

Suszko's Non-Fregean Logics. Part I¹

Taneli Huuskonen
Tampere, Finland

Summary. The basic properties of non-Fregean logics in general and of Sentential Calculus with Identity in particular, as introduced by Roman Suszko in [4] and [5].

MSC: 68V20 68V35

Keywords:

MML identifier: SUSZKO_1, version: 8.1.15 5.96.1499

1. PRELIMINARIES

From now on k, m, n denote elements of \mathbb{N} , i, j denote natural numbers, a, b, c denote objects, y, z denote sets, and p, q, r, s denote finite sequences.

The functor **VARS** yielding a finite sequence-membered set is defined by the term

(Def. 1) the set of all $\langle 0, k \rangle$ where k is an element of \mathbb{N} .

Observe that VARS is non empty and antichain-like.

A variable is an element of VARS. The functors: 'not', **' \neg '**, and **' \vee '** yielding finite sequences are defined by terms

(Def. 2) $\langle 11 \rangle$,

(Def. 3) $\langle 21 \rangle$,

(Def. 4) $\langle 22 \rangle$,

respectively. The functors: **' \rightarrow '**, **' \leftrightarrow '**, and **' \equiv '** yielding finite sequences are defined by terms

¹This work has been supported by the National Science Centre of Poland, grant number UMO-2017/25/B/HS1/00503.

(Def. 5) $\langle 23 \rangle$,
 (Def. 6) $\langle 24 \rangle$,
 (Def. 7) $\langle 25 \rangle$,

respectively. The functors: **SCI-unops** and **SCI-binops** yielding non empty, finite sequence-membered sets are defined by terms

(Def. 8) $\{\text{'not}'\}$,
 (Def. 9) $\{\text{'\wedge}', \text{'\vee}', \text{'\rightarrow}', \text{'\leftrightarrow}', \text{'\equiv}'\}$,

respectively. Now we state the proposition:

(1) (i) $a \in \text{SCI-unops}$ iff $a = \text{'not'}$, and

(ii) $a \in \text{SCI-binops}$ iff $a = \text{'\wedge'}$ or $a = \text{'\vee'}$ or $a = \text{'\rightarrow'}$ or $a = \text{'\leftrightarrow'}$ or $a = \text{'\equiv'}$.

Let F, G be non empty, finite sequence-membered sets. One can verify that $F \cup G$ is non empty and finite sequence-membered.

The functor **SCI-ops** yielding a non empty, finite sequence-membered set is defined by the term

(Def. 10) $\text{SCI-unops} \cup \text{SCI-binops}$.

Now we state the proposition:

(2) (i) if $p = \text{'not'}$, then $p(1) = 11$, and

(ii) if $p = \text{'\wedge'}$, then $p(1) = 21$, and

(iii) if $p = \text{'\vee'}$, then $p(1) = 22$, and

(iv) if $p = \text{'\rightarrow'}$, then $p(1) = 23$, and

(v) if $p = \text{'\leftrightarrow'}$, then $p(1) = 24$, and

(vi) if $p = \text{'\equiv'}$, then $p(1) = 25$.

One can verify that **SCI-ops** is non empty and antichain-like.

The functor **SCI-symbols** yielding a non empty, finite sequence-membered set is defined by the term

(Def. 11) $\text{VARS} \cup \text{SCI-ops}$.

The functors: **VARS**, **SCI-ops**, **SCI-unops**, and **SCI-binops** yield non empty subsets of **SCI-symbols**. The functors: 'not' , '\wedge' , '\vee' , '\rightarrow' , and '\leftrightarrow' yield elements of **SCI-symbols**. Observe that **SCI-symbols** is non trivial and antichain-like.

Note that the functor **SCI-symbols** yields a non trivial Polish language. The functor **SCI-op-arity** yielding a function from **SCI-ops** into \mathbb{N} is defined by the term

(Def. 12) $(\text{SCI-binops} \mapsto 2) + \cdot (\text{SCI-unops} \mapsto 1)$.

The functor **SCI-arity** yielding a Polish arity-function of **SCI-symbols** is defined by the term

(Def. 13) SCI-op-arity +·(VARS \mapsto 0).

Now we state the propositions:

(3) If $a \in \text{VARS}$, then $(\text{SCI-arity})(a) = 0$.

(4) (i) $(\text{SCI-arity})(\text{'not'}) = 1$, and

(ii) for every a such that $a \in \text{SCI-binops}$ holds $(\text{SCI-arity})(a) = 2$.

(5) The Polish atoms(SCI-symbols , SCI-arity) = VARS. The theorem is a consequence of (4) and (3).

The functor **SCI-formula-set** yielding a full Polish language of SCI-symbols is defined by the term

(Def. 14) Polish-WFF-set(SCI-symbols, SCI-arity).

