} \$_1} \cdot \frac{\pi}{2}$. For every non zero natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. $\mathcal{P}[1]$. For every non zero natural number n, $\mathcal{P}[n]$ from [1, Sch. 10]. \square

6. The Wallis Product

Now we state the proposition:

- (42) Let us consider a non zero natural number n, and a real number x. Suppose $0 < x < \frac{\pi}{2}$. Then
 - (i) $(^{@}(\text{@}(\text{the function sin}))^{2 \cdot n})(x) < (^{@}(^{@}(\text{the function sin}))^{2 \cdot n '1})(x)$, and
 - (ii) $(^{@}(^{@}(\text{the function sin}))^{2 \cdot n+1})(x) < (^{@}(^{@}(\text{the function sin}))^{2 \cdot n})(x)$.

The theorem is a consequence of (1), (25), and (3).

Let us consider a non zero natural number n. Now we state the propositions:

(43) (i)
$$('I')(2 \cdot n) \leq ('I')(2 \cdot n - '1)$$
, and

(ii)
$$(I')(2 \cdot n + 1) \leq (I')(2 \cdot n)$$
.

PROOF: Set $I_0={}^{@}({}^{@}(\text{the function sin}))^{2\cdot n-'1}$. Set $I_1={}^{@}({}^{@}(\text{the function sin}))^{2\cdot n}$. Set $I_2={}^{@}({}^{@}(\text{the function sin}))^{2\cdot n+1}$. $I_0{\upharpoonright}[0,\frac{\pi}{2}]$ is continuous and I_0 is integrable on $[0,\frac{\pi}{2}]$ and $I_0{\upharpoonright}[0,\frac{\pi}{2}]$ is bounded. $I_1{\upharpoonright}[0,\frac{\pi}{2}]$ is continuous and I_1 is integrable on $[0,\frac{\pi}{2}]$ and $I_1{\upharpoonright}[0,\frac{\pi}{2}]$ is bounded. $I_2{\upharpoonright}[0,\frac{\pi}{2}]$ is continuous and I_2 is integrable on $[0,\frac{\pi}{2}]$ and $I_2{\upharpoonright}[0,\frac{\pi}{2}]$ is bounded. For every real number x such that $x\in[0,\frac{\pi}{2}]$ holds $I_2(x)\leqslant I_1(x)$ by [11,(5)],(42),(30). For every real number x such that $x\in[0,\frac{\pi}{2}]$ holds $I_1(x)\leqslant I_0(x)$ by [11,(5)],(42),(30). \square

(44) (i)
$$1 \leqslant \frac{(I')(2 \cdot n)}{(I')(2 \cdot n + 1)}$$
, and

(ii)
$$\frac{('\mathrm{I}')(2\cdot n)}{('\mathrm{I}')(2\cdot n+1)} = \frac{\left(\prod \operatorname{odd-seq} n\right)^2}{\left(\prod \operatorname{even-seq} n\right)^2} \cdot n \cdot \left(\left(1 + \frac{1}{2\cdot n}\right) \cdot \pi\right).$$

The theorem is a consequence of (41), (13), (40), and (43).

(45)
$$\frac{1}{(1+\frac{1}{2\cdot n})\cdot \pi} \leqslant \frac{(\prod \operatorname{odd-seq} n)^2}{(\prod \operatorname{even-seq} n)^2} \cdot n$$
. The theorem is a consequence of (44).

(46)
$$\frac{('1')(2 \cdot n)}{('1')(2 \cdot n+1)} \le 1 + \frac{1}{2 \cdot n}$$
. The theorem is a consequence of (40), (39), and (43).

(47)
$$\frac{\left(\prod \operatorname{odd-seq} n\right)^2}{\left(\prod \operatorname{even-seq} n\right)^2} \cdot n \leqslant \frac{1}{\pi}$$
. The theorem is a consequence of (44) and (46).

The functor WallisSeq yielding a sequence of real numbers is defined by

(Def. 6) for every natural number
$$k$$
, $it(k) = \frac{\left(\prod \operatorname{odd-seq}(k+1)\right)^2}{\left(\prod \operatorname{even-seq}(k+1)\right)^2} \cdot (k+1)$.

The functor w_seq yielding a sequence of real numbers is defined by

(Def. 7) for every natural number
$$n$$
, $it(n) = \frac{1}{(1 + \frac{1}{2 \cdot (n+1)}) \cdot \pi}$.

Now we state the propositions:

- (48) (i) $\lim \text{WallisSeq} = \frac{1}{\pi}$, and
 - (ii) WallisSeq is convergent.

PROOF: For every real number r such that r > 0 there exists a natural number n_0 such that for every natural number n such that $n_0 \le n$ holds $|(\text{WallisSeq})(n) - \frac{1}{\pi}| < r$ by (47), [4, (60)], (45). Consider a being a real number such that $a = \frac{1}{\pi}$ and for every real number r such that r > 0 there exists a natural number n_0 such that for every natural number n_0 such that $n_0 \le n$ holds |(WallisSeq)(n) - a| < r. \square

(49) WallisSeq is positive yielding.

Let us observe that WallisSeq is positive yielding.

Now we state the propositions:

- (50) Let us consider a positive yielding sequence s_2 of real numbers. Suppose s_2 is convergent. Then
 - (i) $\sqrt{s_2}$ is convergent, and
 - (ii) $\lim \sqrt{s_2} = \sqrt{\lim s_2}$.

PROOF: Consider a being a real number such that for every real number r such that 0 < r there exists a natural number n such that for every natural number m such that $n \le m$ holds $|s_2(m) - a| < r$. For every natural number k, $\sqrt{s_2(k)} = \sqrt{s_2(k)}$. $\sqrt{s_2}$ is convergent and $\lim \sqrt{s_2} = \sqrt{\lim s_2}$ by [7, (17)], [16, (27), (22)], [4, (43)]. \square

(51) $\lim \sqrt{\text{WallisSeq}} = \frac{1}{\sqrt{\pi}}$. The theorem is a consequence of (48) and (50).

(52) Let us consider a non zero natural number n. Then $\sqrt{\text{WallisSeq}}(n-'1) = \frac{\sqrt{n}\cdot(2\cdot n!)}{4^n\cdot(n!)^2}$. The theorem is a consequence of (15) and (14).

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [5] Richard Courant and Fritz John. *Introduction to Calculus and Analysis I.* John Wiley and Sons Inc., New York, 1st edition, 1965.
- [6] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [8] Jarosław Kotowicz and Konrad Raczkowski. Real function differentiability Part II. Formalized Mathematics, 2(3):407-411, 1991.
- [9] Nobushige Kurokawa. *Modern Trigonometric Function Theory*. Iwanami Shoten, Publishers (Tokyo), 1st edition, 2013. In Japanese.
- [10] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
- [11] Robert Milewski. Trigonometric form of complex numbers. Formalized Mathematics, 9 (3):455–460, 2001.
- [12] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213–216, 1991.
- [13] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559–564, 2001.
- [14] Yasunari Shidama, Noboru Endou, and Katsumi Wasaki. Riemann indefinite integral of functions of real variable. Formalized Mathematics, 15(2):59–63, 2007. doi:10.2478/v10037-007-0007-6.
- [15] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
- [16] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255–263, 1998.

Received September 22, 2025