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Summary. In this article we prove the Fundamental Theorem of Galois
Theory [6], [4], [5] using the Mizar formalism [I], [2], [3].
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INTRODUCTION

This article is the last in a series of five articles formalizing the Fundamental
Theorem of Galois Theory [6], [4], [5] using the Mizar formalism [1], [2], [3].

We first show some necessary properties of normal subgroups and normal
extensions; then we state and prove that for a finite Galois extension F of F'

1. the functions ¢ mapping intermediate fields K to Aut(E, K) and ¢ map-
ping subgroups G of Aut(E, F') to Fix(E, G) are inverse bijections respec-
ting subfields and subgroups in the sense that K is a subfield of Ky if
and only if p(K32) is a subgroup of ¢(K;) and G; is a subgroup of Gy if
and only if ¢(G2) is a subfield of ¢(G1).

2. for all intermediate fields K the degree of E over K equals the order of
Aut(E, K) and the degree of K over F' equals the index of Aut(F, K) in
Aut(E, F).
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3. for all intermediate fields K7 and K9 we have that Ky and K5 are isomor-
phic over F' if and only if Aut(F, K;) and Aut(E, K3) are conjugated in
Aut(E, F).

4. for all intermediate fields K we have that E is a Galois extension of K and
that K is a Galois extension of F' if and only if K is a normal extension
of F.

5. an intermediate field K is a normal extension of F' if and only if for all
F-fixing automorphisms f € Aut(E, F') we have f(K) = K if and only
if Aut(F, K) is a normal subgroup of Aut(E, F'). In this case Aut(K, F)
and Aut(F, F)/Aut(E, K) are isomorphic.

We also prove that for finite Galois extensions the functions ¢ and ¢ respect
the lattice operations A and \/: for subsets M of intermediate fields and subsets
N of Aut(E, F) we have

6. Aut(E,V M) = M ¢(K) | K € M} = N{Aut(E,K) | K € M} and
Awt(E,AM) = V{ o(K) | K € M} = V{Aut(E,K) | K € M}.

7. Fix(E,VN) = A ¢(G) | G € N} = AM{Fix(E,G) | G € N} and
Fix(E,AN) = V{ ¢(G) | G € N} = V{Fix(E,G) | G € N}.

1. ON NORMAL SUBGROUPS

Now we state the proposition:

(1) Let us consider a group G, and a subgroup H of G. Then H is normal
if and only if for every elements g, h of G such that h € H holds hY € H.
Let us consider a group G and a strict subgroup H of G. Now we state the
propositions:
(2) H isnormal if and only if for every element g of G, HY = H. The theorem
is a consequence of (1).

(3) H is normal if and only if there exists a group G; and there exists
a homomorphism f from G to GGy such that Ker f = H.

Let G, H be groups. Assume H is a subgroup of G. The functor Index(H, G)
yielding a cardinal number is defined by

(Def. 1) there exists a subgroup H; of G such that H; = H and it = |e : Hy|.

Let G, Hy, Hy be groups. We say that [ Hy, Hs are conjugated in Gl if and
only if
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(Def. 2) there exist subgroups Hs, Hy of G such that H3 = Hy and Hy = Hy and
Hs and H, are conjugated.

2. ON NORMAL EXTENSIONS

Let F be a field, E be an extension of F', h be a homomorphism of E, and
K be an intermediate field of F, F'. The functor yielding a subset
of E is defined by the term
(Def. 3) rng(h[(the carrier of K)).

One can verify that rng(h, K) is inducing subfield.
The functor h°K yielding a subfield of E is defined by the term
(Def. 4) InducedSubfield(rng(h, K)).

Let f be an F-fixing automorphism of F. Let us note that f°K is F-
extending.
Now we state the propositions:

(4) Let us consider a field F', an F-finite extension F of F, an intermediate
field K of E, F', and an F-fixing automorphism f of E. Suppose K is
F-normal. Then f[(the carrier of K) is an F-fixing automorphism of K.

(5) Let us consider a field F', an F-finite extension F of F, and an interme-
diate field K of E, F. Suppose K is F-normal. Let us consider F-fixing au-
tomorphisms f1, fo of E. Then fi- fa[(the carrier of K) = (f1](the carrier
of K)) - (f2[(the carrier of K)). The theorem is a consequence of (4).

(6) Let us consider a field F', an F-finite extension F of F', and an interme-
diate field K of E/, F'. Suppose K is F-normal. Let us consider an element f
of the carrier of Aut(E, F). Then f°K = K. The theorem is a consequence
of (4).

(7) Let us consider a field F', an F-finite extension F of F, and an interme-
diate field K of E, F. Suppose K is F-normal. Then Fix(K, Aut(K, F))
is a subfield of Fix(E, Aut(E, F')). The theorem is a consequence of (4).

(8) Let us consider a field F, a F-normal extension E of F, and an F-
algebraic element a of E. Suppose E ~ FAdj(F, {a}). Then E is a splitting
field of MinPoly(a, F).

