

The Fundamental Theorem of Galois Theory

Christoph Schwarzweller
Institute of Informatics
University of Gdańsk
Poland

Summary. In this article we prove the Fundamental Theorem of Galois Theory [6], [4], [5] using the Mizar formalism [1], [2], [3].

MSC: 68V20

Keywords:

MML identifier: GALOIS_4, version: 8.1.15 5.100.1509

INTRODUCTION

This article is the last in a series of five articles formalizing the Fundamental Theorem of Galois Theory [6], [4], [5] using the Mizar formalism [1], [2], [3].

We first show some necessary properties of normal subgroups and normal extensions; then we state and prove that for a finite Galois extension E of F

1. the functions φ mapping intermediate fields K to $\text{Aut}(E, K)$ and ϕ mapping subgroups G of $\text{Aut}(E, F)$ to $\text{Fix}(E, G)$ are inverse bijections respecting subfields and subgroups in the sense that K_1 is a subfield of K_2 if and only if $\varphi(K_2)$ is a subgroup of $\varphi(K_1)$ and G_1 is a subgroup of G_2 if and only if $\phi(G_2)$ is a subfield of $\phi(G_1)$.
2. for all intermediate fields K the degree of E over K equals the order of $\text{Aut}(E, K)$ and the degree of K over F equals the index of $\text{Aut}(E, K)$ in $\text{Aut}(E, F)$.

3. for all intermediate fields K_1 and K_2 we have that K_1 and K_2 are isomorphic over F if and only if $\text{Aut}(E, K_1)$ and $\text{Aut}(E, K_2)$ are conjugated in $\text{Aut}(E, F)$.
4. for all intermediate fields K we have that E is a Galois extension of K and that K is a Galois extension of F if and only if K is a normal extension of F .
5. an intermediate field K is a normal extension of F if and only if for all F -fixing automorphisms $f \in \text{Aut}(E, F)$ we have $f(K) = K$ if and only if $\text{Aut}(E, K)$ is a normal subgroup of $\text{Aut}(E, F)$. In this case $\text{Aut}(K, F)$ and $\text{Aut}(E, F)/\text{Aut}(E, K)$ are isomorphic.

We also prove that for finite Galois extensions the functions φ and ϕ respect the lattice operations \wedge and \vee : for subsets M of intermediate fields and subsets N of $\text{Aut}(E, F)$ we have

6. $\text{Aut}(E, \vee M) = \wedge \{ \varphi(K) \mid K \in M \} = \wedge \{ \text{Aut}(E, K) \mid K \in M \}$ and $\text{Aut}(E, \wedge M) = \vee \{ \varphi(K) \mid K \in M \} = \vee \{ \text{Aut}(E, K) \mid K \in M \}$.
7. $\text{Fix}(E, \vee N) = \wedge \{ \phi(G) \mid G \in N \} = \wedge \{ \text{Fix}(E, G) \mid G \in N \}$ and $\text{Fix}(E, \wedge N) = \vee \{ \phi(G) \mid G \in N \} = \vee \{ \text{Fix}(E, G) \mid G \in N \}$.

1. ON NORMAL SUBGROUPS

Now we state the proposition:

- (1) Let us consider a group G , and a subgroup H of G . Then H is normal if and only if for every elements g, h of G such that $h \in H$ holds $h^g \in H$.

Let us consider a group G and a strict subgroup H of G . Now we state the propositions:

- (2) H is normal if and only if for every element g of G , $H^g = H$. The theorem is a consequence of (1).
- (3) H is normal if and only if there exists a group G_1 and there exists a homomorphism f from G to G_1 such that $\text{Ker } f = H$.

Let G, H be groups. Assume H is a subgroup of G . The functor $\text{Index}(H, G)$ yielding a cardinal number is defined by

(Def. 1) there exists a subgroup H_1 of G such that $H_1 = H$ and $it = |\bullet : H_1|$.

