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1. PRELIMINARIES

From now on k, m, n denote elements of N, 7, 7 denote natural numbers, a,
b, ¢ denote objects, y, z denote sets, and p, ¢, r, s denote finite sequences.

The functor [VARS| yielding a finite sequence-membered set is defined by
the term

(Def. 1) the set of all (0, k) where k is an element of N.

Observe that VARS is non empty and antichain-like.
A variable is an element of VARS. The functors: 'not’, , and yielding
finite sequences are defined by terms

(Def. 2) (11),
(Def. 3) (21,
(Def. 4) (22,

respectively. The functors: I’—>' ‘, |’<—>’
defined by terms

i ‘

, and ‘ yielding finite sequences are
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2 TANELI HUUSKONEN

(Def. 5)  (23),
(Def. 6) (24),
(Def. 7)  (25),

respectively. The functors: - and _ yielding non empty,
finite sequence-membered sets are defined by terms
(Def. 8) {'not’},
(Def 9) {//\/ l\/l I_> <_>I I_/}
respectively. Now we state the proposition:
(1) (i) a € SCI-unops iff a = 'not’, and
(ii) a € SCI-binops iff a ='A ora ="V ora="-"ora ="' ora ="=".
Let F', G be non empty, finite sequence-membered sets. One can verify that
F UG is non empty and finite sequence-membered.
The functor m yielding a non empty, finite sequence-membered set
is defined by the term

(Def. 10)  SCI-unops U SCI-binops.
Now we state the proposition:
(2) (i) if p='not/, then p(1) = 11, and
(ii) if p="A, then p(1) = 21, and

) if p="V', then p(1) = 22, and
(iv) if p='—', then p(1) = 23, and

(v) if p="</, then p(1) = 24, and

(vi) if p='=', then p(1) = 25.
One can verify that SCI-ops is non empty and antichain-like.

The functor _ yielding a non empty, finite sequence-membered
set is defined by the term

(Def. 11) VARS USCI-ops.

empty subsets of SCI-symbols. The functors: 'not/, ”, ”, ”, and ”

yield elements of SCI-symbols. Observe that SCI-symbols is non trivial and
antichain-like.

Note that the functor SCI-symbols yields a non trivial Polish language. The
functor - yielding a function from SCI-ops into N is defined by the
term

(Def. 12)  (SCI-binops — 2) +- (SCI-unops — 1).

The functor - yielding a Polish arity-function of SCI-symbols is

defined by the term

(iii
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(Def. 13) SCl-op-arity +-(VARS +—— 0).
Now we state the propositions:
(3) If a € VARS, then (SCl-arity)(a) = 0.
(4) (i) (SCl-arity)('not’) = 1, and
(ii) for every a such that a € SCI-binops holds (SCl-arity)(a) = 2.
(5) The Polish atoms( SCI-symbols, SCl-arity) = VARS. The theorem is

a consequence of (4) and (3).

The functor ; yielding a full Polish language of SCI-symbols
is defined by the term

(Def. 14) Polish-WFF-set(SCI-symbols, SCl-arity).
_ is a Polish WFF of SCI-symbols and SCl-arity. Let us

observe that there exists a subset of SCI-formula-set which is non empty.
Let us consider n. The functor x, yielding an SCI-formula is defined by the
term

(Def. 15) (0, n).
In the sequel X denotes an extension of SCl-arity, I denotes a Polish-ext-set
of X, and t, u, v, w denote formulae of L.
Let us consider X. Now we state the propositions:

(6) SCI-symbols C dom X.
(7) (i) 'not’ € dom X, and
(i) X('not’) =1, and
(iii) for every a such that a € SCI-binops holds a € dom X and X (a) = 2.
The theorem is a consequence of (6) and (4).

Let us consider X, L, and n. The functor x.(n, L) yielding a formula of L is
defined by the term

(Def. 16)  xy,.
Now we state the proposition:
(8) If m # n, then x,, # x.

Let us consider p. The functor —p yielding a finite sequence is defined by the
term

(Def. 17) 'not/ "p.

Let us consider ¢q. The functors: p A ¢q, p V g, !, !, and g

yielding finite sequences are defined by terms
(Def. 18) "N "(p ™ q),
(Def. 19) 'V~ (p ™ q),
(Def. 20) "='"(p ™ q),
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(Def. 21) "=""(p " q),
(Def. 22) '='"(p ™ q),

respectively. Let us consider X, L, and t. One can check that the functor —t is
defined by the term

(Def. 23)  (Polish-unOp(X, L, not’))(¢).