An **SCI-formula** is a Polish WFF of SCI-symbols and SCI-arity. Let us observe that there exists a subset of SCI-formula-set which is non empty.

Let us consider n . The functor x_n yielding an SCI-formula is defined by the term

(Def. 15) $\langle 0, n \rangle$.

In the sequel X denotes an extension of SCI-arity, L denotes a Polish-ext-set of X , and t, u, v, w denote formulae of L .

Let us consider X . Now we state the propositions:

(6) SCI-symbols $\subseteq \text{dom } X$.

(7) (i) $\text{'not'} \in \text{dom } X$, and

(ii) $X(\text{'not'}) = 1$, and

(iii) for every a such that $a \in \text{SCI-binops}$ holds $a \in \text{dom } X$ and $X(a) = 2$.

The theorem is a consequence of (6) and (4).

Let us consider X , L , and n . The functor $x.(n, L)$ yielding a formula of L is defined by the term

(Def. 16) x_n .

Now we state the proposition:

(8) If $m \neq n$, then $x_m \neq x_n$.

Let us consider p . The functor $\neg p$ yielding a finite sequence is defined by the term

(Def. 17) $\text{'not'} \cap p$.

Let us consider q . The functors: $p \wedge q$, $p \vee q$, $[p \rightarrow q]$, $[p \leftrightarrow q]$, and $[p \equiv q]$ yielding finite sequences are defined by terms

(Def. 18) $\text{'\wedge'} \cap (p \wedge q)$,

(Def. 19) $\text{'\vee'} \cap (p \wedge q)$,

(Def. 20) $\text{'\rightarrow'} \cap (p \wedge q)$,

(Def. 21) $'\leftrightarrow' \cap (p \cap q)$,

(Def. 22) $'\equiv' \cap (p \cap q)$,

respectively. Let us consider X , L , and t . One can check that the functor $\neg t$ is defined by the term

(Def. 23) $(\text{Polish-unOp}(X, L, 'not'))(t)$.

Let us consider u . The functors: $t \wedge u$, $t \vee u$, $[t \rightarrow u]$, $[t \leftrightarrow u]$, and $[t \equiv u]$ are defined by terms

(Def. 24) $(\text{Polish-binOp}(X, L, '\wedge'))(t, u)$,

(Def. 25) $(\text{Polish-binOp}(X, L, '\vee'))(t, u)$,

(Def. 26) $(\text{Polish-binOp}(X, L, '\rightarrow'))(t, u)$,

(Def. 27) $(\text{Polish-binOp}(X, L, '\leftrightarrow'))(t, u)$,

(Def. 28) $(\text{Polish-binOp}(X, L, '\equiv'))(t, u)$,

respectively. Note that the functor $\neg t$ yields a formula of L . Let us consider u . The functors: $t \wedge u$, $t \vee u$, $[t \rightarrow u]$, $[t \leftrightarrow u]$, and $[t \equiv u]$ yield formulae of L . The functor $t \Rightarrow u$ yielding a formula of L is defined by the term

(Def. 29) $t \equiv t \wedge u$.

Let u be an SCI-formula. The functors: $[t \rightarrow u]$ and $[t \equiv u]$ yield formulae of L . The functors: $[u \rightarrow t]$ and $[u \equiv t]$ yield formulae of L . We say that t is atomic if and only if

(Def. 30) $t \in \text{the Polish atoms (SCI-symbols, SCI-arity)}$.

We say that t is negative if and only if

(Def. 31) $\text{PolishExtHead}(t) = 'not'$.

We say that t is conjunctive if and only if

(Def. 32) $\text{PolishExtHead}(t) = '\wedge'$.

We say that t is disjunctive if and only if

(Def. 33) $\text{PolishExtHead}(t) = '\vee'$.

We say that t is conditional if and only if

(Def. 34) $\text{PolishExtHead}(t) = '\rightarrow'$.

We say that t is biconditional if and only if

(Def. 35) $\text{PolishExtHead}(t) = '\leftrightarrow'$.

We say that t is an equality if and only if

(Def. 36) $\text{PolishExtHead}(t) = '\equiv'$.

Let us consider t . Now we state the propositions:

(9) t is atomic if and only if $t \in \text{VARS}$.

(10) t is negative if and only if there exists u such that $t = \neg u$.

PROOF: 'not' $\in \text{dom } X$ and $X(\text{'not'}) = 1$. If t is negative, then there exists u such that $t = \neg u$ by [1, (9)]. \square

(11) t is conjunctive if and only if there exists u and there exists v such that $t = u \wedge v$.

