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1. Preliminaries

From now on k, m, n denote elements of N, i, j denote natural numbers, a,
b, c denote objects, y, z denote sets, and p, q, r, s denote finite sequences.

The functor VARS yielding a finite sequence-membered set is defined by
the term

(Def. 1) the set of all 〈0, k〉 where k is an element of N.

Observe that VARS is non empty and antichain-like.
A variable is an element of VARS. The functors: ′not′, ′∧′ , and ′∨′ yielding

finite sequences are defined by terms

(Def. 2) 〈11〉,
(Def. 3) 〈21〉,
(Def. 4) 〈22〉,

respectively. The functors: ′→′ , ′↔′ , and ′≡′ yielding finite sequences are
defined by terms
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(Def. 5) 〈23〉,
(Def. 6) 〈24〉,
(Def. 7) 〈25〉,

respectively. The functors: SCI-unops and SCI-binops yielding non empty,
finite sequence-membered sets are defined by terms

(Def. 8) {′not′},
(Def. 9) {′∧′, ′∨′, ′→′, ′↔′, ′≡′},

respectively. Now we state the proposition:

(1) (i) a ∈ SCI-unops iff a = ′not′, and

(ii) a ∈ SCI-binops iff a = ′∧′ or a = ′∨′ or a = ′→′ or a = ′↔′ or a = ′≡′.
Let F , G be non empty, finite sequence-membered sets. One can verify that

F ∪G is non empty and finite sequence-membered.
The functor SCI-ops yielding a non empty, finite sequence-membered set

is defined by the term

(Def. 10) SCI-unops∪SCI-binops.

Now we state the proposition:

(2) (i) if p = ′not′, then p(1) = 11, and

(ii) if p = ′∧′, then p(1) = 21, and

(iii) if p = ′∨′, then p(1) = 22, and

(iv) if p = ′→′, then p(1) = 23, and

(v) if p = ′↔′, then p(1) = 24, and

(vi) if p = ′≡′, then p(1) = 25.

One can verify that SCI-ops is non empty and antichain-like.
The functor SCI-symbols yielding a non empty, finite sequence-membered

set is defined by the term

(Def. 11) VARS∪SCI-ops.

The functors: VARS , SCI-ops , SCI-unops , and SCI-binops yield non

empty subsets of SCI-symbols. The functors: ′not′, ′∧′ , ′∨′ , ′→′ , and ′↔′
yield elements of SCI-symbols. Observe that SCI-symbols is non trivial and
antichain-like.

Note that the functor SCI-symbols yields a non trivial Polish language. The
functor SCI-op-arity yielding a function from SCI-ops into N is defined by the
term

(Def. 12) (SCI-binops 7−→ 2) +· (SCI-unops 7−→ 1).

The functor SCI-arity yielding a Polish arity-function of SCI-symbols is
defined by the term
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(Def. 13) SCI-op-arity +·(VARS 7−→ 0).

Now we state the propositions:

(3) If a ∈ VARS, then (SCI-arity)(a) = 0.

(4) (i) (SCI-arity)(′not′) = 1, and

(ii) for every a such that a ∈ SCI-binops holds (SCI-arity)(a) = 2.

(5) The Polish atoms( SCI-symbols , SCI-arity ) = VARS. The theorem is
a consequence of (4) and (3).

The functor SCI-formula-set yielding a full Polish language of SCI-symbols
is defined by the term

(Def. 14) Polish-WFF-set(SCI-symbols,SCI-arity).

An SCI-formula is a Polish WFF of SCI-symbols and SCI-arity. Let us
observe that there exists a subset of SCI-formula-set which is non empty.

Let us consider n. The functor xn yielding an SCI-formula is defined by the
term

(Def. 15) 〈0, n〉.
In the sequel X denotes an extension of SCI-arity, L denotes a Polish-ext-set

of X, and t, u, v, w denote formulae of L.
Let us consider X. Now we state the propositions:

(6) SCI-symbols ⊆ domX.

(7) (i) ′not′ ∈ domX, and

(ii) X(′not′) = 1, and

(iii) for every a such that a ∈ SCI-binops holds a ∈ domX and X(a) = 2.
The theorem is a consequence of (6) and (4).

