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Poland

Summary. In this article we prove the Fundamental Theorem of Galois
Theory [6], [4], [5] using the Mizar formalism [1], [2], [3].
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Introduction

This article is the last in a series of five articles formalizing the Fundamental
Theorem of Galois Theory [6], [4], [5] using the Mizar formalism [1], [2], [3].

We first show some necessary properties of normal subgroups and normal
extensions; then we state and prove that for a finite Galois extension E of F

1. the functions ϕ mapping intermediate fields K to Aut(E,K) and φ map-
ping subgroups G of Aut(E,F ) to Fix(E,G) are inverse bijections respec-
ting subfields and subgroups in the sense that K1 is a subfield of K2 if
and only if ϕ(K2) is a subgroup of ϕ(K1) and G1 is a subgroup of G2 if
and only if φ(G2) is a subfield of φ(G1).

2. for all intermediate fields K the degree of E over K equals the order of
Aut(E,K) and the degree of K over F equals the index of Aut(E,K) in
Aut(E,F ).
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3. for all intermediate fields K1 and K2 we have that K1 and K2 are isomor-
phic over F if and only if Aut(E,K1) and Aut(E,K2) are conjugated in
Aut(E,F ).

4. for all intermediate fields K we have that E is a Galois extension of K and
that K is a Galois extension of F if and only if K is a normal extension
of F .

5. an intermediate field K is a normal extension of F if and only if for all
F -fixing automorphisms f ∈ Aut(E,F ) we have f(K) = K if and only
if Aut(E,K) is a normal subgroup of Aut(E,F ). In this case Aut(K,F )
and Aut(E,F )/Aut(E,K) are isomorphic.

We also prove that for finite Galois extensions the functions ϕ and φ respect
the lattice operations

∧
and
∨

: for subsets M of intermediate fields and subsets
N of Aut(E,F ) we have

6. Aut(E,
∨
M) =

∧
{ ϕ(K) | K ∈ M} =

∧
{Aut(E,K) | K ∈ M} and

Aut(E,
∧
M) =

∨
{ ϕ(K) | K ∈M} =

∨
{Aut(E,K) | K ∈M}.

7. Fix(E,
∨
N) =

∧
{ φ(G) | G ∈ N} =

∧
{Fix(E,G) | G ∈ N} and

Fix(E,
∧
N) =

∨
{ φ(G) | G ∈ N} =

∨
{Fix(E,G) | G ∈ N}.

1. On Normal Subgroups

Now we state the proposition:

(1) Let us consider a group G, and a subgroup H of G. Then H is normal
if and only if for every elements g, h of G such that h ∈ H holds hg ∈ H.

Let us consider a group G and a strict subgroup H of G. Now we state the
propositions:

(2) H is normal if and only if for every element g of G, Hg = H. The theorem
is a consequence of (1).

(3) H is normal if and only if there exists a group G1 and there exists
a homomorphism f from G to G1 such that Ker f = H.

Let G, H be groups. Assume H is a subgroup of G. The functor Index(H,G)
yielding a cardinal number is defined by

(Def. 1) there exists a subgroup H1 of G such that H1 = H and it = |• : H1|.
Let G, H1, H2 be groups. We say that H1, H2 are conjugated in G if and

only if
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(Def. 2) there exist subgroups H3, H4 of G such that H3 = H1 and H4 = H2 and
H3 and H4 are conjugated.

2. On Normal Extensions

Let F be a field, E be an extension of F , h be a homomorphism of E, and
K be an intermediate field of E, F . The functor rng(h,K) yielding a subset
of E is defined by the term

(Def. 3) rng(h�(the carrier of K)).

One can verify that rng(h,K) is inducing subfield.
The functor h◦K yielding a subfield of E is defined by the term

(Def. 4) InducedSubfield(rng(h,K)).

Let f be an F -fixing automorphism of E. Let us note that f◦K is F -
extending.

Now we state the propositions:

(4) Let us consider a field F , an F -finite extension E of F , an intermediate
field K of E, F , and an F -fixing automorphism f of E. Suppose K is
F -normal. Then f�(the carrier of K) is an F -fixing automorphism of K.

(5) Let us consider a field F , an F -finite extension E of F , and an interme-
diate field K of E, F . Suppose K is F -normal. Let us consider F -fixing au-
tomorphisms f1, f2 of E. Then f1 ·f2�(the carrier of K) = (f1�(the carrier
of K)) · (f2�(the carrier of K)). The theorem is a consequence of (4).

(6) Let us consider a field F , an F -finite extension E of F , and an interme-
diate field K of E, F . Suppose K is F -normal. Let us consider an element f
of the carrier of Aut(E,F ). Then f◦K = K. The theorem is a consequence
of (4).

(7) Let us consider a field F , an F -finite extension E of F , and an interme-
diate field K of E, F . Suppose K is F -normal. Then Fix(K,Aut(K,F ))
is a subfield of Fix(E,Aut(E,F )). The theorem is a consequence of (4).

(8) Let us consider a field F , a F -normal extension E of F , and an F-
algebraic element a of E. Suppose E ≈ FAdj(F, {a}). Then E is a splitting
field of MinPoly(a, F ).