Let us consider w. The functors: ¢t A u, t V u, ‘, ‘, and ” are

defined by terms
(Def. 24)  (Polish-binOp(X, L,"A"))(
(Def. 25)  (Polish-binOp(X, L,"V"))(
(Def. 26) (Polish-binOp(X, L,—"))
( ( )
(

i i

t,u)
t?“)v
(t,u),
Def. 27)  (Polish-binOp(X, L,"<"))(t,u)
Def. 28) (Polish-binOp(X, L,’=")) (¢, u),

respectively. Note that the functor —t yields a formula of L. Let us consider u.

The functors: t Au, tV u, _, -, and ” yield formulae of L. The

functor t = u yielding a formula of L is defined by the term
(Def. 29) t=tAu.

Let u be an SCI-formula. The functors: - and - yield formulae of
L. The functors: - and ‘ yield formulae of L. We say that t is atomic
if and only if

(Def. 30) t € the Polish atoms( SCI-symbols, SCl-arity ).
We say that t is negative if and only if
(Def. 31) PolishExtHead(t) = 'not’.
We say that t is conjunctive if and only if
(Def. 32) PolishExtHead(t) ='A.
We say that t is disjunctive if and only if
(Def. 33) PolishExtHead(t) ="V'.
We say that t is conditional if and only if
(Def. 34) PolishExtHead(t) ='—'.
We say that t is biconditional if and only if
(Def. 35) PolishExtHead(t) ="<'.
We say that t is an equality if and only if
(Def. 36) PolishExtHead(t) ='=".
Let us consider t. Now we state the propositions:

(9) tis atomic if and only if ¢ € VARS.

) )
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(10) t is negative if and only if there exists u such that ¢t = —u.
PROOF: 'not’ € dom X and X (‘not’) = 1. If ¢ is negative, then there exists
w such that ¢ = —u by [I}, (9)]. O

(11) ¢ is conjunctive if and only if there exists u and there exists v such that
t=uAv.
PrOOF: '\ € dom X and X ('A") = 2. If t is conjunctive, then there exists
u and there exists v such that ¢t = u A v by [Il, (11)]. O

2. SCI AxiomMs

Let us consider X and L. The functors: - and _

yielding non empty subsets of L are defined by conditions
(Def. 37) for every a, a € SCl-prop-axioms L iff there exists ¢ and there exists u and
there exists v such that a =t —(u—t) ora = (t = (u—v)) = ((t = u) —(t —v))
ora= (-t——u)—(u—t)ora=tAu— —(t——-u)ora=-(t——-u)—tA
wora = (tVu) —=(-t—u)ora = (-t —u) —(tVu) ora = (t = u) —(t = u)A\
(u—t)ora=(t—u)A(u—t)—(t-u),
(Def. 38) for every a, a € SCl-id-axioms L iff there exists ¢ and there exists
u and there exists v and there exists w such that a = t=¢ or a =
(t=u)—(-t=—w)ora= (t=u)AN(v=w) —=(tAv=uAw)ora = (t=u)A
(v=w)—=((tVv)=(uVw))ora = (t=u)A(v=w) = ((t = v) =(u—w)) or
a=(t=uANv=w)—=((t—v)=(u—w))ora=(t=u)ANv=w)—=((t=v)=(u=w)
ora= (t=u)—(t—u),
respectively. Let B be a subset of L. Observe that there exists a non empty
subset of L which is B-extending.

The functor _ yielding a (SCI-prop-axioms L)-extending subset
of L is defined by the term

(Def. 39) SCI-prop-axioms L U SCI-id-axioms L.

From now on R, R1, Ry denote rules of L.
Let us consider X and L. The functor _ yielding a rule of L is

defined by the term
(Def. 40) the set of all ({t,t —u}, u) where ¢, u are formulae of L.
The functor - yielding a rule of L is defined by the term
(Def. 41) SCI-MP L.
A formula-sequence of L is a finite sequence of elements of L.
A formula-finset of L is a finite subset of L. In the sequel A, A1, As denote
non empty subsets of L, B, By, By denote subsets of L, P, P;, P, denote
formula-sequences of L, and S, S, S5 denote formula-finsets of L.
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Let us consider X, L, and t. One can verify that the functor {t} yields
a formula-finset of L.