(9) Let us consider a field F', an F-finite Galois extension E of F', interme-
diate fields K1, K3 of E, F', and a function h from K into K». Suppose h
is F-fixing and isomorphism. Then there exists an F-fixing automorphism
f of E such that f[Ky = h.

PRrROOF: Consider a being an element of E such that E ~ FAdj(F, {a}).
Set p = MinPoly(a, F'). Reconsider p; = p as an element of the carrier



26 CHRISTOPH SCHWARZWELLER

of Polynom-Ring K;. F is splitting field of p and Kj-extending. Recon-
sider L = FE as a splitting field of p;. Reconsider K3 = Ky as an K-
isomorphic, K1-homomorphic field. Reconsider A; = h as an isomorphism
between K; and Kj3. (PolyHom(h;))(p1) = p1. L is a splitting field of
(PolyHom(h1))(p1) by [9, (4)], [7, (7)], (8), [8, (29)]. Consider f being
a function from L into L such that f is hi-extending and isomorphism. [J]

(10) Let us consider a field F', an extension E of F', an intermediate field K
of E, F, and an element f of the carrier of Aut(F). Then

(i) (Aut(E,(f°K)))! = Aut(E, K), and
(i) (Aut(E,K)) " = Aut(E, (f°K)).
(11) Let us consider a field F', an extension E of F', a subgroup H of Aut(E, F),

and an element f of the carrier of Aut(E, F). Then f°(Fix(E,H)) =
Fix(E, HI ).

3. THE THEOREM

Now we state the propositions:

(12) Let us consider a field F', an extension F of F, and an intermediate field
K of E, F. Then (¥g)(K) = Aut(E, K).

(13) Let us consider a field F', an extension E of F', and a SubGroup G of
Aut(E, F). Then (®(E))(G) = Fix(E, G).

Let us consider a field F' and an F-finite Galois extension E of F'. Now we
state the propositions:

(14) WYg is a bijection of IntermediateFields(E, F), SubGr Aut(E, F).
(15) ®(E) is a bijection of SubGr Aut(FE, F'), IntermediateFields(E, F').
(16) (i) (¥p) ' = ®(E), and

(i) ((E)~! = .

Let F be a field and E be an F-finite Galois extension of F'. Let us note that
IntermediateFields(E, F') is (SubGr Aut(F, F'))-bijective and SubGr Aut(FE, F')
is (IntermediateFields(E, F'))-bijective.

Now we state the propositions:

(17) Let us consider a field F', an F-finite Galois extension E of F, and
an intermediate field K of E, F'. Then K = Fix(E, Aut(E, K)).

(18) Let us consider a field F', an F-finite Galois extension E of F, and
a SubGroup G of Aut(E, F). Then G = Aut(E, (Fix(E, G))).

(19) Let us consider a field F, an F-finite Galois extension E of F, and
intermediate fields K1, K9 of E, F. Then K is a subfield of K> if and only
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if Aut(F, K3) is a subgroup of Aut(F, K7). The theorem is a consequence
of (17).

(20) Let us consider a field F', an F-finite Galois extension E of F, and
SubGroups G1, Gy of Aut(E, F'). Then G is a subgroup of Gy if and only
if Fix(F, G2) is a subfield of Fix(E, G1). The theorem is a consequence of
(18).

(21) Let us consider a field F', an F-finite Galois extension E of F, and
an intermediate field K of E, F. Then

(i) deg(E, K) = order Aut(FE, K), and
(ii) deg(K,F) = Index(Aut(F, K), Aut(E, F)).

(22) Let us consider a field F', an F-finite Galois extension E of F, and
intermediate fields K7, K5 of E, F. Then K; and K> are isomorphic over
F if and only if Aut(F, K;), Aut(FE, K3) are conjugated in Aut(E, F). The
theorem is a consequence of (9), (17), and (11).

Let us consider a field F', an F-finite Galois extension E of F', and an inter-
mediate field K of F, F. Now we state the propositions:

(23) FE is a Galois extension of K.
(24) K is a Galois extension of F'if and only if K is F-normal.

(25) K is F-normal if and only if for every element f of the carrier of
Aut(E, F), f°K = K. The theorem is a consequence of (6).

(26) K is F-normal if and only if Aut(E, K) is a normal subgroup of Aut(E, F).
The theorem is a consequence of (6), (10), (2), (14), and (25).

Let F be a field, E be an F-finite extension of F', and K be an intermediate

field of E, F. Assume K is F-normal. The functor [Phi.(K)| yielding a homo-
morphism from Aut(E, F') to Aut(K, F') is defined by

(Def. 5) for every F-fixing automorphism f of E, it(f) = f[(the carrier of K).
Let us consider a field F', an F-finite extension F of F', and an intermediate
field K of F, F. Now we state the propositions:

(27) If K is F-normal, then Fix(K, Im Phi.(K)) is a subfield of Fix(E, Aut(F, F)).
The theorem is a consequence of (4).