PROOF: ' \wedge ' $\in \text{dom } X$ and $X(\text{' \wedge '}) = 2$. If t is conjunctive, then there exists u and there exists v such that $t = u \wedge v$ by [1, (11)]. \square

2. SCI AXIOMS

Let us consider X and L . The functors: **SCI-prop-axioms L** and **SCI-id-axioms L** yielding non empty subsets of L are defined by conditions

(Def. 37) for every $a, a \in \text{SCI-prop-axioms } L$ iff there exists t and there exists u and there exists v such that $a = t \rightarrow (u \rightarrow t)$ or $a = (t \rightarrow (u \rightarrow v)) \rightarrow ((t \rightarrow u) \rightarrow (t \rightarrow v))$ or $a = (\neg t \rightarrow \neg u) \rightarrow (u \rightarrow t)$ or $a = t \wedge u \rightarrow \neg(t \rightarrow \neg u)$ or $a = \neg(t \rightarrow \neg u) \rightarrow t \wedge u$ or $a = (t \vee u) \rightarrow (\neg t \rightarrow u)$ or $a = (\neg t \rightarrow u) \rightarrow (t \vee u)$ or $a = (t \leftrightarrow u) \rightarrow (t \rightarrow u) \wedge (u \rightarrow t)$ or $a = (t \rightarrow u) \wedge (u \rightarrow t) \rightarrow (t \leftrightarrow u)$,

(Def. 38) for every $a, a \in \text{SCI-id-axioms } L$ iff there exists t and there exists u and there exists v and there exists w such that $a = t \equiv t$ or $a = (t \equiv u) \rightarrow (\neg t \equiv \neg u)$ or $a = (t \equiv u) \wedge (v \equiv w) \rightarrow (t \wedge v \equiv u \wedge w)$ or $a = (t \equiv u) \wedge (v \equiv w) \rightarrow ((t \vee v) \equiv (u \vee w))$ or $a = (t \equiv u) \wedge (v \equiv w) \rightarrow ((t \rightarrow v) \equiv (u \rightarrow w))$ or $a = (t \equiv u) \wedge (v \equiv w) \rightarrow ((t \leftrightarrow v) \equiv (u \leftrightarrow w))$ or $a = (t \equiv u) \wedge (v \equiv w) \rightarrow ((t \equiv v) \equiv (u \equiv w))$ or $a = (t \equiv u) \rightarrow (t \rightarrow u)$,

respectively. Let B be a subset of L . Observe that there exists a non empty subset of L which is B -extending.

The functor **SCI-axioms L** yielding a (SCI-prop-axioms L)-extending subset of L is defined by the term

(Def. 39) SCI-prop-axioms $L \cup \text{SCI-id-axioms } L$.

From now on R, R_1, R_2 denote rules of L .

Let us consider X and L . The functor **SCI-MP L** yielding a rule of L is defined by the term

(Def. 40) the set of all $\langle \{t, t \rightarrow u\}, u \rangle$ where t, u are formulae of L .

The functor **SCI-rules L** yielding a rule of L is defined by the term

(Def. 41) SCI-MP L .

A formula-sequence of L is a finite sequence of elements of L .

A formula-finsset of L is a finite subset of L . In the sequel A, A_1, A_2 denote non empty subsets of L , B, B_1, B_2 denote subsets of L , P, P_1, P_2 denote formula-sequences of L , and S, S_1, S_2 denote formula-finssets of L .

Let us consider X , L , and t . One can verify that the functor $\{t\}$ yields a formula-finsel of L .

3. PROVABILITY

Let us consider X , L , B , and a . We say that a is B -provable if and only if

(Def. 42) a is $(B, (\text{SCI-rules } L))$ -provable.

Observe that every object which is B -axiomatic is also B -provable.

Now we state the proposition:

(12) If t is B -provable and $t \rightarrow u$ is B -provable, then u is B -provable.

Let us consider X , L , and a . We say that a is L -prop-axiomatic if and only if

(Def. 43) a is $(\text{SCI-prop-axioms } L)$ -axiomatic.

We say that a is L -id-axiomatic if and only if

(Def. 44) a is $(\text{SCI-id-axioms } L)$ -axiomatic.

We say that a is L -SCI-axiomatic if and only if

(Def. 45) a is $(\text{SCI-axioms } L)$ -axiomatic.

We say that a is L -SCI-provable if and only if

(Def. 46) a is $(\text{SCI-axioms } L)$ -provable.

One can verify that every element of SCI-prop-axioms L is L -prop-axiomatic and every element of SCI-id-axioms L is L -id-axiomatic and every element of SCI-axioms L is L -SCI-axiomatic and every object which is L -SCI-axiomatic is also L -SCI-provable and every object which is L -prop-axiomatic is also L -SCI-axiomatic and every object which is L -id-axiomatic is also L -SCI-axiomatic.

Let us consider t . Observe that $t \equiv t$ is L -id-axiomatic.