(9) Let us consider a field F , an F -finite Galois extension E of F , interme-
diate fields K1, K2 of E, F , and a function h from K1 into K2. Suppose h
is F -fixing and isomorphism. Then there exists an F -fixing automorphism
f of E such that f�K1 = h.
Proof: Consider a being an element of E such that E ≈ FAdj(F, {a}).
Set p = MinPoly(a, F ). Reconsider p1 = p as an element of the carrier
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of Polynom-RingK1. E is splitting field of p and K1-extending. Recon-
sider L = E as a splitting field of p1. Reconsider K3 = K2 as an K1-
isomorphic, K1-homomorphic field. Reconsider h1 = h as an isomorphism
between K1 and K3. (PolyHom(h1))(p1) = p1. L is a splitting field of
(PolyHom(h1))(p1) by [9, (4)], [7, (7)], (8), [8, (29)]. Consider f being
a function from L into L such that f is h1-extending and isomorphism. �

(10) Let us consider a field F , an extension E of F , an intermediate field K

of E, F , and an element f of the carrier of Aut(E). Then

(i) (Aut(E, (f◦K)))f = Aut(E,K), and

(ii) (Aut(E,K))f
−1

= Aut(E, (f◦K)).

(11) Let us consider a field F , an extension E of F , a subgroupH of Aut(E,F ),
and an element f of the carrier of Aut(E,F ). Then f◦(Fix(E,H)) =
Fix(E,Hf

−1
).

3. The Theorem

Now we state the propositions:

(12) Let us consider a field F , an extension E of F , and an intermediate field
K of E, F . Then (ΨE)(K) = Aut(E,K).

(13) Let us consider a field F , an extension E of F , and a SubGroup G of
Aut(E,F ). Then (Φ(E))(G) = Fix(E,G).

Let us consider a field F and an F -finite Galois extension E of F . Now we
state the propositions:

(14) ΨE is a bijection of IntermediateFields(E,F ), SubGr Aut(E,F ).

(15) Φ(E) is a bijection of SubGr Aut(E,F ), IntermediateFields(E,F ).

(16) (i) (ΨE)−1 = Φ(E), and

(ii) (Φ(E))−1 = ΨE .

Let F be a field and E be an F -finite Galois extension of F . Let us note that
IntermediateFields(E,F ) is (SubGr Aut(E,F ))-bijective and SubGr Aut(E,F )
is (IntermediateFields(E,F ))-bijective.

Now we state the propositions:

(17) Let us consider a field F , an F -finite Galois extension E of F , and
an intermediate field K of E, F . Then K = Fix(E,Aut(E,K)).

(18) Let us consider a field F , an F -finite Galois extension E of F , and
a SubGroup G of Aut(E,F ). Then G = Aut(E, (Fix(E,G))).

(19) Let us consider a field F , an F -finite Galois extension E of F , and
intermediate fields K1, K2 of E, F . Then K1 is a subfield of K2 if and only
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if Aut(E,K2) is a subgroup of Aut(E,K1). The theorem is a consequence
of (17).

(20) Let us consider a field F , an F -finite Galois extension E of F , and
SubGroups G1, G2 of Aut(E,F ). Then G1 is a subgroup of G2 if and only
if Fix(E,G2) is a subfield of Fix(E,G1). The theorem is a consequence of
(18).

(21) Let us consider a field F , an F -finite Galois extension E of F , and
an intermediate field K of E, F . Then

(i) deg(E,K) = order Aut(E,K), and

(ii) deg(K,F ) = Index(Aut(E,K),Aut(E,F )).

(22) Let us consider a field F , an F -finite Galois extension E of F , and
intermediate fields K1, K2 of E, F . Then K1 and K2 are isomorphic over
F if and only if Aut(E,K1), Aut(E,K2) are conjugated in Aut(E,F ). The
theorem is a consequence of (9), (17), and (11).

Let us consider a field F , an F -finite Galois extension E of F , and an inter-
mediate field K of E, F . Now we state the propositions:

(23) E is a Galois extension of K.

(24) K is a Galois extension of F if and only if K is F -normal.

(25) K is F -normal if and only if for every element f of the carrier of
Aut(E,F ), f◦K = K. The theorem is a consequence of (6).

(26) K is F -normal if and only if Aut(E,K) is a normal subgroup of Aut(E,F ).
The theorem is a consequence of (6), (10), (2), (14), and (25).

Let F be a field, E be an F -finite extension of F , and K be an intermediate
field of E, F . Assume K is F -normal. The functor Phi.(K) yielding a homo-
morphism from Aut(E,F ) to Aut(K,F ) is defined by

(Def. 5) for every F -fixing automorphism f of E, it(f) = f�(the carrier of K).

Let us consider a field F , an F -finite extension E of F , and an intermediate
field K of E, F . Now we state the propositions:

(27) IfK is F -normal, then Fix(K, Im Phi.(K)) is a subfield of Fix(E,Aut(E,F )).
The theorem is a consequence of (4).

(28) If K is F -normal, then Ker Phi.(K) = Aut(E,K).