Let us consider X, L, and n. The functor x.(n,L) yielding a formula of L is
defined by the term

(Def. 16) xn.

Now we state the proposition:

(8) If m 6= n, then xm 6= xn.

Let us consider p. The functor ¬p yielding a finite sequence is defined by the
term

(Def. 17) ′not′ ap.

Let us consider q. The functors: p ∧ q, p ∨ q, p→ q , p↔ q , and p≡ q
yielding finite sequences are defined by terms

(Def. 18) ′∧′ a(p a q),

(Def. 19) ′∨′ a(p a q),

(Def. 20) ′→′ a(p a q),



4 taneli huuskonen

(Def. 21) ′↔′ a(p a q),

(Def. 22) ′≡′ a(p a q),

respectively. Let us consider X, L, and t. One can check that the functor ¬t is
defined by the term

(Def. 23) (Polish-unOp(X,L, ′not′))(t).

Let us consider u. The functors: t ∧ u, t ∨ u, t→u , t↔u , and t≡u are
defined by terms

(Def. 24) (Polish-binOp(X,L, ′∧′))(t, u),
(Def. 25) (Polish-binOp(X,L, ′∨′))(t, u),
(Def. 26) (Polish-binOp(X,L, ′→′))(t, u),
(Def. 27) (Polish-binOp(X,L, ′↔′))(t, u),
(Def. 28) (Polish-binOp(X,L, ′≡′))(t, u),

respectively. Note that the functor ¬t yields a formula of L. Let us consider u.
The functors: t ∧ u, t ∨ u, t→u , t↔u , and t≡u yield formulae of L. The
functor t⇒ u yielding a formula of L is defined by the term

(Def. 29) t≡ t ∧ u.
Let u be an SCI-formula. The functors: t→u and t≡u yield formulae of

L. The functors: u→ t and u≡ t yield formulae of L. We say that t is atomic
if and only if

(Def. 30) t ∈ the Polish atoms( SCI-symbols , SCI-arity ).

We say that t is negative if and only if

(Def. 31) PolishExtHead(t) = ′not′.

We say that t is conjunctive if and only if

(Def. 32) PolishExtHead(t) = ′∧′.
We say that t is disjunctive if and only if

(Def. 33) PolishExtHead(t) = ′∨′.
We say that t is conditional if and only if

(Def. 34) PolishExtHead(t) = ′→′.
We say that t is biconditional if and only if

(Def. 35) PolishExtHead(t) = ′↔′.
We say that t is an equality if and only if

(Def. 36) PolishExtHead(t) = ′≡′.
Let us consider t. Now we state the propositions:

(9) t is atomic if and only if t ∈ VARS.
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(10) t is negative if and only if there exists u such that t = ¬u.
Proof: ′not′ ∈ domX and X(′not′) = 1. If t is negative, then there exists
u such that t = ¬u by [1, (9)]. �

(11) t is conjunctive if and only if there exists u and there exists v such that
t = u ∧ v.
Proof: ′∧′ ∈ domX and X(′∧′) = 2. If t is conjunctive, then there exists
u and there exists v such that t = u ∧ v by [1, (11)]. �

2. SCI Axioms

Let us considerX and L. The functors: SCI-prop-axiomsL and SCI-id-axiomsL
yielding non empty subsets of L are defined by conditions

(Def. 37) for every a, a ∈ SCI-prop-axiomsL iff there exists t and there exists u and
there exists v such that a = t→(u→ t) or a = (t→(u→ v))→((t→u)→(t→ v))
or a = (¬t→¬u)→(u→ t) or a = t∧u→¬(t→¬u) or a = ¬(t→¬u)→ t∧
u or a = (t∨u)→(¬t→u) or a = (¬t→u)→(t∨u) or a = (t↔u)→(t→u)∧
(u→ t) or a = (t→u) ∧ (u→ t)→(t↔u),

(Def. 38) for every a, a ∈ SCI-id-axiomsL iff there exists t and there exists
u and there exists v and there exists w such that a = t≡ t or a =
(t≡u)→(¬t≡¬u) or a = (t≡u)∧(v≡w)→(t∧v≡u∧w) or a = (t≡u)∧
(v≡w)→((t∨v)≡(u∨w)) or a = (t≡u)∧(v≡w)→((t→ v)≡(u→w)) or
a = (t≡u)∧(v≡w)→((t↔ v)≡(u↔w)) or a = (t≡u)∧(v≡w)→((t≡ v)≡(u≡w))
or a = (t≡u)→(t→u),

respectively. Let B be a subset of L. Observe that there exists a non empty
subset of L which is B-extending.