Let us consider u . One can verify that $t \rightarrow (u \rightarrow t)$ is L -prop-axiomatic and $(\neg t \rightarrow \neg u) \rightarrow (u \rightarrow t)$ is L -prop-axiomatic and $t \wedge u \rightarrow \neg(t \rightarrow \neg u)$ is L -prop-axiomatic and $\neg(t \rightarrow \neg u) \rightarrow t \wedge u$ is L -prop-axiomatic and $(t \vee u) \rightarrow (\neg t \rightarrow u)$ is L -prop-axiomatic and $(\neg t \rightarrow u) \rightarrow (t \vee u)$ is L -prop-axiomatic and $(t \leftrightarrow u) \rightarrow (t \rightarrow u) \wedge (u \rightarrow t)$ is L -prop-axiomatic and $(t \rightarrow u) \wedge (u \rightarrow t) \rightarrow (t \leftrightarrow u)$ is L -prop-axiomatic and $(t \equiv u) \rightarrow (\neg t \equiv \neg u)$ is L -id-axiomatic and $(t \equiv u) \rightarrow (t \rightarrow u)$ is L -id-axiomatic.

Let us consider v . Observe that $(t \rightarrow (u \rightarrow v)) \rightarrow ((t \rightarrow u) \rightarrow (t \rightarrow v))$ is L -prop-axiomatic.

Let us consider w . Let O be an element of SCI-binops. Note that $(t \equiv u) \wedge (v \equiv w) \rightarrow ((\text{Polish-binOp}(X, L, O))(t, v) \equiv (\text{Polish-binOp}(X, L, O))(u, w))$ is L -id-axiomatic and there exists a formula of L which is L -prop-axiomatic and there exists a formula of L which is L -id-axiomatic.

In the sequel C denotes a $(\text{SCI-prop-axioms } L)$ -extending subset of L .

Let us consider X and L . Let us note that every formula of L which is L -prop-axiomatic is also (SCI-prop-axioms L)-provable.

Let us consider C . Let us note that every formula of L which is non C -provable is also non (SCI-prop-axioms L)-provable and there exists a formula of L which is C -provable.

Let us consider t . Let u be a C -provable formula of L . Observe that $t \rightarrow u$ is C -provable.

Now we state the propositions:

(13) If $t \rightarrow u$ is C -provable and $u \rightarrow v$ is C -provable, then $t \rightarrow v$ is C -provable.

The theorem is a consequence of (12).

(14) $t \rightarrow t$ is C -provable. The theorem is a consequence of (12).

Let us consider X , L , and t . Let us observe that $t \rightarrow t$ is (SCI-prop-axioms L)-provable.

Let us consider C . Let t be a C -provable formula of L . Let us consider u . Observe that $(t \rightarrow u) \rightarrow u$ is C -provable.

Let us consider t . Let u be a C -provable formula of L . Let us consider v . Note that $(t \rightarrow (u \rightarrow v)) \rightarrow (t \rightarrow v)$ is C -provable.

Now we state the propositions:

(15) If $t \rightarrow (t \rightarrow u)$ is C -provable, then $t \rightarrow u$ is C -provable. The theorem is a consequence of (12).

(16) If $t \rightarrow (u \rightarrow v)$ is C -provable, then $u \rightarrow (t \rightarrow v)$ is C -provable. The theorem is a consequence of (12) and (13).

Let us consider X , L , t , and u . Let us observe that $(t \rightarrow (t \rightarrow u)) \rightarrow (t \rightarrow u)$ is (SCI-prop-axioms L)-provable.

Let us consider X , L , C , and t . Now we state the propositions:

(17) $\neg\neg t \rightarrow t$ is C -provable. The theorem is a consequence of (12).

(18) $t \rightarrow \neg\neg t$ is C -provable. The theorem is a consequence of (17).

Let us consider X , L , and t . Observe that $\neg\neg t \rightarrow t$ is (SCI-prop-axioms L)-provable and $t \rightarrow \neg\neg t$ is (SCI-prop-axioms L)-provable.

Let us consider u . Let us note that $(t \rightarrow u) \rightarrow (\neg u \rightarrow \neg t)$ is (SCI-prop-axioms L)-provable.

Let us consider X , L , C , t , and u . Now we state the propositions:

(19) If $\neg t \rightarrow u$ is C -provable, then $\neg u \rightarrow t$ is C -provable. The theorem is a consequence of (13).

(20) If $t \rightarrow \neg u$ is C -provable, then $u \rightarrow \neg t$ is C -provable. The theorem is a consequence of (13).

(21) $\neg t \rightarrow \neg u$ is C -provable if and only if $u \rightarrow t$ is C -provable. The theorem is a consequence of (13).

Let us consider X , L , C , and t . Let u be a C -provable formula of L . Observe that $\neg u \rightarrow t$ is C -provable and $t \rightarrow t$ is L -SCI-provable and $t \rightarrow \neg \neg t$ is L -SCI-provable and $\neg \neg t \rightarrow t$ is L -SCI-provable.