Let G, H_1, H_2 be groups. We say that H_1, H_2 are conjugated in G if and only if

(Def. 2) there exist subgroups H_3, H_4 of G such that $H_3 = H_1$ and $H_4 = H_2$ and H_3 and H_4 are conjugated.

2. ON NORMAL EXTENSIONS

Let F be a field, E be an extension of F , h be a homomorphism of E , and K be an intermediate field of E, F . The functor $\text{rng}(h, K)$ yielding a subset of E is defined by the term

(Def. 3) $\text{rng}(h \upharpoonright (\text{the carrier of } K))$.

One can verify that $\text{rng}(h, K)$ is inducing subfield.

The functor $h^\circ K$ yielding a subfield of E is defined by the term

(Def. 4) $\text{InducedSubfield}(\text{rng}(h, K))$.

Let f be an F -fixing automorphism of E . Let us note that $f^\circ K$ is F -extending.

Now we state the propositions:

- (4) Let us consider a field F , an F -finite extension E of F , an intermediate field K of E, F , and an F -fixing automorphism f of E . Suppose K is F -normal. Then $f \upharpoonright (\text{the carrier of } K)$ is an F -fixing automorphism of K .
- (5) Let us consider a field F , an F -finite extension E of F , and an intermediate field K of E, F . Suppose K is F -normal. Let us consider F -fixing automorphisms f_1, f_2 of E . Then $f_1 \cdot f_2 \upharpoonright (\text{the carrier of } K) = (f_1 \upharpoonright (\text{the carrier of } K)) \cdot (f_2 \upharpoonright (\text{the carrier of } K))$. The theorem is a consequence of (4).
- (6) Let us consider a field F , an F -finite extension E of F , and an intermediate field K of E, F . Suppose K is F -normal. Let us consider an element f of the carrier of $\text{Aut}(E, F)$. Then $f^\circ K = K$. The theorem is a consequence of (4).
- (7) Let us consider a field F , an F -finite extension E of F , and an intermediate field K of E, F . Suppose K is F -normal. Then $\text{Fix}(K, \text{Aut}(K, F))$ is a subfield of $\text{Fix}(E, \text{Aut}(E, F))$. The theorem is a consequence of (4).
- (8) Let us consider a field F , a F -normal extension E of F , and an F -algebraic element a of E . Suppose $E \approx \text{FAdj}(F, \{a\})$. Then E is a splitting field of $\text{MinPoly}(a, F)$.
- (9) Let us consider a field F , an F -finite Galois extension E of F , intermediate fields K_1, K_2 of E, F , and a function h from K_1 into K_2 . Suppose h is F -fixing and isomorphism. Then there exists an F -fixing automorphism f of E such that $f \upharpoonright K_1 = h$.

PROOF: Consider a being an element of E such that $E \approx \text{FAdj}(F, \{a\})$. Set $p = \text{MinPoly}(a, F)$. Reconsider $p_1 = p$ as an element of the carrier

of Polynom-Ring K_1 . E is splitting field of p and K_1 -extending. Reconsider $L = E$ as a splitting field of p_1 . Reconsider $K_3 = K_2$ as an K_1 -isomorphic, K_1 -homomorphic field. Reconsider $h_1 = h$ as an isomorphism between K_1 and K_3 . $(\text{PolyHom}(h_1))(p_1) = p_1$. L is a splitting field of $(\text{PolyHom}(h_1))(p_1)$ by [9, (4)], [7, (7)], (8), [8, (29)]. Consider f being a function from L into L such that f is h_1 -extending and isomorphism. \square

- (10) Let us consider a field F , an extension E of F , an intermediate field K of E, F , and an element f of the carrier of $\text{Aut}(E)$. Then
 - (i) $(\text{Aut}(E, (f \circ K)))^f = \text{Aut}(E, K)$, and
 - (ii) $(\text{Aut}(E, K))^{f^{-1}} = \text{Aut}(E, (f \circ K))$.
- (11) Let us consider a field F , an extension E of F , a subgroup H of $\text{Aut}(E, F)$, and an element f of the carrier of $\text{Aut}(E, F)$. Then $f \circ (\text{Fix}(E, H)) = \text{Fix}(E, H^{f^{-1}})$.