3. PROVABILITY

Let us consider X, L, B, and a. We say that a is B-provable if and only if
(Def. 42) @ is (B, (SCI-rules L))-provable.

Observe that every object which is B-axiomatic is also B-provable.
Now we state the proposition:

(12) If t is B-provable and t — u is B-provable, then u is B-provable.

Let us consider X, L, and a. We say that _ if and only
if

(Def. 43) a is (SCI-prop-axioms L)-axiomatic.

We say that _ if and only if

(Def. 44) a is (SCI-id-axioms L)-axiomatic.

We say that _ if and only if

(Def. 45) a is (SCl-axioms L)-axiomatic.
We say that _ if and only if
(Def. 46) a is (SCl-axioms L)-provable.

One can verify that every element of SCI-prop-axioms L is L-prop-axiomatic
and every element of SCIl-id-axioms L is L-id-axiomatic and every element of
SCl-axioms L is L-SCl-axiomatic and every object which is L-SCl-axiomatic is
also L-SCI-provable and every object which is L-prop-axiomatic is also L-SCI-
axiomatic and every object which is L-id-axiomatic is also L-SCl-axiomatic.

Let us consider ¢. Observe that t =t is L-id-axiomatic.

Let us consider u. One can verify that ¢t —(u—t) is L-prop-axiomatic and
(=t — —u) —(u —t) is L-prop-axiomatic and tAu — —(t — —u) is L-prop-axiomatic
and —(t — —u) —t A u is L-prop-axiomatic and (¢ V u) —(—t —wu) is L-prop-
axiomatic and (—t —w)—(t V u) is L-prop-axiomatic and (t < u) —(t—u) A
(u—t) is L-prop-axiomatic and (t — u) A (u — t) —(t <> u) is L-prop-axiomatic
and (t =u) — (-t = -w) is L-id-axiomatic and (t =u) —(t — u) is L-id-axiomatic.

Let us consider v. Observe that (t —(u—wv)) —((t —u) —(t —v)) is L-prop-
axiomatic.

Let us consider w. Let O be an element of SCI-binops. Note that (t=wu) A
(v=w) —((Polish-binOp(X, L, O))(t,v) =(Polish-binOp(X, L, O))(u,w)) is L-id-
axiomatic and there exists a formula of L which is L-prop-axiomatic and there
exists a formula of L which is L-id-axiomatic.

In the sequel C denotes a (SCI-prop-axioms L)-extending subset of L.
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Let us consider X and L. Let us note that every formula of L which is
L-prop-axiomatic is also (SCI-prop-axioms L)-provable.

Let us consider C. Let us note that every formula of L which is non C-
provable is also non (SCI-prop-axioms L)-provable and there exists a formula of
L which is C-provable.

Let us consider t. Let u be a C-provable formula of L. Observe that ¢t — u is
C-provable.

Now we state the propositions:

(13) If t —w is C-provable and u — v is C-provable, then t — v is C-provable.
The theorem is a consequence of (12).

(14) t—t is C-provable. The theorem is a consequence of (12).

Let us consider X, L, and t. Let us observe that ¢ — t is (SCI-prop-axioms L)-
provable.
Let us consider C. Let t be a C-provable formula of L. Let us consider w.
Observe that (t — u) — u is C-provable.
Let us consider t. Let u be a C-provable formula of L. Let us consider v.
Note that (t —(u—v)) —(t —v) is C-provable.
Now we state the propositions:
(15) If t —(t—u) is C-provable, then t —u is C-provable. The theorem is
a consequence of (12).
(16) If t —(u—w) is C-provable, then u —(t — v) is C-provable. The theorem
is a consequence of (12) and (13).
Let us consider X, L, t, and u. Let us observe that (t —(t —u)) —(t —u) is
(SCI-prop-axioms L)-provable.
Let us consider X, L, C, and t. Now we state the propositions:
(17) ——t—t is C-provable. The theorem is a consequence of (12).
(18) t— —~t is C-provable. The theorem is a consequence of (17).
Let us consider X, L, and t. Observe that ——t —t is (SCI-prop-axioms L)-
provable and ¢ — ——t is (SCI-prop-axioms L)-provable.
Let us consider u. Let us note that (t — u) —(—u— —t) is (SCI-prop-axioms L )-
provable.
Let us consider X, L, C, t, and u. Now we state the propositions:
(19) If =t — w is C-provable, then —u — t is C-provable. The theorem is a con-
sequence of (13).
(20) Ift— —wuis C-provable, then v — —t is C-provable. The theorem is a con-
sequence of (13).
(21) —t— —wu is C-provable if and only if uw — ¢ is C-provable. The theorem is
a consequence of (13).
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Let us consider X, L, C, and t. Let u be a C-provable formula of L. Observe
that —u—t is C-provable and t —t is L-SCl-provable and ¢t — ——t is L-SCI-
provable and ——t —t is L-SCI-provable.
Let u be an L-SCl-provable formula of L. Observe that t —w is L-SCI-
provable.
Now we state the proposition:
(22) —t—(t—wu) is C-provable.
Let us consider X, L, t, and u. One can verify that -t — (¢ — u) is (SCI-prop-axioms L)-
provable and ¢ —(—t — u) is (SCI-prop-axioms L)-provable.
Now we state the proposition:
(23) If =t is C-provable, then ¢t — u is C-provable.
Let us consider X, L, t, and u. Let us note that ¢t —((t — u) — u) is (SCI-prop-axioms L)
provable.
Now we state the proposition:
(24) t—(u—w) is C-provable if and only if t —(—v — —u) is C-provable. The
theorem is a consequence of (12), (13), and (16).
Let us consider X, L, C, t, and u. Now we state the propositions:
(25) (i) t Au—t is C-provable, and