Let u be an L -SCI-provable formula of L . Observe that $t \rightarrow u$ is L -SCI-provable.

Now we state the proposition:

(22) $\neg t \rightarrow (t \rightarrow u)$ is C -provable.

Let us consider X , L , t , and u . One can verify that $\neg t \rightarrow (t \rightarrow u)$ is (SCI-prop-axioms L)-provable and $t \rightarrow (\neg t \rightarrow u)$ is (SCI-prop-axioms L)-provable.

Now we state the proposition:

(23) If $\neg t$ is C -provable, then $t \rightarrow u$ is C -provable.

Let us consider X , L , t , and u . Let us note that $t \rightarrow ((t \rightarrow u) \rightarrow u)$ is (SCI-prop-axioms L)-provable.

Now we state the proposition:

(24) $t \rightarrow (u \rightarrow v)$ is C -provable if and only if $t \rightarrow (\neg v \rightarrow \neg u)$ is C -provable. The theorem is a consequence of (12), (13), and (16).

Let us consider X , L , C , t , and u . Now we state the propositions:

(25) (i) $t \wedge u \rightarrow t$ is C -provable, and

(ii) $t \wedge u \rightarrow u$ is C -provable.

The theorem is a consequence of (19) and (13).

(26) $t \rightarrow (u \rightarrow t \wedge u)$ is C -provable. The theorem is a consequence of (21), (13), (16), and (24).

Let us consider X , L , t , and u . Observe that $t \wedge u \rightarrow t$ is (SCI-prop-axioms L)-provable and $t \wedge u \rightarrow u$ is (SCI-prop-axioms L)-provable and $t \rightarrow (u \rightarrow t \wedge u)$ is (SCI-prop-axioms L)-provable.

Let us consider C . Let u be a C -provable formula of L . One can verify that $t \rightarrow t \wedge u$ is C -provable and $t \rightarrow u \wedge t$ is C -provable.

Let t , u be C -provable formulae of L . Let us note that $t \wedge u$ is C -provable.

Now we state the propositions:

(27) $t \wedge u \rightarrow v$ is C -provable if and only if $t \rightarrow (u \rightarrow v)$ is C -provable. The theorem is a consequence of (12), (13), (16), and (15).

(28) $t \wedge u$ is C -provable if and only if t is C -provable and u is C -provable.

The theorem is a consequence of (12).

(29) $t \rightarrow u \wedge v$ is C -provable if and only if $t \rightarrow u$ is C -provable and $t \rightarrow v$ is C -provable. The theorem is a consequence of (13), (16), and (12).

(30) (i) $t \rightarrow (t \vee u)$ is C -provable, and

(ii) $u \rightarrow (t \vee u)$ is C -provable.

The theorem is a consequence of (13).

Let us consider X , L , and t . Let us observe that $t \vee \neg t$ is (SCI-prop-axioms L)-provable.

Let us consider u . Note that $t \rightarrow (t \vee u)$ is (SCI-prop-axioms L)-provable and $u \rightarrow (t \vee u)$ is (SCI-prop-axioms L)-provable.

Let us consider C . Let t be a C -provable formula of L . One can check that $t \vee u$ is C -provable and $u \vee t$ is C -provable.

Now we state the propositions:

- (31) $(\neg t \rightarrow t) \rightarrow t$ is C -provable. The theorem is a consequence of (12) and (13).
- (32) $(t \vee u) \rightarrow v$ is C -provable if and only if $t \rightarrow v$ is C -provable and $u \rightarrow v$ is C -provable. The theorem is a consequence of (13), (21), and (31).
- (33) Suppose $t \rightarrow v$ is C -provable and $u \rightarrow w$ is C -provable. Then
 - (i) $(t \vee u) \rightarrow (v \vee w)$ is C -provable, and
 - (ii) $t \wedge u \rightarrow v \wedge w$ is C -provable.

The theorem is a consequence of (13), (32), and (29).

- (34) $t \rightarrow u$ is C -provable if and only if u is $(C \cup \{t\})$ -provable.

PROOF: Set $D = C \cup \{t\}$. If $t \rightarrow u$ is C -provable, then u is D -provable by [2, (6)], (12). \square

From now on D denotes a (SCI-axioms L)-extending subset of L .

Let us consider X , L , and D . Let us note that every formula of L which is non D -provable is also non L -SCI-provable and there exists a formula of L which is D -provable.

Let us consider X , L , D , t , and u . Now we state the propositions:

- (35) If $t \equiv u$ is D -provable, then $t \rightarrow u$ is D -provable. The theorem is a consequence of (12).
- (36) If $t \equiv u$ is D -provable, then $\neg t \equiv \neg u$ is D -provable. The theorem is a consequence of (12).
- (37) $(t \equiv u) \rightarrow (u \equiv t)$ is D -provable. The theorem is a consequence of (13), (16), and (12).
- (38) If $t \equiv u$ is D -provable, then $u \equiv t$ is D -provable. The theorem is a consequence of (37) and (12).