3. THE THEOREM

Now we state the propositions:

- (12) Let us consider a field F , an extension E of F , and an intermediate field K of E, F . Then $(\Psi_E)(K) = \text{Aut}(E, K)$.
- (13) Let us consider a field F , an extension E of F , and a SubGroup G of $\text{Aut}(E, F)$. Then $(\Phi(E))(G) = \text{Fix}(E, G)$.

Let us consider a field F and an F -finite Galois extension E of F . Now we state the propositions:

- (14) Ψ_E is a bijection of $\text{IntermediateFields}(E, F)$, $\text{SubGr Aut}(E, F)$.
- (15) $\Phi(E)$ is a bijection of $\text{SubGr Aut}(E, F)$, $\text{IntermediateFields}(E, F)$.
- (16) (i) $(\Psi_E)^{-1} = \Phi(E)$, and
- (ii) $(\Phi(E))^{-1} = \Psi_E$.

Let F be a field and E be an F -finite Galois extension of F . Let us note that $\text{IntermediateFields}(E, F)$ is $(\text{SubGr Aut}(E, F))$ -bijective and $\text{SubGr Aut}(E, F)$ is $(\text{IntermediateFields}(E, F))$ -bijective.

Now we state the propositions:

- (17) Let us consider a field F , an F -finite Galois extension E of F , and an intermediate field K of E, F . Then $K = \text{Fix}(E, \text{Aut}(E, K))$.
- (18) Let us consider a field F , an F -finite Galois extension E of F , and a SubGroup G of $\text{Aut}(E, F)$. Then $G = \text{Aut}(E, (\text{Fix}(E, G)))$.
- (19) Let us consider a field F , an F -finite Galois extension E of F , and intermediate fields K_1, K_2 of E, F . Then K_1 is a subfield of K_2 if and only

if $\text{Aut}(E, K_2)$ is a subgroup of $\text{Aut}(E, K_1)$. The theorem is a consequence of (17).

- (20) Let us consider a field F , an F -finite Galois extension E of F , and SubGroups G_1, G_2 of $\text{Aut}(E, F)$. Then G_1 is a subgroup of G_2 if and only if $\text{Fix}(E, G_2)$ is a subfield of $\text{Fix}(E, G_1)$. The theorem is a consequence of (18).
- (21) Let us consider a field F , an F -finite Galois extension E of F , and an intermediate field K of E, F . Then
 - (i) $\deg(E, K) = \text{order } \text{Aut}(E, K)$, and
 - (ii) $\deg(K, F) = \text{Index}(\text{Aut}(E, K), \text{Aut}(E, F))$.
- (22) Let us consider a field F , an F -finite Galois extension E of F , and intermediate fields K_1, K_2 of E, F . Then K_1 and K_2 are isomorphic over F if and only if $\text{Aut}(E, K_1), \text{Aut}(E, K_2)$ are conjugated in $\text{Aut}(E, F)$. The theorem is a consequence of (9), (17), and (11).

Let us consider a field F , an F -finite Galois extension E of F , and an intermediate field K of E, F . Now we state the propositions:

- (23) E is a Galois extension of K .
- (24) K is a Galois extension of F if and only if K is F -normal.
- (25) K is F -normal if and only if for every element f of the carrier of $\text{Aut}(E, F)$, $f \circ K = K$. The theorem is a consequence of (6).
- (26) K is F -normal if and only if $\text{Aut}(E, K)$ is a normal subgroup of $\text{Aut}(E, F)$.
The theorem is a consequence of (6), (10), (2), (14), and (25).

Let F be a field, E be an F -finite extension of F , and K be an intermediate field of E, F . Assume K is F -normal. The functor $\text{Phi.}(K)$ yielding a homomorphism from $\text{Aut}(E, F)$ to $\text{Aut}(K, F)$ is defined by

- (Def. 5) for every F -fixing automorphism f of E , $\text{it}(f) = f \upharpoonright (\text{the carrier of } K)$.