Now we state the propositions:

(29) Let us consider a field F , an F -finite Galois extension E of F , and an in-
termediate field K of E, F . Suppose K is F -normal. Then Im Phi.(K) =
Aut(K,F ). The theorem is a consequence of (24), (27), and (15).

(30) Let us consider a field F , an F -finite Galois extension E of F , an inter-
mediate field K of E, F , and a normal subgroup H of Aut(E,F ). Suppose
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H = Aut(E,K). Then Aut(K,F ) and Aut(E,F )/H are isomorphic. The
theorem is a consequence of (26), (28), and (29).

4. Some Lattice Properties

Now we state the propositions:

(31) Let us consider a field F , an extension E of F , and intermediate fields
K1, K2 of E, F . Then

(i) Aut(E,K1) tAut(E,K2) is a subgroup of Aut(E, (K1 uK2)), and

(ii) Aut(E, (K1 tK2)) is a subgroup of Aut(E,K1) ∩Aut(E,K2).

(32) Let us consider a field F , an extension E of F , and subgroups G1, G2 of
Aut(E,F ). Then

(i) Fix(E,G1) t Fix(E,G2) is a subfield of Fix(E,G1 ∩G2), and

(ii) Fix(E,G1 tG2) is a subfield of Fix(E,G1) u Fix(E,G2).

(33) Let us consider a field F , an F -finite Galois extension E of F , and
intermediate fields K1, K2 of E, F . Then

(i) Aut(E, (K1 uK2)) = Aut(E,K1) tAut(E,K2), and

(ii) Aut(E, (K1 tK2)) = Aut(E,K1) ∩Aut(E,K2).

The theorem is a consequence of (31), (18), (17), and (32).

(34) Let us consider a field F , an F -finite Galois extension E of F , and
SubGroups G1, G2 of Aut(E,F ). Then

(i) Fix(E,G1 ∩G2) = Fix(E,G1) t Fix(E,G2), and

(ii) Fix(E,G1 tG2) = Fix(E,G1) u Fix(E,G2).

The theorem is a consequence of (17), (18), (31), and (32).

Let F be a field, E be an extension of F , and M be a non empty subset of
IntermediateFields(E,F ). The functor Psi.(M) yielding a non empty subset of
SubGr Aut(E,F ) is defined by the term

(Def. 6) {(ΨE)(K), where K is an element of IntermediateFields(E,F ) : K ∈
M}.

Let M be a non empty subset of SubGr Aut(E,F ). The functor the UNK-
NOWN of M yielding a non empty subset of IntermediateFields(E,F ) is defined
by the term

(Def. 7) {(Φ(E))(G), where G is an element of SubGr Aut(E,F ) : G ∈M}.

Now we state the propositions:
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(35) Let us consider a field F , an extension E of F , and a non empty subset
M of IntermediateFields(E,F ). Then Psi.(M) = {Aut(E,K), where K is
an element of IntermediateFields(E,F ) : K ∈M}.

(36) Let us consider a field F , an extension E of F , and a non empty subset M
of SubGr Aut(E,F ). Then the UNKNOWN of M = {Fix(E,G), where
G is an element of SubGr Aut(E,F ) : G ∈M}.

(37) Let us consider a field F , an F -finite Galois extension E of F , and a non
empty subset M of IntermediateFields(E,F ). Then the UNKNOWN of
Psi.(M) = M . The theorem is a consequence of (35), (36), and (17).

(38) Let us consider a field F , an F -finite Galois extension E of F , and
a non empty subset M of SubGr Aut(E,F ). Then Psi.(the UNKNOWN
of M) = M . The theorem is a consequence of (36), (35), and (18).

(39) Let us consider a field F , an extension E of F , and a non empty subset
M of IntermediateFields(E,F ). Then

(i) Aut(E, (
⋃
M)) is a subgroup of

⋂
Psi.(M), and

(ii)
⋃

Psi.(M) is a subgroup of Aut(E, (
⋂
M)).

The theorem is a consequence of (35).

(40) Let us consider a field F , an extension E of F , and a non empty subset
M of SubGr Aut(E,F ). Then

(i) Fix(E,
⋃
M) is a subfield of

⋂
(the UNKNOWN of M), and

(ii)
⋃

(the UNKNOWN of M) is a subfield of Fix(E,
⋂
M).

The theorem is a consequence of (36).

(41) Let us consider a field F , an F -finite Galois extension E of F , and a non
empty subset M of IntermediateFields(E,F ). Then

(i) Aut(E, (
⋃
M)) =

⋂
Psi.(M), and

(ii) Aut(E, (
⋂
M)) =

⋃
Psi.(M).

The theorem is a consequence of (39), (40), (37), and (18).

(42) Let us consider a field F , an F -finite Galois extension E of F , and a non
empty subset M of SubGr Aut(E,F ). Then

(i) Fix(E,
⋃
M) =

⋂
(the UNKNOWN of M), and

(ii) Fix(E,
⋂
M) =

⋃
(the UNKNOWN of M).

The theorem is a consequence of (39), (38), (17), and (40).
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