Now we state the propositions:

- (39) $(t \equiv u) \wedge (v \equiv u) \rightarrow (t \equiv v)$ is D -provable. The theorem is a consequence of (37), (13), (16), and (12).
- (40) If t is D -provable and $t \Rightarrow u$ is D -provable, then u is D -provable. The theorem is a consequence of (35), (12), and (28).
- (41) Suppose $t \equiv u$ is D -provable and $v \equiv w$ is D -provable. Then

- (i) $t \wedge v \equiv u \wedge w$ is D -provable, and
- (ii) $t \wedge v \rightarrow u \wedge w$ is D -provable, and
- (iii) if $t \wedge v$ is D -provable, then $u \wedge w$ is D -provable, and
- (iv) $(t \vee v) \equiv (u \vee w)$ is D -provable, and
- (v) $(t \vee v) \rightarrow (u \vee w)$ is D -provable, and
- (vi) if $t \vee v$ is D -provable, then $u \vee w$ is D -provable, and
- (vii) $(t \rightarrow v) \equiv (u \rightarrow w)$ is D -provable, and
- (viii) $(t \rightarrow v) \rightarrow (u \rightarrow w)$ is D -provable, and
- (ix) if $t \rightarrow v$ is D -provable, then $u \rightarrow w$ is D -provable, and
- (x) $(t \leftrightarrow v) \equiv (u \leftrightarrow w)$ is D -provable, and
- (xi) $(t \leftrightarrow v) \rightarrow (u \leftrightarrow w)$ is D -provable, and
- (xii) if $t \leftrightarrow v$ is D -provable, then $u \leftrightarrow w$ is D -provable, and
- (xiii) $(t \equiv v) \equiv (u \equiv w)$ is D -provable, and
- (xiv) $(t \equiv v) \rightarrow (u \equiv w)$ is D -provable, and
- (xv) if $t \equiv v$ is D -provable, then $u \equiv w$ is D -provable, and
- (xvi) $(t \Rightarrow v) \equiv (u \Rightarrow w)$ is D -provable, and
- (xvii) $(t \Rightarrow v) \rightarrow (u \Rightarrow w)$ is D -provable, and
- (xviii) if $t \Rightarrow v$ is D -provable, then $u \Rightarrow w$ is D -provable.

The theorem is a consequence of (12) and (35).

Let us consider X , L , D , t , u , and v . Now we state the propositions:

(42) (i) $(t \equiv u) \rightarrow (t \wedge v \equiv u \wedge v)$ is D -provable, and

- (ii) $(t \equiv u) \rightarrow (v \wedge t \equiv v \wedge u)$ is D -provable, and
- (iii) $(t \equiv u) \rightarrow ((t \vee v) \equiv (u \vee v))$ is D -provable, and
- (iv) $(t \equiv u) \rightarrow ((v \vee t) \equiv (v \vee u))$ is D -provable, and
- (v) $(t \equiv u) \rightarrow ((t \rightarrow v) \equiv (u \rightarrow v))$ is D -provable, and
- (vi) $(t \equiv u) \rightarrow ((v \rightarrow t) \equiv (v \rightarrow u))$ is D -provable, and
- (vii) $(t \equiv u) \rightarrow ((t \leftrightarrow v) \equiv (u \leftrightarrow v))$ is D -provable, and
- (viii) $(t \equiv u) \rightarrow ((v \leftrightarrow t) \equiv (v \leftrightarrow u))$ is D -provable, and
- (ix) $(t \equiv u) \rightarrow ((t \equiv v) \equiv (u \equiv v))$ is D -provable, and
- (x) $(t \equiv u) \rightarrow ((v \equiv t) \equiv (v \equiv u))$ is D -provable, and
- (xi) $(t \equiv u) \rightarrow ((t \Rightarrow v) \equiv (u \Rightarrow v))$ is D -provable, and
- (xii) $(t \equiv u) \rightarrow ((v \Rightarrow t) \equiv (v \Rightarrow u))$ is D -provable.

The theorem is a consequence of (13) and (29).