The functor SCI-axiomsL yielding a (SCI-prop-axiomsL)-extending subset
of L is defined by the term

(Def. 39) SCI-prop-axiomsL ∪ SCI-id-axiomsL.

From now on R, R1, R2 denote rules of L.
Let us consider X and L. The functor SCI-MPL yielding a rule of L is

defined by the term

(Def. 40) the set of all 〈〈{t, t→u}, u〉〉 where t, u are formulae of L.

The functor SCI-rulesL yielding a rule of L is defined by the term

(Def. 41) SCI-MPL.

A formula-sequence of L is a finite sequence of elements of L.
A formula-finset of L is a finite subset of L. In the sequel A, A1, A2 denote

non empty subsets of L, B, B1, B2 denote subsets of L, P , P1, P2 denote
formula-sequences of L, and S, S1, S2 denote formula-finsets of L.
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Let us consider X, L, and t. One can verify that the functor {t} yields
a formula-finset of L.

3. Provability

Let us consider X, L, B, and a. We say that a is B-provable if and only if

(Def. 42) a is (B, (SCI-rulesL))-provable.

Observe that every object which is B-axiomatic is also B-provable.
Now we state the proposition:

(12) If t is B-provable and t→u is B-provable, then u is B-provable.

Let us consider X, L, and a. We say that a is L-prop-axiomatic if and only
if

(Def. 43) a is (SCI-prop-axiomsL)-axiomatic.

We say that a is L-id-axiomatic if and only if

(Def. 44) a is (SCI-id-axiomsL)-axiomatic.

We say that a is L-SCI-axiomatic if and only if

(Def. 45) a is (SCI-axiomsL)-axiomatic.

We say that a is L-SCI-provable if and only if

(Def. 46) a is (SCI-axiomsL)-provable.

One can verify that every element of SCI-prop-axiomsL is L-prop-axiomatic
and every element of SCI-id-axiomsL is L-id-axiomatic and every element of
SCI-axiomsL is L-SCI-axiomatic and every object which is L-SCI-axiomatic is
also L-SCI-provable and every object which is L-prop-axiomatic is also L-SCI-
axiomatic and every object which is L-id-axiomatic is also L-SCI-axiomatic.

Let us consider t. Observe that t≡ t is L-id-axiomatic.
Let us consider u. One can verify that t→(u→ t) is L-prop-axiomatic and

(¬t→¬u)→(u→ t) is L-prop-axiomatic and t∧u→¬(t→¬u) is L-prop-axiomatic
and ¬(t→¬u)→ t ∧ u is L-prop-axiomatic and (t ∨ u)→(¬t→u) is L-prop-
axiomatic and (¬t→u)→(t ∨ u) is L-prop-axiomatic and (t↔u)→(t→u) ∧
(u→ t) is L-prop-axiomatic and (t→u) ∧ (u→ t)→(t↔u) is L-prop-axiomatic
and (t≡u)→(¬t≡¬u) is L-id-axiomatic and (t≡u)→(t→u) is L-id-axiomatic.

Let us consider v. Observe that (t→(u→ v))→((t→u)→(t→ v)) is L-prop-
axiomatic.

Let us consider w. Let O be an element of SCI-binops. Note that (t≡u) ∧
(v≡w)→((Polish-binOp(X,L,O))(t, v)≡(Polish-binOp(X,L,O))(u,w)) is L-id-
axiomatic and there exists a formula of L which is L-prop-axiomatic and there
exists a formula of L which is L-id-axiomatic.

In the sequel C denotes a (SCI-prop-axiomsL)-extending subset of L.
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Let us consider X and L. Let us note that every formula of L which is
L-prop-axiomatic is also (SCI-prop-axiomsL)-provable.