Let us consider a field F , an F -finite extension E of F , and an intermediate field K of E, F . Now we state the propositions:

- (27) If K is F -normal, then $\text{Fix}(K, \text{Im } \text{Phi.}(K))$ is a subfield of $\text{Fix}(E, \text{Aut}(E, F))$.
The theorem is a consequence of (4).
- (28) If K is F -normal, then $\text{Ker } \text{Phi.}(K) = \text{Aut}(E, K)$.

Now we state the propositions:

- (29) Let us consider a field F , an F -finite Galois extension E of F , and an intermediate field K of E, F . Suppose K is F -normal. Then $\text{Im } \text{Phi.}(K) = \text{Aut}(K, F)$. The theorem is a consequence of (24), (27), and (15).
- (30) Let us consider a field F , an F -finite Galois extension E of F , an intermediate field K of E, F , and a normal subgroup H of $\text{Aut}(E, F)$. Suppose

$H = \text{Aut}(E, K)$. Then $\text{Aut}(K, F)$ and $\text{Aut}(E, F)/_H$ are isomorphic. The theorem is a consequence of (26), (28), and (29).

4. SOME LATTICE PROPERTIES

Now we state the propositions:

(31) Let us consider a field F , an extension E of F , and intermediate fields K_1, K_2 of E, F . Then

- (i) $\text{Aut}(E, K_1) \sqcup \text{Aut}(E, K_2)$ is a subgroup of $\text{Aut}(E, (K_1 \sqcap K_2))$, and
- (ii) $\text{Aut}(E, (K_1 \sqcup K_2))$ is a subgroup of $\text{Aut}(E, K_1) \cap \text{Aut}(E, K_2)$.

(32) Let us consider a field F , an extension E of F , and subgroups G_1, G_2 of $\text{Aut}(E, F)$. Then

- (i) $\text{Fix}(E, G_1) \sqcup \text{Fix}(E, G_2)$ is a subfield of $\text{Fix}(E, G_1 \cap G_2)$, and
- (ii) $\text{Fix}(E, G_1 \sqcup G_2)$ is a subfield of $\text{Fix}(E, G_1) \sqcap \text{Fix}(E, G_2)$.

(33) Let us consider a field F , an F -finite Galois extension E of F , and intermediate fields K_1, K_2 of E, F . Then

- (i) $\text{Aut}(E, (K_1 \sqcap K_2)) = \text{Aut}(E, K_1) \sqcup \text{Aut}(E, K_2)$, and
- (ii) $\text{Aut}(E, (K_1 \sqcup K_2)) = \text{Aut}(E, K_1) \cap \text{Aut}(E, K_2)$.

The theorem is a consequence of (31), (18), (17), and (32).

(34) Let us consider a field F , an F -finite Galois extension E of F , and SubGroups G_1, G_2 of $\text{Aut}(E, F)$. Then

- (i) $\text{Fix}(E, G_1 \cap G_2) = \text{Fix}(E, G_1) \sqcup \text{Fix}(E, G_2)$, and
- (ii) $\text{Fix}(E, G_1 \sqcup G_2) = \text{Fix}(E, G_1) \sqcap \text{Fix}(E, G_2)$.

The theorem is a consequence of (17), (18), (31), and (32).

Let F be a field, E be an extension of F , and M be a non empty subset of $\text{IntermediateFields}(E, F)$. The functor $\boxed{\text{Psi.}(M)}$ yielding a non empty subset of $\text{SubGr Aut}(E, F)$ is defined by the term

(Def. 6) $\{(\Psi_E)(K), \text{ where } K \text{ is an element of } \text{IntermediateFields}(E, F) : K \in M\}$.

Let M be a non empty subset of $\text{SubGr Aut}(E, F)$. The functor the UNK-NOWN of M yielding a non empty subset of $\text{IntermediateFields}(E, F)$ is defined by the term

(Def. 7) $\{(\Phi_E)(G), \text{ where } G \text{ is an element of } \text{SubGr Aut}(E, F) : G \in M\}$.