(43) Suppose $t \equiv u$ is D -provable. Then

- (i) t is D -provable iff u is D -provable, and
- (ii) $t \wedge v \equiv u \wedge v$ is D -provable, and
- (iii) $t \wedge v \rightarrow u \wedge v$ is D -provable, and
- (iv) if $t \wedge v$ is D -provable, then $u \wedge v$ is D -provable, and
- (v) $v \wedge t \equiv v \wedge u$ is D -provable, and
- (vi) $v \wedge t \rightarrow v \wedge u$ is D -provable, and
- (vii) if $v \wedge t$ is D -provable, then $v \wedge u$ is D -provable, and
- (viii) $(t \vee v) \equiv (u \vee v)$ is D -provable, and
- (ix) $(t \vee v) \rightarrow (u \vee v)$ is D -provable, and
- (x) if $t \vee v$ is D -provable, then $u \vee v$ is D -provable, and
- (xi) $(v \vee t) \equiv (v \vee u)$ is D -provable, and
- (xii) $(v \vee t) \rightarrow (v \vee u)$ is D -provable, and
- (xiii) if $v \vee t$ is D -provable, then $v \vee u$ is D -provable, and
- (xiv) $(t \rightarrow v) \equiv (u \rightarrow v)$ is D -provable, and
- (xv) $(t \rightarrow v) \rightarrow (u \rightarrow v)$ is D -provable, and
- (xvi) if $t \rightarrow v$ is D -provable, then $u \rightarrow v$ is D -provable, and
- (xvii) $(v \rightarrow t) \equiv (v \rightarrow u)$ is D -provable, and
- (xviii) $(v \rightarrow t) \rightarrow (v \rightarrow u)$ is D -provable, and
- (xix) if $v \rightarrow t$ is D -provable, then $v \rightarrow u$ is D -provable, and
- (xx) $(t \leftrightarrow v) \equiv (u \leftrightarrow v)$ is D -provable, and
- (xxi) $(t \leftrightarrow v) \rightarrow (u \leftrightarrow v)$ is D -provable, and
- (xxii) if $t \leftrightarrow v$ is D -provable, then $u \leftrightarrow v$ is D -provable, and
- (xxiii) $(v \leftrightarrow t) \equiv (v \leftrightarrow u)$ is D -provable, and
- (xxiv) $(v \leftrightarrow t) \rightarrow (v \leftrightarrow u)$ is D -provable, and
- (xxv) if $v \leftrightarrow t$ is D -provable, then $v \leftrightarrow u$ is D -provable, and
- (xxvi) $(t \equiv v) \equiv (u \equiv v)$ is D -provable, and
- (xxvii) $(t \equiv v) \rightarrow (u \equiv v)$ is D -provable, and
- (xxviii) if $t \equiv v$ is D -provable, then $u \equiv v$ is D -provable, and
- (xxix) $(v \equiv t) \equiv (v \equiv u)$ is D -provable, and
- (xxx) $(v \equiv t) \rightarrow (v \equiv u)$ is D -provable, and
- (xxxi) if $v \equiv t$ is D -provable, then $v \equiv u$ is D -provable, and

- (xxxii) $(t \Rightarrow v) \equiv (u \Rightarrow v)$ is D -provable, and
- (xxxiii) $(t \Rightarrow v) \rightarrow (u \Rightarrow v)$ is D -provable, and
- (xxxiv) if $t \Rightarrow v$ is D -provable, then $u \Rightarrow v$ is D -provable, and
- (xxxv) $(v \Rightarrow t) \equiv (v \Rightarrow u)$ is D -provable, and
- (xxxvi) $(v \Rightarrow t) \rightarrow (v \Rightarrow u)$ is D -provable, and
- (xxxvii) if $v \Rightarrow t$ is D -provable, then $v \Rightarrow u$ is D -provable.

The theorem is a consequence of (38), (35), (12), and (42).

4. CONGRUENCES

Let us consider X and L .

A congruence of L is an equivalence relation of L defined by

(Def. 47) for every t, u, v , and w such that $\langle t, u \rangle, \langle v, w \rangle \in it$ holds $\langle \neg t, \neg u \rangle, \langle t \wedge v, u \wedge w \rangle, \langle t \vee v, u \vee w \rangle, \langle t \rightarrow v, u \rightarrow w \rangle, \langle t \leftrightarrow v, u \leftrightarrow w \rangle, \langle t \equiv v, u \equiv w \rangle \in it$.

In the sequel E denotes a congruence of L .

Let us consider X and L . One can verify that there exists a family of subsets of L which is non empty.

Let us consider E .

An equivalence class of E is an element of Classes E . Let us consider t . The functor $[E\text{-class } t]$ yielding an equivalence class of E is defined by the term

(Def. 48) $[t]_E$.

Now we state the proposition:

(44) $\langle t, u \rangle \in E$ if and only if E -class $t = E$ -class u .

PROOF: If $\langle t, u \rangle \in E$, then E -class $t = E$ -class u by [3, (18), (23)]. \square

From now on d, e denote equivalence classss of E .

Now we state the proposition:

(45) There exists t such that $d = E$ -class t .

Let us consider X, L, E , and d . The functor $\neg d$ yielding an equivalence class of E is defined by

(Def. 49) there exists t such that $d = E$ -class t and $it = E$ -class $\neg t$.