(ii) ¢ Au—w is C-provable.
The theorem is a consequence of (19) and (13).
(26) t—(u—tAu)is C-provable. The theorem is a consequence of (21), (13),
(16), and (24).

Let us consider X, L, t, and u. Observe that t \u — t is (SCI-prop-axioms L)-
provable and ¢t A u— wu is (SCI-prop-axioms L)-provable and t —(u—t A u) is
(SCI-prop-axioms L)-provable.

Let us consider C'. Let u be a C-provable formula of L. One can verify that
t—1t Awuis C-provable and t — u At is C-provable.

Let ¢, u be C-provable formulae of L. Let us note that ¢ A u is C-provable.

Now we state the propositions:

(27) t ANu—w is C-provable if and only if ¢ —(u—wv) is C-provable. The
theorem is a consequence of (12), (13), (16), and (15).

(28) t A wu is C-provable if and only if ¢ is C-provable and u is C-provable.
The theorem is a consequence of (12).

(29) t—wu Awv is C-provable if and only if t —u is C-provable and t — v is
C-provable. The theorem is a consequence of (13), (16), and (12).

(30) (i) t—(tV u) is C-provable, and
(ii) w—(t VvV u) is C-provable.
The theorem is a consequence of (13).
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Let us consider X, L, and t. Let us observe that tV—t is (SCI-prop-axioms L)-
provable.
Let us consider u. Note that ¢t —(¢V u) is (SCI-prop-axioms L)-provable and
u—(tV u) is (SCl-prop-axioms L)-provable.
Let us consider C. Let ¢t be a C-provable formula of L. One can check that
t V u is C-provable and u V t is C-provable.
Now we state the propositions:
(31) (-t—t)—t is C-provable. The theorem is a consequence of (12) and
(13).
(32) (tVu)—w is C-provable if and only if ¢ — v is C-provable and u — v is
C-provable. The theorem is a consequence of (13), (21), and (31).

(33) Suppose t — v is C-provable and v — w is C-provable. Then
(i) (tVu)—(vVw)is C-provable, and
(ii) t Au—v Aw is C-provable.

The theorem is a consequence of (13), (32), and (29).

(34) t—w is C-provable if and only if u is (C' U {t})-provable.
PROOF: Set D = C U{t}. If t — u is C-provable, then u is D-provable by
[2, (6)], (12). O

From now on D denotes a (SCI-axioms L)-extending subset of L.

Let us consider X, L, and D. Let us note that every formula of L which
is non D-provable is also non L-SCI-provable and there exists a formula of L
which is D-provable.

Let us consider X, L, D, t, and u. Now we state the propositions:

(35) If t=wu is D-provable, then t — u is D-provable. The theorem is a con-
sequence of (12).

(36) If t=w is D-provable, then -t = —wu is D-provable. The theorem is a con-
sequence of (12).

(37) (t=u)—(u=t) is D-provable. The theorem is a consequence of (13),
(16), and (12).

(38) If t=wis D-provable, then uw=t is D-provable. The theorem is a conse-
quence of (37) and (12).