Let us consider C. Let us note that every formula of L which is non C-
provable is also non (SCI-prop-axiomsL)-provable and there exists a formula of
L which is C-provable.

Let us consider t. Let u be a C-provable formula of L. Observe that t→u is
C-provable.

Now we state the propositions:

(13) If t→u is C-provable and u→ v is C-provable, then t→ v is C-provable.
The theorem is a consequence of (12).

(14) t→ t is C-provable. The theorem is a consequence of (12).

Let us considerX, L, and t. Let us observe that t→ t is (SCI-prop-axiomsL)-
provable.

Let us consider C. Let t be a C-provable formula of L. Let us consider u.
Observe that (t→u)→u is C-provable.

Let us consider t. Let u be a C-provable formula of L. Let us consider v.
Note that (t→(u→ v))→(t→ v) is C-provable.

Now we state the propositions:

(15) If t→(t→u) is C-provable, then t→u is C-provable. The theorem is
a consequence of (12).

(16) If t→(u→ v) is C-provable, then u→(t→ v) is C-provable. The theorem
is a consequence of (12) and (13).

Let us consider X, L, t, and u. Let us observe that (t→(t→u))→(t→u) is
(SCI-prop-axiomsL)-provable.

Let us consider X, L, C, and t. Now we state the propositions:

(17) ¬¬t→ t is C-provable. The theorem is a consequence of (12).

(18) t→¬¬t is C-provable. The theorem is a consequence of (17).

Let us consider X, L, and t. Observe that ¬¬t→ t is (SCI-prop-axiomsL)-
provable and t→¬¬t is (SCI-prop-axiomsL)-provable.

Let us consider u. Let us note that (t→u)→(¬u→¬t) is (SCI-prop-axiomsL)-
provable.

Let us consider X, L, C, t, and u. Now we state the propositions:

(19) If ¬t→u is C-provable, then ¬u→ t is C-provable. The theorem is a con-
sequence of (13).

(20) If t→¬u is C-provable, then u→¬t is C-provable. The theorem is a con-
sequence of (13).

(21) ¬t→¬u is C-provable if and only if u→ t is C-provable. The theorem is
a consequence of (13).
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Let us consider X, L, C, and t. Let u be a C-provable formula of L. Observe
that ¬u→ t is C-provable and t→ t is L-SCI-provable and t→¬¬t is L-SCI-
provable and ¬¬t→ t is L-SCI-provable.

Let u be an L-SCI-provable formula of L. Observe that t→u is L-SCI-
provable.

Now we state the proposition:

(22) ¬t→(t→u) is C-provable.

Let us considerX, L, t, and u. One can verify that ¬t→(t→u) is (SCI-prop-axiomsL)-
provable and t→(¬t→u) is (SCI-prop-axiomsL)-provable.

Now we state the proposition:

(23) If ¬t is C-provable, then t→u is C-provable.

Let us considerX, L, t, and u. Let us note that t→((t→u)→u) is (SCI-prop-axiomsL)-
provable.

Now we state the proposition:

(24) t→(u→ v) is C-provable if and only if t→(¬v→¬u) is C-provable. The
theorem is a consequence of (12), (13), and (16).

Let us consider X, L, C, t, and u. Now we state the propositions:

(25) (i) t ∧ u→ t is C-provable, and

(ii) t ∧ u→u is C-provable.
The theorem is a consequence of (19) and (13).

(26) t→(u→ t∧u) is C-provable. The theorem is a consequence of (21), (13),
(16), and (24).

Let us consider X, L, t, and u. Observe that t∧u→ t is (SCI-prop-axiomsL)-
provable and t ∧ u→u is (SCI-prop-axiomsL)-provable and t→(u→ t ∧ u) is
(SCI-prop-axiomsL)-provable.

Let us consider C. Let u be a C-provable formula of L. One can verify that
t→ t ∧ u is C-provable and t→u ∧ t is C-provable.

Let t, u be C-provable formulae of L. Let us note that t ∧ u is C-provable.
Now we state the propositions:

(27) t ∧ u→ v is C-provable if and only if t→(u→ v) is C-provable. The
theorem is a consequence of (12), (13), (16), and (15).

(28) t ∧ u is C-provable if and only if t is C-provable and u is C-provable.
The theorem is a consequence of (12).