Let us consider e . The functors: $d \wedge e$, $d \vee e$, $[d \rightarrow e]$, and $[d \leftrightarrow e]$ yielding equivalence classss of E are defined by conditions

(Def. 50) there exists t and there exists u such that $d = E$ -class t and $e = E$ -class u and $d \wedge e = E$ -class $t \wedge u$,

(Def. 51) there exists t and there exists u such that $d = E$ -class t and $e = E$ -class u and $d \vee e = E$ -class $(t \vee u)$,

(Def. 52) there exists t and there exists u such that $d = E\text{-class } t$ and $e = E\text{-class } u$ and $d \rightarrow e = E\text{-class}(t \rightarrow u)$,

(Def. 53) there exists t and there exists u such that $d = E\text{-class } t$ and $e = E\text{-class } u$ and $d \leftrightarrow e = E\text{-class}(t \leftrightarrow u)$,

respectively. Let us consider D . The functor $\text{EqRel}(D)$ yielding a congruence of L is defined by

(Def. 54) for every t and u , $\langle t, u \rangle \in it$ iff $t \equiv u$ is D -provable.

An equivalence class of D is an equivalence class of $\text{EqRel}(D)$. Let us consider t . The functor $[D\text{-class } t]$ yielding an equivalence class of D is defined by the term

(Def. 55) $\text{EqRel}(D)$ -class t .

Now we state the proposition:

(46) $t \equiv u$ is D -provable if and only if $D\text{-class } t = D\text{-class } u$. The theorem is a consequence of (44).

In the sequel x, y, z denote equivalence classes of D .

Now we state the proposition:

(47) There exists t such that $x = D\text{-class } t$. The theorem is a consequence of (45).

Let us consider X, L, D , and x . We say that x is D -provable if and only if

(Def. 56) there exists t such that $x = D\text{-class } t$ and t is D -provable.

Now we state the proposition:

(48) $y = \neg x$ if and only if there exists t such that $x = D\text{-class } t$ and $y = D\text{-class } \neg t$.

Let us consider X, L , and D . Let t be a D -provable formula of L . Let us note that $D\text{-class } t$ is D -provable and there exists an equivalence class of D which is D -provable.

Now we state the proposition:

(49) If $D\text{-class } t$ is D -provable, then t is D -provable. The theorem is a consequence of (46), (35), and (12).

Let us consider X, L , and D . Let x be a D -provable equivalence class of D . One can verify that every element of x is D -provable.

Let us consider x and y . Now we state the propositions:

(50) $x \wedge y$ is D -provable if and only if x is D -provable and y is D -provable. The theorem is a consequence of (47), (49), and (28).

(51) $x \equiv y$ is D -provable if and only if $x = y$. The theorem is a consequence of (47), (46), and (49).

Now we state the propositions:

(52) (i) D -class $\neg t = \neg(D\text{-class } t)$, and
(ii) D -class $t \wedge u = (D\text{-class } t) \wedge (D\text{-class } u)$, and
(iii) D -class $(t \vee u) = (D\text{-class } t) \vee (D\text{-class } u)$, and
(iv) D -class $(t \rightarrow u) = (D\text{-class } t) \rightarrow (D\text{-class } u)$, and
(v) D -class $(t \leftrightarrow u) = (D\text{-class } t) \leftrightarrow (D\text{-class } u)$, and
(vi) D -class $(t \equiv u) = (D\text{-class } t) \equiv (D\text{-class } u)$.

(53) If x is D -provable, then $x \vee y$ is D -provable and $y \vee x$ is D -provable. The theorem is a consequence of (47) and (49).

Let us consider X , L , D , t , and u . Now we state the propositions:

(54) $t \leftrightarrow u$ is D -provable if and only if $t \rightarrow u$ is D -provable and $u \rightarrow t$ is D -provable. The theorem is a consequence of (12) and (28).
(55) If $t \leftrightarrow u$ is D -provable, then $u \leftrightarrow t$ is D -provable. The theorem is a consequence of (54).

REFERENCES

- [1] Taneli Huuskonen. Extensions of languages in Polish notation. *Formalized Mathematics*, 33(1):57–64, 2025. doi:10.2478/forma-2025-0005.
- [2] Taneli Huuskonen. Fundamentals of finitary proofs. *Formalized Mathematics*, 32(1):213–222, 2024. doi:10.2478/forma-2024-0018.
- [3] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. *Formalized Mathematics*, 1(3):441–444, 1990.
- [4] Roman Suszko. Non-Fregean logic and theories. *Analele Universitatii Bucuresti. Acta Logica*, 9:105–125, 1968.
- [5] Roman Suszko. Semantics for the sentential calculus with identity. *Studia Logica*, 28:77–81, 1971.

Received May 19, 2024, Accepted December 2, 2025