Now we state the propositions:

(39) (t=u) A (v=u)—(t=wv) is D-provable. The theorem is a consequence
of (37), (13), (16), and (12).

(40) If t is D-provable and t = w is D-provable, then u is D-provable. The
theorem is a consequence of (35), (12), and (28).

(41) Suppose t =wu is D-provable and v =w is D-provable. Then
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(tVo)=(uV w) is D—provable, and
(t V) —>(u V w) is D-provable, and

(t—v)=(u—w)is D—provable, and

(t = v) —(u—w) is D-provable, and

(x) (t<>v)=(u< w) is D-provable, and

(t—v) —>(u —w) is D-provable, and

(t=v)=(u= w) is D—provable, and
(t=v) —=(u=w) is D-provable, and

i)
ii)
iii) i
)
)
vi) i
)
)
(ix) if t — v is D-provable, then u — w is D-provable, and
)
)
ii) i
iii)
iv)
) i
) (t = v)=(u = w) is D-provable, and
) (t = v) —(u = w) is D-provable, and
(xviii) if t = v is D-provable, then u = w is D-provable.
The theorem is a consequence of (12) and (35).
Let us consider X, L, D, t, u, and v. Now we state the propositions:

(42) (i) (t=u)—(t Av=uAwv) is D-provable, and

(ii)) (t=u) —(vAt=v Awu) is D-provable, and
(iii) (t=u)—((t Vv)=(uVv)) is D-provable, and
(iv) (t=u)—((v Vt)=(vVu))is D-provable, and
(v) (t=u)—((t = v)=(u—w)) is D-provable, and
(vi) (t=u)—((v—1t)=(v—u)) is D-provable, and
(vil) (t=u)—((t < v)=(u<v)) is D-provable, and
(viii) (t=u)—((vt)=(v< u)) is D-provable, and
(ix) (t=u)—((t=v)=(u=w)) is D-provable, and
(x) (t=u)—((v=t)=(v=w)) is D-provable, and
(xi) (t=u)—((t = v)=(u = v)) is D-provable, and
(xii) (t=u)—((v=1t)=(v = u)) is D-provable.

The theorem is a consequence of (13) and (29).
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(43) Suppose t =wu is D-provable. Then
(i) t is D-provable iff u is D-provable, and

(ii) ¢t A\v=u Awv is D-provable, and
(iii) t Av—u A v is D-provable, and
(iv) if t A v is D-provable, then u A v is D-provable, and
(v
(vi
(vii

v At=v Awuis D-provable, and

v At— v Awu is D-provable, and

if v At is D-provable, then v A uw is D-provable, and
(t Vv)=(uVw) is D-provable, and
(tVv)—(uVw)is D-provable, and

(viii

(xxx

(xxxi

(v=t) —(v=u) is D-provable, and

)
i)
)
)
i)
)
)
ix)
(x) if t Vv is D-provable, then u V v is D-provable, and
(xi) (vVt)=(vVu)is D-provable, and
(xii) (v Vt)—(vV u) is D-provable, and
(xiii) if v V ¢ is D-provable, then v V u is D-provable, and
(xiv) (t—v)=(u—wv) is D-provable, and
(xv) (t—v)—(u—wv) is D-provable, and
(xvi) if t — v is D-provable, then u— v is D-provable, and
(xvil) (v—1t)=(v—u) is D-provable, and
(xviil) (v—t)—(v—wu) is D-provable, and
(xix) if v —t is D-provable, then v — u is D-provable, and
(xx) (t<>v)=(u<>v) is D-provable, and
(xxi) (t<>v)—(u<v) is D-provable, and
(xxii) if t <> v is D-provable, then u «> v is D-provable, and
(xxiii) (v t)=(v< u)is D-provable, and
(xxw) (v t) — (v u) is D-provable, and
xxv) if v« t is D-provable, then v <> u is D-provable, and
(xxv1) (t=v)=(u=wv) is D-provable, and
(xxvil) (t=v)—(u=wv) is D-provable, and
(xxviii) if ¢t =v is D-provable, then uw=wv is D-provable, and
(xxix) (v=t)=(v=w) is D-provable, and
)
)

if v=t is D-provable, then v=wu is D-provable, and
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(xxxii) (t = v)=(u = v) is D-provable, and
(xxxiil) (t = v) —(u = v) is D-provable, and
(xxxiv) if t = v is D-provable, then u = v is D-provable, and

(xxxv) (v =t)=(v = u) is D-provable, and

)
)
)
(xxxvi) (v=-t)—(v = u) is D-provable, and

(xxxvii) if v = t is D-provable, then v = w is D-provable.
The theorem is a consequence of (38), (35), (12), and (42).

