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Summary. In this article we establish the Galois connection between the
intermediate fields of an extension E over F and the subgroups of the automor-
phism group Aut(E,F ). We show that if E is a finite Galois extension of F , then
this connection induces a bijection between all intermediate fields of E and F
and all subgroups of Aut(E,F ).
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Introduction

This article is the fourth in a series of five articles formalizing the Funda-
mental Theorem of Galois Theory [6], [4], [5] using the Mizar formalism [1], [2],
[3].

Following [4] we establish the Galois connection between the intermediate
fields of an extension E over F and the subgroups of the automorphism group
Aut(E,F ). This connection induces a bijection between the closed fields and
closed groups, that is fields K with Fix(E,Aut(E,K)) = K and groups G with
Aut(E,Fix(E,G)) = G.

c© 2026 The Author(s) / AMU
(Association of Mizar Users)
under CC BY-SA 4.0 license15

https://reference-global.com/journal/FORMA
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/galois_3.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/4.0/


16 christoph schwarzweller

For E being a finite field extension of F it is easy to show that E is a Galo-
is extension of F if and only if the closed fields are exactly the intermediate fields.

To show that for a finite extension E of F the closed groups coincide with
the subgroups of Aut(E,F ) we use group actions: Aut(E,F ) acts on the set
R of roots of a polynomial p ∈ F [X] in E. If E is generated by R the group
Aut(E,F ) acts faithfully on R and is therefore of finite degree, because it can
be embedded into the symmetric group over R. Together with Artin’s theorem
that for a finite subgroup G of Aut(E) the field E is a finite Galois extension
of Fix(E,G) (where the order of Aut(E,Fix(E,G)) equals the degree of E over
Fix(E,G)) this implies the desired result.

1. Preliminaries

Let F be a field and E be an extension of F . The functor SubgroupsAut(E)
yielding a lattice is defined by the term

(Def. 1) LAut(E,F ).
One can verify that every SubGroup of Aut(E,F ) is E-functional.
LetG be a SubGroup of Aut(E,F ). Note that the carrier ofG is E-functional

and every element of the carrier of G is F -fixing, additive, multiplicative, unity-
preserving, and isomorphism.

Now we state the propositions:

(1) Let us consider a field F , an extension E of F , an E-extending extension
K of F , an element a of E, and an element b of K. Suppose b = a. Then
RAdj(F, {a}) = RAdj(F, {b}).

(2) Let us consider a field F , an extension E of F , an E-extending extension
K of F , an F-algebraic element a of E, and an F-algebraic element b of
K. Suppose b = a. Then FAdj(F, {a}) = FAdj(F, {b}).

Let us consider a field F , an extension E of F , a non empty, finite, F-
algebraic subset T of E, and F -fixing automorphisms f , g of FAdj(F, T ). Now
we state the propositions:

(3) If for every element a of E such that a ∈ T holds f(a) = g(a), then
f = g.

(4) f = g if and only if f�T = g�T . The theorem is a consequence of (3).

Now we state the propositions:

(5) Let us consider a field F , and an F -finite extension E of F . Then E is
F -simple if and only if IntermediateFields(E,F ) is finite.

(6) Let us consider fields F1, F2, an extension E1 of F1, and an extension E2
of F2. Suppose E1 ≈ E2 and F1 ≈ F2. Then Aut(E1, F1) = Aut(E2, F2).
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2. On Symmetric Groups and Group Actions

Let X be a set. The functor SymmetricGroup(X) yielding a strict, consti-
tuted of functions multiplicative magma is defined by

(Def. 2) the carrier of it = permutationsX and for every elements x, y of it,
x · y = (x qua function) · y.

We introduce the notation SymGr(X) as a synonym of SymmetricGroup(X).
Now we state the proposition:

(7) Let us consider a set X. Then every element of SymGr(X) is a permu-
tation of X.

Let X be a set. One can check that SymGr(X) is non empty, associative,
and group-like.

Now we state the propositions:

(8) Let us consider a set X. Then 1SymGr(X) = idX . The theorem is a con-
sequence of (7).

(9) Let us consider a set X, and an element x of SymGr(X). Then x−1 =
(x qua function)−1. The theorem is a consequence of (7) and (8).

Let X be a finite set. One can check that SymGr(X) is finite.
Let G be a group and X be a set. Assume X is not empty.
An action of G on X is a function from (the carrier of G)×X into X defined

by

(Def. 3) for every element a of X, it(1G, a) = a and for every element a of X and
for every elements g1, g2 of the carrier of G, it(g1, it(g2, a)) = it(g1 · g2, a).

Let A be an action of G on X. We say that A is faithful if and only if

(Def. 4) for every elements g1, g2 of G such that for every element x of X,
A(g1, x) = A(g2, x) holds g1 = g2.

We say that A is free if and only if

(Def. 5) for every element g of G such that there exists an element x of X such
that A(g, x) = x holds g = 1G.

We say that A acts transitively on X if and only if

(Def. 6) for every elements a, b of X, there exists an element g of G such that
A(g, a) = b.