Now we state the propositions:

(35) Let us consider a field F , an extension E of F , and a non empty subset M of $\text{IntermediateFields}(E, F)$. Then $\text{Psi.}(M) = \{\text{Aut}(E, K), \text{ where } K \text{ is an element of } \text{IntermediateFields}(E, F) : K \in M\}$.

(36) Let us consider a field F , an extension E of F , and a non empty subset M of $\text{SubGr Aut}(E, F)$. Then the UNKNOWN of $M = \{\text{Fix}(E, G), \text{ where } G \text{ is an element of } \text{SubGr Aut}(E, F) : G \in M\}$.

(37) Let us consider a field F , an F -finite Galois extension E of F , and a non empty subset M of $\text{IntermediateFields}(E, F)$. Then the UNKNOWN of $\text{Psi.}(M) = M$. The theorem is a consequence of (35), (36), and (17).

(38) Let us consider a field F , an F -finite Galois extension E of F , and a non empty subset M of $\text{SubGr Aut}(E, F)$. Then $\text{Psi.}(\text{the UNKNOWN of } M) = M$. The theorem is a consequence of (36), (35), and (18).

(39) Let us consider a field F , an extension E of F , and a non empty subset M of $\text{IntermediateFields}(E, F)$. Then

- (i) $\text{Aut}(E, (\bigcup M))$ is a subgroup of $\bigcap \text{Psi.}(M)$, and
- (ii) $\bigcup \text{Psi.}(M)$ is a subgroup of $\text{Aut}(E, (\bigcap M))$.

The theorem is a consequence of (35).

(40) Let us consider a field F , an extension E of F , and a non empty subset M of $\text{SubGr Aut}(E, F)$. Then

- (i) $\text{Fix}(E, \bigcup M)$ is a subfield of $\bigcap (\text{the UNKNOWN of } M)$, and
- (ii) $\bigcup (\text{the UNKNOWN of } M)$ is a subfield of $\text{Fix}(E, \bigcap M)$.

The theorem is a consequence of (36).

(41) Let us consider a field F , an F -finite Galois extension E of F , and a non empty subset M of $\text{IntermediateFields}(E, F)$. Then

- (i) $\text{Aut}(E, (\bigcup M)) = \bigcap \text{Psi.}(M)$, and
- (ii) $\text{Aut}(E, (\bigcap M)) = \bigcup \text{Psi.}(M)$.

The theorem is a consequence of (39), (40), (37), and (18).

(42) Let us consider a field F , an F -finite Galois extension E of F , and a non empty subset M of $\text{SubGr Aut}(E, F)$. Then

- (i) $\text{Fix}(E, \bigcup M) = \bigcap (\text{the UNKNOWN of } M)$, and
- (ii) $\text{Fix}(E, \bigcap M) = \bigcup (\text{the UNKNOWN of } M)$.

The theorem is a consequence of (39), (38), (17), and (40).

REFERENCES

- [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hierarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Păprzycki, editors, *Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSiS)*, volume 8 of *Annals of Computer Science and Information Systems*, pages 363–371, 2016. doi:10.15439/2016F520.
- [4] I. Martin Isaacs. *Algebra: A Graduate Course*. Wadsworth Inc., 1994.
- [5] Serge Lang. *Algebra (Revised Third Edition)*. Springer Verlag, 2002.
- [6] Knut Radbruch. *Algebra I*. Lecture Notes, University of Kaiserslautern, Germany, 1991.
- [7] Christoph Schwarzweller. Field extensions and Kronecker’s construction. *Formalized Mathematics*, 27(3):229–235, 2019. doi:10.2478/forma-2019-0022.
- [8] Christoph Schwarzweller. Splitting fields. *Formalized Mathematics*, 29(3):129–139, 2021. doi:10.2478/forma-2021-0013.
- [9] Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Simple extensions. *Formalized Mathematics*, 31(1):287–298, 2023. doi:10.2478/forma-2023-0023.

Received January 24, 2026