4. CONGRUENCES

Let us consider X and L.
A congruence of L is an equivalence relation of L defined by
(Def. 47) for every t, u, v, and w such that (¢, u), (v, w) € it holds (—t, —u), (tAv,
uAw), (tVu, uVw), (t—v, u—w), (t—v, ucw), (t=v, u=w) € it.
In the sequel E denotes a congruence of L.
Let us consider X and L. One can verify that there exists a family of subsets
of L which is non empty.
Let us consider FE.
; is an element of Classes E. Let us consider £. The
functor ! yielding an equivalence class of F is defined by the term
(Def. 48) [t]p.
Now we state the proposition:
(44) (t, u) € E if and only if E-classt = E-classu.
ProOF: If (t, u) € E, then E-classt = E-classu by [3] (18), (23)]. O
From now on d, e denote equivalence classs of E.
Now we state the proposition:
(45) There exists ¢t such that d = E-classt.
Let us consider X, L, E, and d. The functor —d yielding an equivalence class
of F is defined by
(Def. 49) there exists ¢ such that d = E-classt and it = E-class —t.
Let us consider e. The functors: d Ae, d Ve, -I, and ‘ yielding equ-
ivalence classs of E are defined by conditions
(Def. 50) there exists t and there exists u such that d = E-classt and e = E-classu
and d A e = E-classt A u,

(Def. 51) there exists t and there exists u such that d = E-classt and e = E-classu
and d Ve = E-class(t V u),
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(Def. 52) there exists t and there exists u such that d = E-classt and e = E-classu
and d — e = E-class(t — u),

(Def. 53) there exists t and there exists u such that d = E-classt and e = E-classu
and d < e = FE-class(t < u),

respectively. Let us consider D. The functor EqRel(D) yielding a congruence of
L is defined by

(Def. 54) for every t and u, (t, u) € it iff t=wu is D-provable.
lAn equivalence class of D ‘ is an equivalence class of EqRel(D). Let us con-

sider t. The functor yielding an equivalence class of D is defined by
the term

(Def. 55) EqRel(D)-classt.

Now we state the proposition:

(46) t=w is D-provable if and only if D-classt = D-classu. The theorem is
a consequence of (44).
In the sequel x, y, z denote equivalence classs of D.
Now we state the proposition:
(47) There exists ¢t such that x = D-classt. The theorem is a consequence of
(45).
Let us consider X, L, D, and x. We say that x is D-provable if and only if
(Def. 56) there exists ¢ such that = D-classt and ¢ is D-provable.
Now we state the proposition:
(48) y = —x if and only if there exists ¢ such that x = D-classt and y =
D-class —t.

Let us consider X, L, and D. Let ¢t be a D-provable formula of L. Let us note
that D-classt is D-provable and there exists an equivalence class of D which is
D-provable.

Now we state the proposition:

(49) If D-classt is D-provable, then ¢ is D-provable. The theorem is a conse-
quence of (46), (35), and (12).
Let us consider X, L, and D. Let = be a D-provable equivalence class of D.
One can verify that every element of x is D-provable.
Let us consider x and y. Now we state the propositions:
(50) « Ay is D-provable if and only if z is D-provable and y is D-provable.
The theorem is a consequence of (47), (49), and (28).
(51) z =y is D-provable if and only if x = y. The theorem is a consequence
of (47), (46), and (49).

Now we state the propositions:

13
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(52) (i) D-class—t = —=(D-classt), and
(ii) D-classt Au = (D-classt) A (D-classu), and
(iii) D-class(t V u) = (D-classt) V (D-classu), and
(iv) D-class(t —u) = (D-classt) —(D-classu), and
(v) D-class(t < u) = (D-classt) «»(D-classu), and
(vi) D-class(t=u) = (D-classt) =(D-classu).
(53) If z is D-provable, then x \Vy is D-provable and y V x is D-provable. The
theorem is a consequence of (47) and (49).
Let us consider X, L, D, t, and u. Now we state the propositions:

(54) t<wu is D-provable if and only if ¢ — u is D-provable and u—t is D-
provable. The theorem is a consequence of (12) and (28).

(55) If t <> u is D-provable, then u <t is D-provable. The theorem is a con-
sequence of (54).
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