(28) If K is F-normal, then Ker Phi.(K) = Aut(E, K).

Now we state the propositions:

(29) Let us consider a field F', an F-finite Galois extension E of F', and an in-
termediate field K of E, F. Suppose K is F-normal. Then Im Phi.(K) =
Aut(K, F). The theorem is a consequence of (24), (27), and (15).

(30) Let us consider a field F, an F-finite Galois extension F of F', an inter-
mediate field K of F, F, and a normal subgroup H of Aut(E, F'). Suppose
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H = Aut(E, K). Then Aut(K,F) and A"EF) /1 are isomorphic. The
theorem is a consequence of (26), (28), and (29).

4. SOME LATTICE PROPERTIES

Now we state the propositions:
(31) Let us consider a field F, an extension E of F', and intermediate fields
Ki, Ky of B, F. Then
(i) Aut(E, K1) U Aut(E, K») is a subgroup of Aut(E, (K M K3)), and
(ii) Aut(FE,(K; U K3)) is a subgroup of Aut(E, K1) N Aut(E, K3).
(32) Let us consider a field F', an extension E of F', and subgroups G1, G2 of
Aut(E, F'). Then
(i) Fix(F,G1)UFix(F, G2) is a subfield of Fix(E, G; N Ga), and
(ii) Fix(F,G1 U Gy) is a subfield of Fix(E,G1) MFix(F, Ga).
(33) Let us consider a field F', an F-finite Galois extension E of F, and
intermediate fields K7, K9 of E/, F'. Then
(1) Aut(E, (K1 I KQ)) = Aut(E,Kl) (] Aut(E, KQ), and
(11) Aut(E, (K1 (] KQ)) = Aut(E, Kl) N Aut(E, KQ)
The theorem is a consequence of (31), (18), (17), and (32).
(34) Let us consider a field F', an F-finite Galois extension E of F, and
SubGroups G1, G2 of Aut(E, F'). Then
(i) Fix(F,G1 NGe) = Fix(E,G) UFix(E, Gs), and
(11) FiX(E, G U GQ) = FiX(E, Gl) 1 FiX(E, GQ)
The theorem is a consequence of (17), (18), (31), and (32).

Let F be a field, E be an extension of F', and M be a non empty subset of
IntermediateFields(E, F'). The functor | Psi.(M)| yielding a non empty subset of
SubGr Aut(E, F') is defined by the term

(Def. 6) {(Vg)(K), where K is an element of IntermediateFields(F, F) : K €

Let M be a non empty subset of SubGr Aut(E, F'). The functor the UNK-
NOWN of M yielding a non empty subset of IntermediateFields(E, F') is defined
by the term

(Def. 7) {(®(F))(G), where G is an element of SubGr Aut(E, F) : G € M }.

Now we state the propositions:
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(35) Let us consider a field F', an extension E of F', and a non empty subset
M of IntermediateFields(E, F'). Then Psi.(M) = {Aut(F, K), where K is
an element of IntermediateFields(E, F) : K € M}.

(36) Let us consider a field F', an extension E of F', and a non empty subset M
of SubGr Aut(E, F'). Then the UNKNOWN of M = {Fix(E,G), where
G is an element of SubGrAut(E, F): G € M}.

(37) Let us consider a field F', an F-finite Galois extension E of F', and a non
empty subset M of IntermediateFields(E, F'). Then the UNKNOWN of
Psi.(M) = M. The theorem is a consequence of (35), (36), and (17).

(38) Let us consider a field F', an F-finite Galois extension E of F, and
a non empty subset M of SubGr Aut(E, F). Then Psi.(the UNKNOWN
of M) = M. The theorem is a consequence of (36), (35), and (18).

(39) Let us consider a field F', an extension E of F', and a non empty subset
M of IntermediateFields(E, F'). Then

(i) Aut(E, (U M)) is a subgroup of ( Psi.(M), and
(ii) UPsi.(M) is a subgroup of Aut(E, (N M)).

The theorem is a consequence of (35).

(40) Let us consider a field F', an extension E of F', and a non empty subset
M of SubGr Aut(E, F'). Then

(i) Fix(E,JM) is a subfield of M (the UNKNOWN of M), and
(ii) U(the UNKNOWN of M) is a subfield of Fix(E,M).

The theorem is a consequence of (36).

(41) Let us consider a field F', an F-finite Galois extension E of F', and a non
empty subset M of IntermediateFields(E, F'). Then

(i) Aut(E, (UM)) =NPsi.(M), and
(i) Awt(E, (N M)) = UPsi.(M).
The theorem is a consequence of (39), (40), (37), and (18).

(42) Let us consider a field F', an F-finite Galois extension E of F', and a non
empty subset M of SubGr Aut(E, F'). Then

(i) Fix(E,|JM) = N(the UNKNOWN of M), and
(i) Fix(E, M) = U(the UNKNOWN of M).

The theorem is a consequence of (39), (38), (17), and (40).
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