We say that G acts on X if and only if

(Def. 7) there exists a function f from (the carrier of G)×X into X such that f
is an action of G on X.

We say that G acts transitively on X if and only if

(Def. 8) there exists an action A of G on X such that A acts transitively on X.
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Let X be a non empty set. The functor trivialAction(G,X) yielding an ac-
tion of G on X is defined by

(Def. 9) for every element a of X and for every element g of G, it(g, a) = a.

Let G be a non trivial group. Observe that trivialAction(G,X) is non faith-
ful.

Let G be a trivial group. One can check that trivialAction(G,X) is faithful.

LetG be a group. The functors: regularAction(G) and conjugationAction(G)
yielding actions of G on the carrier of G are defined by conditions

(Def. 10) for every elements g1, g2 of G, regularAction(G)(g1, g2) = g1 · g2,
(Def. 11) for every elements g1, g2 of G, conjugationAction(G)(g1, g2) = g1 · g2 ·

(g1−1),

respectively. Let us note that regularAction(G) is free.
Let X be a non empty set, A be an action of G on X, and g be an element

of G. The functor apply(A, g) yielding a permutation of X is defined by

(Def. 12) for every element a of X, it(a) = A(g, a).

The functorA
canHom
↪→ Polynom-Ring A yielding a function fromG into SymGr(X)

is defined by

(Def. 13) for every element g of G, it(g) = apply(A, g).

Now we state the proposition:

(10) Let us consider a groupG, a non empty setX, an action A ofG onX, and
elements g1, g2 ofG. Then apply(A, g1·g2) = (apply(A, g1))·(apply(A, g2)).

Let G be a group, X be a non empty set, and A be an action of G on X.
Observe that A

canHom
↪→ Polynom-Ring A is multiplicative.

Now we state the propositions:

(11) Let us consider a group G, a non empty set X, and an action A of
G on X. Then A

canHom
↪→ Polynom-Ring A is a homomorphism from G to

SymGr(X).

(12) Let us consider a group G, and a non empty set X. Then G acts on X
if and only if there exists a function h from G into SymGr(X) such that
h is multiplicative. The theorem is a consequence of (8).

Let us consider a group G, a non empty set X, and an action A of G on X.
Now we state the propositions:

(13) Ker(A
canHom
↪→ Polynom-Ring A) = {1}G if and only if for every element g

of G such that for every element x of X, A(g, x) = x holds g = 1G. The
theorem is a consequence of (8).

(14) A is faithful if and only if A
canHom
↪→ Polynom-Ring A is one-to-one.
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(15) A is faithful if and only if for every element g of G such that for every
element x of X, A(g, x) = x holds g = 1G. The theorem is a consequence
of (14) and (13).

Let G be a group and X be a non empty set. Let us note that every action
of G on X which is free is also faithful.

Now we state the proposition:

(16) Let us consider a groupG. Then there exists a subgroupH of SymmetricGroup((the carrier
of G)) such that H and G are isomorphic. The theorem is a consequence
of (14).

3. The Galois Connection between Intermediate Fields and
Subgroups of Aut(E,F)

Let F be a field and E be an extension of F . The functor ΨE yielding
a function from Poset(IntermediateFields(E)) into Poset(SubgroupsAut(E)) is
defined by

(Def. 14) for every intermediate field K of E, F , it(K) = Aut(E,K).

The functor Φ(E) yielding a function from Poset(SubgroupsAut(E)) into Poset(IntermediateFields(E))
is defined by

(Def. 15) for every SubGroup G of Aut(E,F ), it(G) = Fix(E,G).

Now we state the propositions:

(17) Let us consider a field F , an extension E of F , and an intermediate field
K of E, F . Then (Φ(E))((ΨE)(K)) = Fix(E,Aut(E,K)).

(18) Let us consider a field F , an extension E of F , and a SubGroup G of
Aut(E,F ). Then (ΨE)((Φ(E))(G)) = Aut(E, (Fix(E,G))).

Let F be a field and E be an extension of F . The functor GalCon(E) yiel-
ding a connection between Poset(IntermediateFields(E)) and Poset(SubgroupsAut(E))
is defined by the term

(Def. 16) 〈〈ΨE , Φ(E)〉〉.
Note that ΨE is antitone and Φ(E) is antitone and GalCon(E) is co-Galois.

The functor ClosedFields(E) yielding a subset of Poset(IntermediateFields(E))
is defined by the term

(Def. 17) Closed(Φ(E)).

The functor ClosedGroups(E) yielding a subset of Poset(SubgroupsAut(E)) is
defined by the term

(Def. 18) Closed(ΨE).
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One can check that ClosedFields(E) is non empty and (ClosedGroups(E))-
bijective and ClosedGroups(E) is non empty and (ClosedFields(E))-bijective.

Let us consider a field F and an extension E of F . Now we state the propo-
sitions:

(19) (i) ΨE� ClosedFields(E) is a bijection of ClosedFields(E), ClosedGroups(E),
and

(ii) (ΨE� ClosedFields(E))−1 = Φ(E)� ClosedGroups(E).