(29) t→u ∧ v is C-provable if and only if t→u is C-provable and t→ v is
C-provable. The theorem is a consequence of (13), (16), and (12).

(30) (i) t→(t ∨ u) is C-provable, and

(ii) u→(t ∨ u) is C-provable.
The theorem is a consequence of (13).
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Let us considerX, L, and t. Let us observe that t∨¬t is (SCI-prop-axiomsL)-
provable.

Let us consider u. Note that t→(t∨u) is (SCI-prop-axiomsL)-provable and
u→(t ∨ u) is (SCI-prop-axiomsL)-provable.

Let us consider C. Let t be a C-provable formula of L. One can check that
t ∨ u is C-provable and u ∨ t is C-provable.

Now we state the propositions:

(31) (¬t→ t)→ t is C-provable. The theorem is a consequence of (12) and
(13).

(32) (t ∨ u)→ v is C-provable if and only if t→ v is C-provable and u→ v is
C-provable. The theorem is a consequence of (13), (21), and (31).

(33) Suppose t→ v is C-provable and u→w is C-provable. Then

(i) (t ∨ u)→(v ∨ w) is C-provable, and

(ii) t ∧ u→ v ∧ w is C-provable.

The theorem is a consequence of (13), (32), and (29).

(34) t→u is C-provable if and only if u is (C ∪ {t})-provable.
Proof: Set D = C ∪ {t}. If t→u is C-provable, then u is D-provable by
[2, (6)], (12). �

From now on D denotes a (SCI-axiomsL)-extending subset of L.
Let us consider X, L, and D. Let us note that every formula of L which

is non D-provable is also non L-SCI-provable and there exists a formula of L
which is D-provable.

Let us consider X, L, D, t, and u. Now we state the propositions:

(35) If t≡u is D-provable, then t→u is D-provable. The theorem is a con-
sequence of (12).

(36) If t≡u is D-provable, then ¬t≡¬u is D-provable. The theorem is a con-
sequence of (12).

(37) (t≡u)→(u≡ t) is D-provable. The theorem is a consequence of (13),
(16), and (12).

(38) If t≡u is D-provable, then u≡ t is D-provable. The theorem is a conse-
quence of (37) and (12).

Now we state the propositions:

(39) (t≡u) ∧ (v≡u)→(t≡ v) is D-provable. The theorem is a consequence
of (37), (13), (16), and (12).

(40) If t is D-provable and t ⇒ u is D-provable, then u is D-provable. The
theorem is a consequence of (35), (12), and (28).

(41) Suppose t≡u is D-provable and v≡w is D-provable. Then
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(i) t ∧ v≡u ∧ w is D-provable, and

(ii) t ∧ v→u ∧ w is D-provable, and

(iii) if t ∧ v is D-provable, then u ∧ w is D-provable, and

(iv) (t ∨ v)≡(u ∨ w) is D-provable, and

(v) (t ∨ v)→(u ∨ w) is D-provable, and

(vi) if t ∨ v is D-provable, then u ∨ w is D-provable, and

(vii) (t→ v)≡(u→w) is D-provable, and

(viii) (t→ v)→(u→w) is D-provable, and

(ix) if t→ v is D-provable, then u→w is D-provable, and

(x) (t↔ v)≡(u↔w) is D-provable, and

(xi) (t↔ v)→(u↔w) is D-provable, and

(xii) if t↔ v is D-provable, then u↔w is D-provable, and

(xiii) (t≡ v)≡(u≡w) is D-provable, and

(xiv) (t≡ v)→(u≡w) is D-provable, and

(xv) if t≡ v is D-provable, then u≡w is D-provable, and

(xvi) (t⇒ v)≡(u⇒ w) is D-provable, and

(xvii) (t⇒ v)→(u⇒ w) is D-provable, and

(xviii) if t⇒ v is D-provable, then u⇒ w is D-provable.

The theorem is a consequence of (12) and (35).

Let us consider X, L, D, t, u, and v. Now we state the propositions:

(42) (i) (t≡u)→(t ∧ v≡u ∧ v) is D-provable, and

(ii) (t≡u)→(v ∧ t≡ v ∧ u) is D-provable, and

(iii) (t≡u)→((t ∨ v)≡(u ∨ v)) is D-provable, and

(iv) (t≡u)→((v ∨ t)≡(v ∨ u)) is D-provable, and

(v) (t≡u)→((t→ v)≡(u→ v)) is D-provable, and

(vi) (t≡u)→((v→ t)≡(v→u)) is D-provable, and

(vii) (t≡u)→((t↔ v)≡(u↔ v)) is D-provable, and

(viii) (t≡u)→((v↔ t)≡(v↔u)) is D-provable, and

(ix) (t≡u)→((t≡ v)≡(u≡ v)) is D-provable, and

(x) (t≡u)→((v≡ t)≡(v≡u)) is D-provable, and

(xi) (t≡u)→((t⇒ v)≡(u⇒ v)) is D-provable, and

(xii) (t≡u)→((v ⇒ t)≡(v ⇒ u)) is D-provable.
The theorem is a consequence of (13) and (29).
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(43) Suppose t≡u is D-provable. Then

(i) t is D-provable iff u is D-provable, and

(ii) t ∧ v≡u ∧ v is D-provable, and

(iii) t ∧ v→u ∧ v is D-provable, and

(iv) if t ∧ v is D-provable, then u ∧ v is D-provable, and

(v) v ∧ t≡ v ∧ u is D-provable, and

(vi) v ∧ t→ v ∧ u is D-provable, and

(vii) if v ∧ t is D-provable, then v ∧ u is D-provable, and

(viii) (t ∨ v)≡(u ∨ v) is D-provable, and

(ix) (t ∨ v)→(u ∨ v) is D-provable, and

(x) if t ∨ v is D-provable, then u ∨ v is D-provable, and

(xi) (v ∨ t)≡(v ∨ u) is D-provable, and

(xii) (v ∨ t)→(v ∨ u) is D-provable, and

(xiii) if v ∨ t is D-provable, then v ∨ u is D-provable, and

(xiv) (t→ v)≡(u→ v) is D-provable, and

(xv) (t→ v)→(u→ v) is D-provable, and

(xvi) if t→ v is D-provable, then u→ v is D-provable, and

(xvii) (v→ t)≡(v→u) is D-provable, and

(xviii) (v→ t)→(v→u) is D-provable, and

(xix) if v→ t is D-provable, then v→u is D-provable, and

(xx) (t↔ v)≡(u↔ v) is D-provable, and

(xxi) (t↔ v)→(u↔ v) is D-provable, and

(xxii) if t↔ v is D-provable, then u↔ v is D-provable, and

(xxiii) (v↔ t)≡(v↔u) is D-provable, and

(xxiv) (v↔ t)→(v↔u) is D-provable, and

(xxv) if v↔ t is D-provable, then v↔u is D-provable, and

(xxvi) (t≡ v)≡(u≡ v) is D-provable, and

(xxvii) (t≡ v)→(u≡ v) is D-provable, and

(xxviii) if t≡ v is D-provable, then u≡ v is D-provable, and

(xxix) (v≡ t)≡(v≡u) is D-provable, and

(xxx) (v≡ t)→(v≡u) is D-provable, and

(xxxi) if v≡ t is D-provable, then v≡u is D-provable, and
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(xxxii) (t⇒ v)≡(u⇒ v) is D-provable, and

(xxxiii) (t⇒ v)→(u⇒ v) is D-provable, and

(xxxiv) if t⇒ v is D-provable, then u⇒ v is D-provable, and

(xxxv) (v ⇒ t)≡(v ⇒ u) is D-provable, and

(xxxvi) (v ⇒ t)→(v ⇒ u) is D-provable, and

(xxxvii) if v ⇒ t is D-provable, then v ⇒ u is D-provable.

The theorem is a consequence of (38), (35), (12), and (42).

4. Congruences

Let us consider X and L.
A congruence of L is an equivalence relation of L defined by

(Def. 47) for every t, u, v, and w such that 〈〈t, u〉〉, 〈〈v, w〉〉 ∈ it holds 〈〈¬t, ¬u〉〉, 〈〈t∧v,
u ∧ w〉〉, 〈〈t ∨ v, u ∨ w〉〉, 〈〈t→ v, u→w〉〉, 〈〈t↔ v, u↔w〉〉, 〈〈t≡ v, u≡w〉〉 ∈ it .