(20) (i) Φ(E)� ClosedGroups(E) is a bijection of ClosedGroups(E), ClosedFields(E),
and

(ii) (Φ(E)� ClosedGroups(E))−1 = ΨE� ClosedFields(E).

Let us consider a field F , an extension E of F , and an intermediate field K
of E, F . Now we state the propositions:

(21) K ∈ ClosedFields(E) if and only if (Φ(E))((ΨE)(K)) = K.

(22) K ∈ ClosedFields(E) if and only if Fix(E,Aut(E,K)) = K. The the-
orem is a consequence of (21) and (32).

Let us consider a field F , an extension E of F , and a SubGroup G of
Aut(E,F ). Now we state the propositions:

(23) G ∈ ClosedGroups(E) if and only if (ΨE)((Φ(E))(G)) = G.

(24) G ∈ ClosedGroups(E) if and only if Aut(E, (Fix(E,G))) = G. The
theorem is a consequence of (23) and (18).

Now we state the proposition:

(25) Let us consider a field F , and an extension E of F . Then E is F -Galois if
and only if the double loop structure of F ∈ ClosedFields(E). The theorem
is a consequence of (6), (21), and (32).

Let us consider a field F and an F -finite extension E of F . Now we state
the propositions:

(26) ClosedFields(E) = IntermediateFields(E,F ) if and only if the double
loop structure of F ∈ ClosedFields(E). The theorem is a consequence of
(25) and (22).

(27) E is a Galois extension of F if and only if ClosedFields(E) = IntermediateFields(E,F ).
The theorem is a consequence of (25) and (26).

4. The Order of Aut(E,F)

Let F be a field and E be an extension of F . The functor Action-Aut(E,F )
yielding an action of Aut(E,F ) on the carrier of E is defined by
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(Def. 19) for every element a of E and for every element g of the carrier of
Aut(E,F ), it(g, a) = g(a).

Let p be a non zero element of the carrier of Polynom-RingF . Assume
Roots(E, p) 6= ∅. The functor Action-Roots(E, p) yielding an action of Aut(E,F )
on Roots(E, p) is defined by the term

(Def. 20) Action-Aut(E,F )�((the carrier of Aut(E,F ))× Roots(E, p)).

Now we state the propositions:

(28) Let us consider a field F , an extension E of F , and a non zero element p of
the carrier of Polynom-RingF . Suppose Roots(E, p) 6= ∅. Then Aut(E,F )
acts on Roots(E, p).

(29) Let us consider a field F , an irreducible element p of the carrier of
Polynom-RingF , and a splitting field E of p. Then Aut(E,F ) acts trans-
itively on Roots(E, p).

Let us consider a field F , an extension E of F , and a non zero element p of
the carrier of Polynom-RingF . Now we state the propositions:

(30) If Roots(E, p) 6= ∅ and E ≈ FAdj(F,Roots(E, p)), then Action-Roots(E, p)
is faithful. The theorem is a consequence of (8), (3), and (14).

(31) Suppose Roots(E, p) 6= ∅ and E ≈ FAdj(F,Roots(E, p)). Then there
exists a homomorphism f from Aut(E,F ) to SymGr(Roots(E, p)) such
that f is one-to-one. The theorem is a consequence of (30) and (14).

(32) Suppose Roots(E, p) 6= ∅ and E ≈ FAdj(F,Roots(E, p)). Then there
exists a subgroup H of SymGr(Roots(E, p)) such that Aut(E,F ) and H
are isomorphic. The theorem is a consequence of (31).

Let F be a field and E be an F -finite extension of F . Note that Aut(E,F )
is finite.

Let K be an intermediate field of E, F . Let us observe that Aut(E,K) is
finite and every F -finite, F -separable extension of F is F -simple.

Let us consider a field F and an F -finite extension E of F . Now we state
the propositions:

(33) E is a Galois extension of F if and only if deg(E,F ) = order Aut(E,F ).

(34) order Aut(E,F ) | deg(E,F ). The theorem is a consequence of (33).

Let us consider a field E and a finite SubGroup G of Aut(E). Now we state
the propositions:

(35) (i) G = Aut(E, (Fix(E,G))), and

(ii) order Aut(E, (Fix(E,G))) = deg(FieldExt(E,Fix(E,G)),Fix(E,G)).
Proof: Set F = Fix(E1, G). Reconsider E = E1 as an extension of
F . There exists an element a of E such that for every element b of E,
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deg(FAdj(F, {b}), F ) ¬ deg(FAdj(F, {a}), F ). Consider a being an ele-
ment of E such that for every element b of E, deg(FAdj(F, {b}), F ) ¬
deg(FAdj(F, {a}), F ). E ≈ FAdj(F, {a}) by [9, (31)], [7, (7)], [8, (4)], [9,

(30), (8)]. Aut(E,F ) ¬ deg(E,F ). �

(36) E is an (Fix(E,G))-finite Galois extension of Fix(E,G). The theorem is
a consequence of (35).

Now we state the proposition:

(37) Let us consider a field F , and an F -finite extension E of F . Then
ClosedGroups(E) = SubGr Aut(E,F ). The theorem is a consequence of
(35) and (24).
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