In the sequel E denotes a congruence of L.
Let us consider X and L. One can verify that there exists a family of subsets

of L which is non empty.
Let us consider E.
An equivalence class of E is an element of ClassesE. Let us consider t. The

functor E-class t yielding an equivalence class of E is defined by the term

(Def. 48) [t]E .

Now we state the proposition:

(44) 〈〈t, u〉〉 ∈ E if and only if E-class t = E-classu.
Proof: If 〈〈t, u〉〉 ∈ E, then E-class t = E-classu by [3, (18), (23)]. �

From now on d, e denote equivalence classs of E.
Now we state the proposition:

(45) There exists t such that d = E-class t.

Let us consider X, L, E, and d. The functor ¬d yielding an equivalence class
of E is defined by

(Def. 49) there exists t such that d = E-class t and it = E-class¬t.
Let us consider e. The functors: d ∧ e, d ∨ e, d→ e , and d↔ e yielding equ-
ivalence classs of E are defined by conditions

(Def. 50) there exists t and there exists u such that d = E-class t and e = E-classu
and d ∧ e = E-class t ∧ u,

(Def. 51) there exists t and there exists u such that d = E-class t and e = E-classu
and d ∨ e = E-class(t ∨ u),
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(Def. 52) there exists t and there exists u such that d = E-class t and e = E-classu
and d→ e = E-class(t→u),

(Def. 53) there exists t and there exists u such that d = E-class t and e = E-classu
and d↔ e = E-class(t↔u),

respectively. Let us consider D. The functor EqRel(D) yielding a congruence of
L is defined by

(Def. 54) for every t and u, 〈〈t, u〉〉 ∈ it iff t≡u is D-provable.

An equivalence class of D is an equivalence class of EqRel(D). Let us con-

sider t. The functor D-class t yielding an equivalence class of D is defined by
the term

(Def. 55) EqRel(D)-class t.

Now we state the proposition:

(46) t≡u is D-provable if and only if D-class t = D-classu. The theorem is
a consequence of (44).

In the sequel x, y, z denote equivalence classs of D.
Now we state the proposition:

(47) There exists t such that x = D-class t. The theorem is a consequence of
(45).

Let us consider X, L, D, and x. We say that x is D-provable if and only if

(Def. 56) there exists t such that x = D-class t and t is D-provable.

Now we state the proposition:

(48) y = ¬x if and only if there exists t such that x = D-class t and y =
D-class¬t.

Let us consider X, L, and D. Let t be a D-provable formula of L. Let us note
that D-class t is D-provable and there exists an equivalence class of D which is
D-provable.

Now we state the proposition:

(49) If D-class t is D-provable, then t is D-provable. The theorem is a conse-
quence of (46), (35), and (12).

Let us consider X, L, and D. Let x be a D-provable equivalence class of D.
One can verify that every element of x is D-provable.

Let us consider x and y. Now we state the propositions:

(50) x ∧ y is D-provable if and only if x is D-provable and y is D-provable.
The theorem is a consequence of (47), (49), and (28).

(51) x≡ y is D-provable if and only if x = y. The theorem is a consequence
of (47), (46), and (49).

Now we state the propositions:
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(52) (i) D-class¬t = ¬(D-class t), and

(ii) D-class t ∧ u = (D-class t) ∧ (D-classu), and

(iii) D-class(t ∨ u) = (D-class t) ∨ (D-classu), and

(iv) D-class(t→u) = (D-class t)→(D-classu), and

(v) D-class(t↔u) = (D-class t)↔(D-classu), and

(vi) D-class(t≡u) = (D-class t)≡(D-classu).

(53) If x is D-provable, then x∨y is D-provable and y∨x is D-provable. The
theorem is a consequence of (47) and (49).

Let us consider X, L, D, t, and u. Now we state the propositions:

(54) t↔u is D-provable if and only if t→u is D-provable and u→ t is D-
provable. The theorem is a consequence of (12) and (28).

(55) If t↔u is D-provable, then u↔ t is D-provable. The theorem is a con-
sequence of (54).
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